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Abstract

Background: Increased postprandial lipid (PPL) response to dietary fat intake is a heritable risk factor for cardiovascular
disease (CVD). Variability in postprandial lipids results from the complex interplay of dietary and genetic factors. We
hypothesized that detailed lipid profiles (eg, sterols and fatty acids) may help elucidate specific genetic and dietary
pathways contributing to the PPL response.

Methods and Results: We used gas chromatography mass spectrometry to quantify the change in plasma concentration of
35 fatty acids and 11 sterols between fasting and 3.5 hours after the consumption of a high-fat meal (PPL challenge) among
40 participants from the GOLDN study. Correlations between sterols, fatty acids and clinical measures were calculated.
Mixed linear regression was used to evaluate associations between lipidomic profiles and genomic markers including single
nucleotide polymorphisms (SNPs) and methylation markers derived from the Affymetrix 6.0 array and the Illumina
Methyl450 array, respectively. After the PPL challenge, fatty acids increased as well as sterols associated with cholesterol
absorption, while sterols associated with cholesterol synthesis decreased. PPL saturated fatty acids strongly correlated with
triglycerides, very low-density lipoprotein, and chylomicrons. Two SNPs (rs12247017 and rs12240292) in the sorbin and SH3
domain containing 1 (SORBS1) gene were associated with b-Sitosterol after correction for multiple testing (P#4.5*10210).
SORBS1 has been linked to obesity and insulin signaling. No other markers reached the genome-wide significance threshold,
yet several other biologically relevant loci are highlighted (eg, PRIC285, a co-activator of PPARa).

Conclusions: Integration of lipidomic and genomic data has the potential to identify new biomarkers of CVD risk.
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Introduction

Hypertriglyceridemia and mixed dyslipidemia (i.e., high levels

of low-density lipoprotein cholesterol (LDL-C) and triglycerides

(TG) combined with decreased levels of high-density lipoprotein

cholesterol (HDL-C)) are important in the development and

progression of atherosclerosis [1]. Most clinical lipid measures

continue to be assessed in the fasting state despite the fact that

humans spend a considerable amount of time in a non-fasting,

postprandial state and experience continuous fluctuations in the

degree of lipemia throughout the day [2]. Large population-based

studies have shown that delayed elimination of postprandial lipids

increases cardiovascular disease (CVD) risk [3,4,5]. For example,

the Copenhagen City Heart Study reported increasing levels of

non-fasting cholesterol and non-fasting TGs were similarly

associated with increasing risk of myocardial infarction over 31

years of follow-up, with non-fasting TGs being the strongest

predictor in women and non-fasting cholesterol the strongest

predictor in men [6].

An increased postprandial lipid (PPL) response may be inherited

[7,8]. In one report, postprandial TG levels were compared in

healthy sons of men with angiographic evidence of severe coronary

heart disease (CHD) versus sons of control subjects without CHD

after the consumption of a high-fat liquid drink [7]. Results

showed fasting lipids were comparable between groups, but the

sons of men with CHD had significantly higher plasma TG levels

after 8, 10, and 12 hours postprandially, suggesting delayed

clearance. Additionally, our own work in GOLDN estimated the
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slope of TG increase 3.5 hours after a postprandial intervention

had close to 80% heritability. Despite promising hypotheses (e.g.,

remnant triglyceride rich lipoproteins cause endothelial dysfunc-

tion), the pathogenesis of a prolonged postprandial response

remains incompletely understood [2,9]. A deeper understanding of

the environmental and genetic factors influencing the PPL

response will be important in developing behavioral and

pharmacologic approaches to CVD prevention and treatment.

To date, studies seeking to identify genetic predictors of the PPL

response in free-living populations can claim qualified success. A

number of studies have documented that variants in genes such as

APOA1, A2, A4, A5, E, C1, C3; LPL; LIPC; SCARB1; MTP, GCKR;

and those encoding fatty acid binding and transport proteins,

explain some of the inter-individual variability [2,10,11]. Despite

progress, current findings do not fully explain the heritable

component of the PPL response. The lipidome, as a subset of the

metabolome, may offer more precise postprandial phenotypes

than clinically measured lipid species. Previous studies have

suggested lipidomic profiles are both heritable and under strong

genetic control [12,13]. We hypothesize that a controlled diet

intervention enriched for saturated fat and cholesterol will allow

more precise assessment of lipidomic postprandial changes [14]

and will facilitate genetic and epigenetic discovery. The current

study measured sterols and total fatty acid content across lipid

classes in human plasma after a PPL intervention as part of the

Genetics of Lipid-lowering Drugs and Diet Network Study

(GOLDN). Genome-wide association study (GWAS) data and

epigenome-wide association study (EWAS) data assayed using the

Affymetrix 6.0 and the Illumina Methyl450 array, respectively,

were associated with newly captured phenotypes before and after

the high fat meal. Previous studies have identified correlations

between genetic variation and the quantitative trait of DNA

methylation enriched at nearby loci (cis-meQTLs) [15]. To

interpret the potential for functional crosstalk between DNA

sequence variants and methylation marks, we also examined cis-

meQTLs in regions with overlapping GWAS and EWAS

association.

Methods

Ethics Statement
The study protocol was approved by the Institutional Review

Boards at the University of Minnesota, University of Utah, Tufts

University/New England Medical Center, and the University of

Alabama at Birmingham. Written informed consent was obtained

from all participants.

Study population
The GOLDN study was designed to identify genes that

determine response of lipids to two interventions, one to raise

(ingestion of high-fat meal) and one to lower lipid levels

(fenofibrate treatment) [16] (registered at clinicaltrails.gov,

number NCT00083369; URL, http://clinicaltrials.gov/ct2/

show/NCT00083369). The GOLDN study has been previously

described in Irvin et al. [17]. Briefly, the study ascertained and

recruited families from the Family Heart Study at two centers,

Minneapolis, MN and Salt Lake City, UT, who were self-reported

to be white. In each case, only families with at least two siblings

were recruited and only participants who did not take lipid-

lowering agents (pharmaceuticals or nutraceuticals) for at least 4

weeks prior to the initial visit were included. A total of 1048

GOLDN participants were included in the diet intervention. For

the current study, sterols and fatty acids were measured from

stored plasma (280 degrees Celsius) collected at fasting and

3.5 hours after the diet intervention (described below) for 40

GOLDN participants from 24 independent families, for whom

EWAS data and GWAS data were available. The 3.5 hour time

point was chosen for this study as it maximized the postprandial

differences observed between individuals in our data facilitating

genomic discovery. The phenotype and genotype data relevant to

this study was deposited in The database of Genotypes and

Phenotypes (dbGaP) with accession number phs000741.v1.p1.

Postprandial intervention and clinical measurements
For the GOLDN diet intervention, participants were asked to

fast for $12 hours and abstain from alcohol intake for $24 hours

before visiting the clinic. The PPL intervention followed the

protocol of Patsch et al. [18]. The whipping cream/dry milk meal

had 700 calories/m2 body surface area (2.93 MJ/m2 body surface

area): 3% of calories were derived from protein (instant nonfat dry

milk), 14% from carbohydrate (sugar), and 83% from fat sources

(heavy whipping cream). The ratio of polyunsaturated to saturated

fat was 0.06 and the cholesterol content of the average meal was

240 mg. The mixture was blended with ice and 15 mL of

chocolate- or strawberry-flavored syrup to increase the palatabil-

ity. Blood samples were drawn immediately before (fasting) and at

3.5 and 6 hours after consuming the high-fat meal. At each of the

three time points TGs were measured by glycerol-blanked

enzymatic method. Cholesterol was measured using a cholesterol

esterase–cholesterol oxidase reaction. The same reaction was also

used to measure HDL-C after precipitation of non-HDL-C with

magnesium/dextran. LDL-C was measured by a homogeneous

direct method. We also used nuclear magnetic resonance (NMR)

spectroscopy to measure very low-density lipoprotein cholesterol

(VLDL-C) and chylomicrons. TGs, HDL-C, LDL-C, VLDL-C,

chylomicrons and total cholesterol as described are referred to as

clinical lipids in the context of this study. The remaining clinical

measures were captured only once at fasting (or baseline) and

include high-sensitivity C-reactive protein (hsCRP) measured on

the Hitachi 911 using a latex particle enhanced immunoturbidi-

metric assay (Kamiya Biomedical Company, Seattle, WA, USA).

Interleukin-6 (IL6), IL-2 soluble receptor (IL2sR)-a, tumor

necrosis factor (TNF)-a, and monocyte chemoattractant protein-

1 (MCP1) were measured using quantitative sandwich enzyme

immunoassay techniques (ELISA kit assays, R&D Systems Inc.,

Minneapolis, MN, USA) as described in previous publications

[19,20]. Plasma adiponectin and insulin were measured by a

commercial kit using competitive RIA (Linco Research, St

Charles, MO, USA). Plasma glucose was determined by a

hexokinase-mediated reaction on the Hitachi commercial kit

(Roche Diagnostics). We measured weight with a beam balance,

hip circumference at maximal hip girth, and waist circumference

at the umbilicus. Body mass index (BMI) was calculated as weight

(kg)/height (m)2.

TrueMass sterol panel
Deuterium-labeled internal standards were added to 25 mL of

stored plasma from blood drawn at 0 and 3.5 hours and the

mixture was saponified in ethanolic KOH. Free sterols were

extracted in hexane:ethanol, dried under nitrogen, and derivatized

with Tri-Sil in decane. The silated free sterols were injected onto a

6890/5975 GC/MS (Agilent Technologies, CA) with a DB-5MS

UI column (Agilent Technologies, CA) with helium as the carrier.

Mass spectroscopic analysis was performed in the single ion

monitoring (SIM) mode with electron ionization. Prior to each

assay the instruments were calibrated including analysis of

reference standards. Quality control (QC) samples were included

with each batch to continuously monitor the accuracy of the
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platform with time. The absolute concentration of each sterol was

determined by comparing the peak to that of the relevant internal

standard. A total of 11 sterols were quantified in nmols/gram of

sample including total cholesterol, 7-dehydrocholesterol, desmos-

terol, lanosterol, lathasterol, cholestanol, coprostanol, b-sitosterol,

campesterol, stigmasterol, and 7a-hydroxycholesterol (Lipomics,

West Sacramento, CA).

TrueMass fatty acid panel
Lipids were extracted from 25 mL of stored plasma from blood

drawn at 0 3.5 hours in the presence of authentic internal

standards by the method of Folch et al. [21]. The total lipid extract

was trans-esterified in sulfuric acid/methanol to create fatty acid

methyl esters (FAME). The FAME were extracted into hexane and

prepared for gas chromatography. Individual fatty acids were

separated and quantified by capillary gas chromatography (Agilent

Technologies model 6890) equipped with a 30 m HP-88 capillary

column (Agilent Technologies) and a flame-ionization detector.

Instruments were calibrated and QC samples were included in

each batch to continuously monitor the accuracy of the platform

with time. The absolute concentration of each fatty acid in the

original sample was determined by comparing the peak area to

that of the internal standard. A total of 35 fatty acids were

quantified in nmols/gram of sample inlcuding myristic acid (14:0);

pentadecanoic acid (15:0); palmitic (16:0) acid; stearic acid (18:0);

arachidic acid (20:0); behenic acid (22:0); lignoceric acid (24:0);

myristoleic acid (14:1n5); palmitoleic acid (16:1n7); palmitelaidic

acid (t16:1n7); oleic acid (18:1n9); elaidic acid (t18:1n9); vaccenic

acid (18:1n7); linoleic acid (18:2n6); g-linolenic acid (18:3n6); a-

linolenic acid (18:3n3); stearidonic acid (18:4n3); eicosenoic acid

(20:1n9); eicosadienoic acid (20:2n6); mead acid (20:3n9); di-

homo-g-linolenic acid (20:3n6); arachidonic acid (20:4n6); eicsoa-

tetraenoic acid (20:4n3); eicosapentaenoic acid (20:5n3); erucic

acid (22:1n9); docosadienoic acid (22:2n6); adrenic acid (22:4n6);

docosapentaenoic acid (22:5n6); docosapentaenoic acid (22:5n3);

docosahexaenoic acid (22:6n3); nervonic acid (24:1n9); and

plasmalogen derivatives of 16:0, 18:0, 18:1n9, and 18:1n7

(Lipomics, West Sacramento, CA).

Genotyping
DNA extraction and purification in the GOLDN study using

commercial Puregene reagents (Gentra System, Inc, Minneapolis,

MN), following the manufacturer’s instructions has been described

in Irvin et al. [17]. A total of 906,600 SNPs were genotyped and

called using the Birdseed calling algorithm [22]. Comprehensive

QC procedures excluded SNPs that were monomorphic (55,530)

or had a call rate of less than 96% (82,462). In addition, SNPs

were excluded from the analysis on the basis of Mendelian errors

(45,778), failing the Hardy–Weinberg equilibrium test at P,

1.0*1026 (748) or minor allele frequency (MAF) ,1% (63,908).

Among the larger GOLDN population, SNPs passing QC were

used to impute untyped SNPs using MaCH software (Version

1.0.16) with HapMap Phase II (release 22, Human Genome build

36) as the reference. Further QC excluded SNPs with discrepant

alleles in comparison to mlinfo in MaCH and missing strand

information. After the imputation, we created a hybrid dataset that

included 2,543,887 SNPs, of which 584,029 were initially

genotyped in the GOLDN population. Missing genotyped data

were kept as missing in the final data set. To avoid false positive

effects from associations based on very small numbers, we limited

the current analysis to SNPs with MAF $5% for a total of

2,160,736 SNPs.

Epigenotyping
Key genes in lipid metabolism are expressed in lymphocytes

(e.g., peroxisome proliferator activated receptor a (PPARA

[23,24,25])) and CD4+ T-cells were harvested from stored

lymphocytes (collected at fasting) using antibody-linked Invitrogen

Dynabeads [26]. We lyzed cells captured on the beads and

extracted DNA using DNeasy kits (Qiagen, Venlo, Netherlands).

The Illumina Infinium Human Methylation450 Beadchip was

used to assess ,470,000 autosomal CpG sites across the genome

[27]. Our methods have been extensively described in Absher et al.

[28]. For each assay, 500 ng of DNA was treated with sodium

bisulfite (Zymo EZ DNA) prior to standard Illumina amplification,

hybridization, and imaging steps. The resulting intensity files were

analyzed with Illumina’s GenomeStudio, which generated beta

scores (proportion of total signal from the methylation specific

probe or color channel) and ‘‘detection P-values’’ (probability that

the total intensity for a given probe falls within the background

signal intensity). Beta scores with an associated detection P-value

greater than 0.01 were removed and samples with more than 1.5%

missing data points were eliminated from further analysis.

Furthermore, any CpG probes where more than 10% of samples

failed to yield adequate intensity were removed. The filtered beta

scores were then subjected to batch normalization with the

ComBat package for R software in non-parametric mode (http://

www.bu.edu/jlab/wp-assets/ComBat/Abstract.html). After quali-

ty control, we had data for 461,281 CpGs. Residual cell type

impurities may confound epigenetic association studies.[29]

Therefore, principal components based on the beta scores of all

autosomal CpGs passing QC were generated and have been

modeled in EWAS analyses to account for residual T-cell

impurities and other technical artifacts [28]. Principal components

based on the beta scores of all autosomal CpGs passing QC were

generated using the prcomp function in R (V 2.12.1).

Analysis
Change in each sterol and fatty acid concentration was

calculated as the difference between the 3.5 hour and baseline

concentrations. Statistical significance was evaluated by a test of

whether the intercept associated with change was different from

zero after adjustment for a random effect of family id using a linear

mixed model. Pearson correlation coefficients were calculated

between each sterol, fatty acid, and clinical measurements at

fasting and for change with PPL. A clusterogram of fasting and

postprandial correlation coefficients was constructed using the

heatmap.2 function in the gplots package in R [30]. Next, we

evaluated the additive effect of 2,160,736 SNPs on each fasting

sterol and fatty acid concentration using mixed models adjusted

for age, sex, center, and a random effect of family relationship.

GWAS models implemented to evaluate postprandial sterols and

fatty acids were similar but additionally adjusted for fasting

concentration. We have previously reported this population to be

very genetically homogeneous, and, therefore, we did not adjust

for population substructure [20,31]. For the epigenome-wide

analysis, each individual sterol and fatty acid was regressed on the

methylation beta score at each of the 461,281 sites adjusting for

age, sex, center, and the first 4 principal components (generated to

capture T-cell impurity) as fixed effects and a random effect of

family. We chose 4 PCs based upon the eigenvalues and scree plot

of 20 estimated PCs based on methylation data of the larger

GOLDN population. Postprandial EWAS models additionally

included adjustment for fasting sterol or fatty acid concentration.

EWAS and GWAS models were implemented in the R kinship

package (lmekin function) [32].
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GWAS and EWAS analyses generated a large number of

hypotheses requiring careful corrections for multiple testing. Given

observed correlations among the lipidomic phenotypes we used

matrix spectral decomposition [33] as a data reduction technique

to estimate the number of independent sterol phenotypes (9 of 11

were independent) and the number of independent fatty acid

phenotypes (17 of 35 were independent). Using the most

conservative approach (the Bonferroni correction) for GWAS,

alpha (a) was set to 0.05/(2,160,736*9) = 2.6*10-9 for sterols, and,

likewise, a = 0.05/(2,160,736*17) = 1.4*1029 for fatty acids. Cor-

rection for multiple testing during EWAS followed similar logic

(a = 1.2*1028 and a = 6.4*1029 for sterols and fatty acids,

respectively). SNPs and CpGs with association P-value ,

1.0*1024 were annotated using the UCSC genome browser and

ANNOVAR [34,35].

The UCSC Batch Coordinate Conversion (liftOver) module

was used to convert genome coordinates of SNPs from hg18 to

hg19 similarly as CpG sites. Any regional overlap (within 20 kb) of

EWAS and GWAS signals of at least marginal significance

(defined as P,1.0*1024) was identified. SNP association with

methylation beta score was examined (cis-meQTL association) in

regions of overlap adjusting for covariates (age, sex, center,

methylation data PCs) as fixed effects and family structure as a

random effect.

Results

Participants were on average 51.2613 years old, 55% were

male, and 60% were recruited from the GOLDN Minneapolis

field center. For a comparison of clinically measured lipids at

fasting and 3.5 hours after the intervention and other relevant

variables measured in GOLDN among the 40 participants see

Table S1. Mean concentration for each of the 11 sterols and 35

fatty acids are presented in Table 1. The average fasting values of

each metabolite were within the normal range set by TrueMass

internal standards and representative of the assay’s typical

performance. On average campesterol, b-sitosterol, desmosterol,

coprostanol, and cholestanol increased 3.5 hours after the high-fat

diet intervention and lathosterol and lanosterol decreased.

Stigmasterol, 7-dehydrocholesterol, and 7a-hydroxycholesterol

did not significantly change. Overall, total plasma fatty acids

increased postprandially (Table 1). Pairwise correlations between

fasting clinical measures, inflammatory markers, and newly

captured fatty acids and sterols are presented in Figure 1a. In

the fasting state, inflammatory markers, BMI, insulin and glucose

did not strongly correlate with clinical lipids, fatty acids, or sterols.

Fatty acids were strongly and positively correlated with each other

in addition to TG and VLDL-C. The strongest correlations

observed were among TG, VLDL-C, oleic acid and vaccenic acid.

LDL-C and total cholesterol moderately correlated with plasmal-

ogens and longer chain saturated fatty acids. Sterols, including

stigmasterol, campesterol, b-sitosterol, and cholestanol, were

strongly and positively correlated in the fasting state while

lanosterol and lathasterol were negatively correlated with those

sterols. Figure 1b shows pairwise correlations among the changes

in PPL clinical lipids, fatty acids, and sterols. Many of the observed

trends were consistent with that observed at fasting or were

stronger, particularly saturated fatty acids (palmitic acid, penta-

decanoic acid, myristic acid, and stearic acid) and their

biosynthetic products (myristoleic acid, vaccenic acid, oleic acid,

and elaidic acid) were strongly correlated with VLDL-C and TG.

In the postprandial state, change in chylomicrons positively

correlated with that group while change HDL-C negatively

correlated with that group.

Manhattan plots of association signals with P,1.0*1024 from

EWAS and GWAS of fasting sterols and fatty acids are presented

in Figure 2. GWAS results from each of 11 sterols are combined in

the upper right hand quadrant of Figure 2 and, likewise, GWAS

results for each of the 35 fatty acids are combined in the bottom

right hand quadrant. For a complete list of all CpGs and SNPs

(including annotations) shown in Figure 2, see Spreadsheet S1.

Table 2 highlights GWAS and EWAS results from analysis of

fasting sterol and fatty acids with P,1.0*1027. For sterols the

strongest genetic signal (P,4.5*1029 for each of 5 SNPs) came

from a region on chromosome 10 within the sorbin and SH3

domain containing 1 gene (SORBS1). The top two SNPs

(rs12247017 and rs12240292) met significance criteria (P,

2.6*1029) after correction for multiple testing. The second

strongest signal (P,1.8*1028 for each of 3 SNPs) was for 7a-

hydroxycholesterol in the semaphorin 6D (SEMA6D) gene on

chromosome 15. Each of the 3 SNPs lies in the first intron of an

alternate transcript of SEMA6D. Fourteen intronic SNPs in

SEMA5D on chromosome 5 were strongly associated with fasting

b-sitosterol (P#9.8*1028). A SNP (rs3918278) on chromosome 20

upstream of the matrix metallopeptidase 9 (MMP9) gene was also

associated with b-sitosterol (P = 5.6*1028). In EWAS, no CpG was

statistically significantly associated with any sterol after correction

for multiple testing. Table 2 highlights a CpG (cg02621636) on

chromosome 11 associated with coprostanol in the 39 UTR of the

membrane-spanning 4-domains, subfamily A, member 7 gene

(MS4A7). Finally, no SNP or CpG was statistically significantly

associated with any of the 35 fasting fatty acid concentrations

considered (Figure 2). Marginally significant markers are high-

lighted in Table 2 and include 2 SNPs on chromosome 5 upstream

of the protein phosphatase 2, regulatory subunit B, beta gene

(PPP2R2B) associated with di-homo-c-linoleic acid (DGLA).

Manhattan plots of association signals with P,1.0*1024 from

EWAS and GWAS of postprandial sterols and fatty acids (adjusted

for fasting concentrations) are presented in Figure 3. For a

complete list of all CpGs and SNPs (including annotations) shown

in Figure 3, see Spreadsheet S2. Table 3 highlights GWAS and

EWAS results from the postprandial analysis of sterols and fatty

acids with P,1.0*1027. No marker in EWAS or GWAS was

statistically significantly associated with any PPL sterol or fatty acid

after correction for multiple testing. Marginally significant sterol

GWAS signals included 5 markers on chromosome 14 associated

with coprostanol that were not near (within 200kb up or

downstream) any characterized gene. Four SNPs on chromosome

5 were also associated with postprandial coprostanol concentration

after adjustment for fasting concentration. The region is gene rich

and the 4 SNPs lie in intron 1 of an alternate transcript of the Kv

channel interacting protein 1 (KCNIP1) gene in addition to intron 1

of a smaller overlapping gene known as potassium large

conductance calcium-activated channel, subfamily M, beta mem-

ber 1 (KCNMB1). No CpGs were associated with any postprandial

sterol with P,1.0*1027 and, thus, are not represented in Table 3.

The SNP rs666566 in the microtubule-associated protein 6

(MAP6) gene associated with docosahexaenoic acid (DHA) was

the top hit for the fatty acid GWAS. The same SNP was also

associated with 7a-hydroxycholesterol. Another SNP (rs685448) in

MAP6 was associated with DHA with P = 1.5*1027 and with

7a-hydroxycholesterol with P = 9.5*1025. A group of SNPs

(rs16843235, rs2759275, rs16843150) upstream of ATPase, H+
transporting, lysosomal 13kDa, V1 subunit G3 (ATP6V1G3) were

associated with palmitelaidic acid. Finally, two CpGs are

highlighted in Table 3 for fatty acids, the first (cg15718583) with

DGLA in the EPH receptor B3 (EPHB3) gene and another

Genomics of PPL Phenotypes in GOLDN
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Table 1. Average concentration (nmol/gram of sample) of TrueMass panel metabolites measured at fasting and 3.5 hours after a
postprandial lipemia (PPL) challenge for 40 Genetics of Lipid Lowering Drugs and Diet Network Study participants.

TrueMass Panel Metabolites Fasting 3.5 hrs Direction* P-value

Sterols

total cholesterol 4388.866617.2 4561.126599.6 Up 0.0006

7-dehydrocholesterol 6.3262.3 6.5662.5 Up 0.2038

desmosterol 3.4561.1 3.6261.2 Up 0.0001

lanosterol 0.4260.2 0.3860.1 Down 0. 0012

lathasterol 13.9964.7 13.4765.4 Down 0.0484

cholestanol 8.9162.3 9.2162.1 Up 0.0101

coprostanol 0.0860.05 0.0960.05 Up 0.0017

b-sitosterol 11.2065.2 11.8664.7 Up ,0.0001

campesterol 6.3863.1 6.8363.0 Up ,0.0001

stigmasterol 0.4860.2 0.5160.2 Up 0.2049

7a-hydroxycholesterol 0.9460.4 0.9060.4 Down 0.2443

Fatty acid

myristic acid (14:0) 206.86688.8 934.746371.0 Up 0.0003

pentadecanoic acid (15:0) 40.97611.1 111.60635.1 Up ,0.0001

palmitic acid (16:0) 3367.236769.7 5715.2961369.6 Up ,0.0001

stearic acid (18:0) 1062.276198.1 1942.906502.7 UP ,0.0001

arachidic acid (20:0) 11.6263.21 20.7364.76 Up ,0.0001

behenic acid (22:0) 20.0367.83 21.6865.94 Up 0.0411

lignoceric acid (24:0) 17.8067.41 19.2965.68 Up 0.1372

myristoleic acid (14:1n5) 17.3369.68 101.82628.58 Up ,0.0001

palmitoleic acid (16:1n7) 318.606127.4 462.496155.0 Up ,0.0001

vaccenic acid (18:1n7) 235.01659.53 326.19668.81 Up ,0.0001

oleic acid (18:1n9) 3181.796830.1 4942.1861322.7 Up ,0.0001

eicosenoic acid (20:1n9) 22.0666.32 27.9466.91 Up ,0.0001

mead acid (20:3n9) 17.5365.7 20.2067.0 Up ,0.0001

erucic acid (22:1n9) 5.1861.13 7.1566.37 Up 0.0645

nervonic acid (24:1n9) 13.5063.49 13.6362.24 Up 0.7983

linoleic acid (18:2n6) 4574.146725.4 5254.046789.1 Up ,0.0001

c-linolenic Acid (18:3n6) 80.212624.5 91.29628.6 Up ,0.0001

eicosadienoic acid (20:2n6) 38.8769.59 49.15610.09 Up ,0.0001

di-homo-c-linolenic Acid (20:3n6) 238.18656.3 268.53658.2 Up ,0.0001

arachidonic acid (20:4n6) 1081.376216.2 1207.816236.2 Up ,0.0001

docosadienoic acid (22:2n6) 1.4160.60 1.6060.48 Up 0.2269

adrenic acid (22:4n6) 37.5368.24 45.2267.70 Up ,0.0001

docosapentaenoic acid (22:5n6) 28.7869.31 32.36610.04 Up ,0.0001

a-linolenic acid (18:3n3) 95.03632.38 136.67634.94 Up ,0.0001

stearidonic acid (18:4n3) 4.8262.18 6.1762.26 Up ,0.0001

eicsoatetraenoic acid (20:4n3) 12.0965.38 14.9864.36 Up 0.001

eicosapentaenoic acid (EPA) (20:5n3) 69.79624.61 80.86627.91 Up ,0.0001

docosapentaenoic acid (DPA) (22:5n3) 77.76619.18 94.32621.01 Up ,0.0001

docosahexaenoic acid (DHA) (22:6n3) 202.66661.02 228.33667.78 Up ,0.0001

plasmalogen (16:0) 41.6068.01 44.4769.28 Up 0.0003

plasmalogen (18:0) 33.1868.37 35.9769.41 Up 0.002

plasmalogen (18:1n7) 2.0460.97 2.1461.02 Up 0.5892

plasmalogen (18:1n9) 9.2562.51 10.3262.19 Up 0.001

palmitelaidic acid (t16:1n7) 53.03616.37 73.26623.01 Up ,0.0001

elaidic acid (t18:1n9) 216.25689.87 399.286125.89 Up ,0.0001

*direction of change in concentration of the metabolite after the PPL intervention.
doi:10.1371/journal.pone.0099509.t001

Genomics of PPL Phenotypes in GOLDN

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e99509



(cg03758021) with mead acid in the PPARA interacting complex

285 (PRIC285) gene.

We explored overlap of EWAS and GWAS results within 20 kb

with P,1.0*1024 across the genome for each sterol and fatty acid

at each time point and evaluated cis-meQTL signals for

highlighted regions. Results are presented in Spreadsheet S3. Five

regions of EWAS/GWAS overlap were identified for the fasting

analysis of sterols and fatty acids including regions on chromo-

somes 1, 11, 16, 19 and 21 for fasting total cholesterol,

coprostanol, palmitoleic acid, docosapentaenoic acid, and adrenic

acid, respectively, with evidence of moderate to strong cis-meQTL

signal (5.0*1023#P#5.1*102133). Consideration of EWAS/

GWAS overlap for postprandial models highlighted 10 regions

of interest that also consist of many strong cis-meQTL signals. For

instance, cg22761176 and cg26817877, located less than 100 bp

apart on chromosome 2, were associated with a group of nearby

Figure 1. Data from 40 Genetics of Lipid Lowering Drugs and Diet Network Study participants. 1a (below the diagonal)-Pairwise
correlation of fasting sterols (bold), fatty acids (bold), clinical lipids, inflammatory markers, and other clinical measures. 1b (above the diagonal)-
Pairwise correlation of change in postprandial sterols (bold), fatty acids (bold), clinical lipids, and other clinical measures. Grey lines indicate clinical
parameters not captured postprandially.
doi:10.1371/journal.pone.0099509.g001
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SNPs with cis-meQTL association significance level ranging from

P = 0.06 to P = 2.7*10221.

Discussion

In the current study we measured the concentration of 11 sterols

and 35 fatty acids before and after a PPL challenge in 40

participants from the Genetics of Lipid Lowering Drugs and Diet

Network study. We evaluated change in plasma sterols and fatty

acids after the challenge, their correlation with other clinical

measures in the fasting and postprandial state, and integrated the

new lipid phenotypes with existing genomic data. Our findings

demonstrate marked response of sterols and fatty acids to the PPL

challenge, correlations between clinical lipids and newly measured

lipids, and provide proof-of-concept that genomic studies of sterols

and fatty acids may reveal new information about pathways

important to lipid metabolism and ultimately help identify new

biomarkers of CVD risk.

Cholesterol homeostasis, involving the balance between absorp-

tion and synthesis, influences circulating plasma lipoprotein

concentrations [36,37,38,39,40]. Therefore, several studies have

assessed whether cholesterol absorption and synthesis are also

associated with prevalent CVD [40]. Results have varied with

some studies reporting that higher cholesterol absorption and/or

lower cholesterol synthesis is associated with increased

[41,42,43,44,45,46,47], decreased [48,49], or no difference in

CVD risk [50,51,52]. Because cholesterol absorption and biosyn-

thesis are difficult to measure directly, we measured circulating

concentrations of several cholesterol-related sterols as biomarkers

of these processes. b-Sitosterol, campesterol, and stigmasterol are

plant sterols (phytosterols) similar in structure to cholesterol.

Although the absolute amount of phytosterols absorbed in the gut

is very low, their plasma concentrations are correlated with

cholesterol absorption [53]. Cholestanol, an endogenous 5-a–

reduced metabolite of cholesterol, is also correlated with choles-

terol absorption [53,54]. Lanosterol, lathosterol, 7-dehydrocholes-

terol, and desmosterol, are endogenous precursors of cholesterol

correlated with cholesterol synthesis [54,55]. Other metabolic

products measured in this study include an oxidized derivative of

cholesterol, 7a-hydroxylcholesterol, and coprostanol, a dietary

cholesterol derivative produced by the intestinal microbiota

[56,57,58,59]. Overall, markers of cholesterol absorption signifi-

cantly increased and markers of cholesterol synthesis decreased

3.5 hours after the high fat meal. Ultimately, a better understand-

ing of the genetic background of these processes can help explain

mechanisms related to postprandial lipemia and even inform

future studies relating sterols to CVD risk.

Fatty acid metabolism is also intricately tied to CVD health.

Increasing dietary saturated fatty acid intake increases total

cholesterol, LDL-C and TG [60,61,62,63]. Subsequently, reduced

saturated fatty acid intake has been an important dietary

recommendation for the reduction of CVD risk [64]. However,

individual saturated fatty acids have unique properties, form a

variety of metabolites and, thus, have diverse biological functions

[65]. Importantly, not all saturated fatty acids have the same

cholesterol-raising effects. For instance, stearic acid has a neutral

effect on total cholesterol, LDL-C, and HDL-C, whereas lauric,

myristic, and palmitic acids increase total cholesterol, LDL-C, and

HDL-C, with myristic acid having the most potent hypercholes-

terolemic effect [60,66,67]. Due to the complexity of saturated

fatty acids in foods, their consumption in the context of other

nutrients and sources of error in dietary exposure information, the

effect of individual saturated fatty acids on CVD endpoints has

varied in the literature [65,68,69,70,71]. An advantage of the

study set within GOLDN is that the meal has been standardized

and each participant acted as his or her own control. We evaluated

saturated fatty acids (myristic acid, pentadecanoic acid, palmitic

acid, stearic acid, arachidic acid, behenic acid, and lignoceric acid)

and their direct biosynthetic products (myristoleic acid, palmitoleic

acid, vaccenic acid, oleic acid, eicosenoic acid, mead acid, erucic

acid, and nervonic acid), but also essential fatty acids (a-linolenic

acid, linoleic acid) and their longer, more desaturated derivatives

(g-linolenic acid, eicosadienoic acid, di-homo-g-linolenic acid,

arachidonic acid, docosadienoic acid, adrenic acid, docosapentae-

noic acid, stearidonic acid, eicosoatetraenoic acid, eicosapentae-

noic acid, docosapentaenoic acid, and docosahexaenoic acid), 4

plasmalogens and the trans fatty acids elaidic acid and

palmitelaidic acids. In our small study, fatty acids present in

bovine milk fat [72] (saturated fatty acids- palmitic acid, myristic

acid, and stearic acid; mono-unsaturated fatty acid- oleic acid; and

trans fatty acids vaccenic acid and elaidic acid) correlated most

closely with TG and lipid species that carry TG in response to the

PPL challenge. Yet several other fatty acid species (many

derivatives of these saturated fatty acids) positively correlated with

this group potentially reflecting intrinsic metabolic response to the

fat load (e.g. palmitoleic acid, plamitelaidic acid, eicosenoic acid,

erucic acid). Importantly, our findings support prior research

correlating fatty acids with clinical lipids and provide a unique

setting to evaluate the genomic determinants of inter-individual

differences in specific fatty acids after a standardized PPL

challenge.

Figure 2. Manhattan plots for markers with P,0.0001 from epigenome-wide association study and genome-wide association study.
Phenotypes include 11 sterols and 35 fatty acids measured at fasting.
doi:10.1371/journal.pone.0099509.g002
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GWAS and EWAS of fasting sterol and fatty acid concentra-

tions highlighted several regions of interest with biologically

plausible association. A cluster of SNPs on chromosome 10

associated with b-sitosterol is located in SORBS1, which encodes a

protein in the insulin signaling pathway [73]. Insulin resistance has

been linked to high cholesterol synthesis and decreased cholesterol

absorption in prior reports [54,74,75]. Further studies are needed

to determine if variation in SORBS1 may help explain such

observations. SNPs in SEMA6D and SEMA5A were highlighted

as being associated with fasting 7a-hydroxycholesterol and

b-sitosterol, respectively. Semaphorins have important regulatory

functions in the cardiac, circulatory and immune systems

[76,77,78,79,80]. For instance, SEMA6D has been linked to

T-cell activation [81] and SEMA5A promotes angiogenesis

through increased endothelial cell proliferation, migration, and

downregulated apoptosis [82]. SEMA5A action may be facilitated

by MMP9, another gene reported as being associated with b-

sitosterol in Table 2 [82]. MMP9 has been indicated in vascular

injury, inflammation, and tissue remodeling associated with CVD

[83,84,85,86]. A CpG in the 39UTR of MS4A7 was associated

Table 2. Top genome-wide association study (GWAS) and epigenome-wide association study (EWAS) results for fasting sterols and
fatty acids.

Marker Chr Location Lipid Gene Gene Proximity P-value

Sterol GWAS

rs12247017 10 97270729 b-sitosterol SORBS1 intronic 4.9*10210

rs12240292 10 97273066 b-sitosterol SORBS1 intronic 4.5*10210

rs12772243 10 97295589 b-sitosterol SORBS1 intronic 4.5*1029

rs12776555 10 97284362 b-sitosterol SORBS1 intronic 4.5*1029

rs4918944 10 97283881 b-sitosterol SORBS1 intronic 4.5*1029

rs281282 15 47679257 7a-hydroxycholesterol SEMA6D intronic 1.8*1028

rs281284 15 47680407 7a-hydroxycholesterol SEMA6D intronic 1.8*1028

rs281294 15 47683646 7a-hydroxycholesterol SEMA6D intronic 1.8*1028

rs1631842 1 232447391 campesterol SIPA1L2 ,100kb upstream 3.1*1028

rs1766581 1 232447293 campesterol SIPA1L2 ,100kb upstream 3.1*1028

rs10059341 5 9325205 b-sitosterol SEMA5A intronic 3.9*1028

rs10065505 5 9301719 b-sitosterol SEMA5A intronic 3.9*1028

rs13360783 5 9299238 b-sitosterol SEMA5A intronic 3.9*1028

rs1557879 5 9308539 b-sitosterol SEMA5A intronic 3.9*1028

rs3777306 5 9295681 b-sitosterol SEMA5A intronic 3.9*1028

rs3777311 5 9301324 b-sitosterol SEMA5A intronic 3.9*1028

rs3777312 5 9301496 b-sitosterol SEMA5A intronic 3.9*1028

rs3777316 5 9302667 b-sitosterol SEMA5A intronic 3.9*1028

rs3777320 5 9307427 b-sitosterol SEMA5A intronic 3.9*1028

rs3777325 5 9319778 b-sitosterol SEMA5A intronic 3.9*1028

rs3777327 5 9323467 b-sitosterol SEMA5A intronic 3.9*1028

rs3797980 5 9328316 b-sitosterol SEMA5A intronic 3.9*1028

rs17196572 5 9298117 b-sitosterol SEMA5A intronic 4.7*1028

rs3918278 20 44635654 b-sitosterol MMP9 ,2k bupstream 5.6*1028

rs11070582 15 47686590 7a-hydroxycholesterol SEMA6D intronic 6.5*1028

rs3822789 5 9322477 b-sitosterol SEMA5A intronic 9.8*1028

rs697651 2 155323278 7-dehydrocholesterol GALNT13 downstream 1.2*1027

Sterol EWAS

cg02621636 11 60161999 coprostanol MS4A7 in 3’utr 8.3*1028

FA GWAS

rs6895471 5 146472853 di-homo-c-linoleic PPP2R2B ,10kb upstream 6.3*1028

rs17105882 5 146465362 di-homo-c-linoleic PPP2R2B ,10kb upstream 6.3*1028

rs6795707 3 195937410 plasmalogen (16:0) ZDHHC19 intronic 8.0*1028

rs1859124 7 86747876 eicsoatetraenoic DMTF1 ,50 kb upstream 9.2*1028

rs8118851 20 56292879 stearic PMEPA1 ,10 kb upstream 1.0*1027

FA EWAS

cg23221506 17 73175571 plasmalogen (18:0) SUMO2 intron 1.8*1028

Chr, chromosome; FA, fatty acid.
doi:10.1371/journal.pone.0099509.t002
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Figure 3. Manhattan plots for markers with P, 0.0001 from epigenome-wide association study and genome-wide association
study. Phenotypes include 11 postprandial sterols and 35 postprandial fatty acids after adjustment for fasting concentration.
doi:10.1371/journal.pone.0099509.g003

Table 3. Top genome-wide association study (GWAS) and epigenome-wide association study (EWAS) results for postprandial
sterols and fatty acids.

Marker Chr Location Lipid Gene Gene Proximity P-value

Sterol GWAS

rs17490390 5 152362706 7a-hydroxycholesterol AK123816 ,10 kb downstream 1.0*1028

rs666566 11 75302420 7a-hydroxycholesterol MAP6 intronic 2.4*1028

rs1627411 14 43171328 coprostanol - - 2.7*1028

rs1698533 14 43172278 coprostanol - - 2.8*1028

rs1698534 14 43172343 coprostanol - - 2.8*1028

rs1712738 14 43163097 coprostanol - - 3.0*1028

rs1627270 14 43168725 coprostanol - - 3.6*1028

rs7203768 16 73301302 cholestanol ZFHX3 ,200 kb downstream 5.4*1028

rs12826237 12 76073557 stigmasterol GLIPR1 ,100 kb downstream 7.0*1028

rs314112 5 169813739 coprostanol KCNMB1 intronic 7.8*1028

rs314111 5 169813844 coprostanol KCNMB1 intronic 8.1*1028

rs314113 5 169813296 coprostanol KCNMB1 intronic 8.1*1028

rs314109 5 169814432 coprostanol KCNMB1 intronic 8.2*1028

rs17223072 12 76080856 stigmasterol GLIPR1 ,100kb downstream 1.1*1027

FA GWAS

rs666566 11 75302420 docosahexaenoic MAP6 intronic 4.1*1029

rs757079 17 31325103 arachidonic SPACA3 ,0.2kb downstream 4.9*1029

rs28958 17 31324657 arachidonic SPACA3 intronic 5.3*1029

rs13285452 9 83595061 docosadienoic - - 3.9*1028

rs7025679 9 83513137 docosadienoic - - 4.1*1028

rs7350230 9 83572513 docosadienoic - - 4.5*1028

rs7024926 9 83576272 docosadienoic - - 5.5*1028

rs16843235 1 198485694 palmitelaidic ATP6V1G3 ,10 kb upstream 6.5*1028

rs9503012 6 1707004 behenic GMDS intronic 1.0 *1027

rs1628439 12 95400638 docosapentaenoic NDUFA12 ,5 kb downstream 1.0 *1027

FA EWAS

cg15718583 3 184231385 di-homo-c-linoleic EPHB3 ,50 kb upstream 2.1 *1028

cg03758021 20 62208140 mead PRIC285 ,5 kb downstream 6.3 *1028

Chr, chromosome; FA, fatty acid.
doi:10.1371/journal.pone.0099509.t003
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with coprostanol. MS4A7 encodes a member of the membrane-

spanning 4A gene family, localized to chromosome 11q12, in a

cluster of other family members. MS4A7 is expressed in

lymphocytes and is likely involved in signal transduction [87]

SNPs upstream of PPP2R2B were associated with DGLA, an n-6

polyunsaturated fatty acid (PUFA). PPP2R2B encodes a brain

specific regulatory subunit of a protein phosphatase that is not

easily relatable to CVD and lipid metabolism. However, a recent

report that fine-mapped a large region on chromosome 5q31-33

for early onset coronary artery disease (CAD) across two large

family studies identified PPP2R2B as one of four genes that showed

consistent and strong association with both LDL-C and CAD [88].

After adjusting for fasting concentration, GWAS and EWAS of

individual PPL sterol and fatty acid concentrations also yielded

unique results in or near genes with compelling biological

significance to lipid metabolism and CVD. ZFHX3 is a transcrip-

tion factor with cardiac and immune cell expression. Though our

signal for cholestanol is much farther downstream, SNPs in

ZFHX3 have been linked to stroke and atrial fibrillation in prior

GWAS [89,90,91]. GLI pathogenesis-related 1 (GLIPR1) may be

linked immune cell function as the gene is highly expressed in

multiple immune cell types [92]. Calcium activated K+ channels

(KCa) have an essential role in arterial function regulating vascular

tone [93]. Our study highlights SNPs in KCNMB1 (encoding a

KCa subunit) which were associated with postprandial coprosta-

nol. Previous research has linked mutations in KCNMB1 to

hypertension, myocardial infarction and stroke [94]. Additionally,

increased expression of vascular KCa channels have been

demonstrated in coronary vessels from patients with CAD [95].

GDP-mannose-4,6-dehydratase (GMDS), highlighted for associa-

tion with behenic acid, is regulator of post-translational modifi-

cation processes important for cell surface lipids and proteins [96].

Other genes annotated in GWAS are more difficult to link to

postprandial lipid metabolism. For instance, MAP6 is involved in

microtubule stabilization in many cell types, and sperm acrosome

associated 3 (SPACA3) is a sperm surface membrane protein

[92,97,98]. Finally, fatty acid EWAS results highlight a marker

(cg03758021) closely downstream of PRIC285, a nuclear co-

activator of the transcription factor PPARA which is intricately

involved inflammation and lipid metabolism in the liver [99,100].

In addition to evaluating the most significant EWAS and

GWAS results in this study we mined all results presented in

Spreadsheets S1 and S2 for postprandial lipemia and cardiovas-

cular risk loci published in the literature [2,10,11,101]. A SNP

(rs219562) near APOB was associated with postprandial stigmas-

terol (P = 6.0*1025) and a CpG (cg20691580) in APOC3 was

associated with postprandial palmitelaidic acid (P = 3.0*1025).

APOB and APOC3 have been associated with postprandial clinical

lipids [2]. Additionally, CpGs in WDR12 and SH2B3, respectively,

were found in Spreadsheet S1 among the fasting fatty acid EWAS

results. Finally, a SNP (rs11239204) near CXCL12 was associated

(P = 1.8*1025) with postprandial plasmalogen 18:1n9 concentra-

tion. WDR12, SH2B3 and CXCL12 were among 13 loci

highlighted in a large GWAS of CAD [101]. Though none of

these findings meet criteria for statistical significance after

correction for multiple testing, they support the potential

usefulness of lipidomic studies in unraveling biological mechanisms

by which genes relate to more complex CVD phenotypes.

We also explored the potential to integrate EWAS and GWAS

results from these analyses. Taking a regionalized approach our

results demonstrate several examples of within phenotype EWAS/

GWAS overlap in both fasting and postprandial models. In the

future, we hope to have data from a larger sample in GOLDN that

will enable us to model SNPs and CpG sites (fitting criteria as cis-

meQTLs) jointly on a phenotype to better deduce interplay among

markers. While our small sample restricted the pursuit of these

additional analyses, our data demonstrate the potential for

functional crosstalk between genomic layers supporting further

expansion of this research set within GOLDN.

We note several limitations to our study. Most importantly, our

sample size was small for the high dimensional data analyses

pursued. Therefore, it was difficult to identify markers meeting the

strict criteria necessary to achieve statistical significance in the

context of this study. Consequently, some false positive and

alternatively, false negative findings may have occurred. Replica-

tion in a larger group from GOLDN and external cohorts is

needed. Still, we present novel research that highlights the

potential of integrating ‘omic’ data to make progress in the field

of translational research and personalized medicine in the context

of an altered postprandial lipid response.

To our knowledge, this is the first study evaluating the lipid

response to a PPL challenge with fine resolution of phenotypes via

lipidomic assays. Additionally, a new dimension to the study of

postprandial lipemia was explored by integrating GWAS and

EWAS data with the lipidomic measurements. Our study

highlighted several novel genes involved in lipid metabolism,

endothelial function, immune function and cell signaling. Overall,

the results demonstrate that small molecule lipids correlate with

clinical lipids, respond to the PPL intervention, and that genomic

markers might help unravel mechanisms related to lipid metab-

olism in the fasting and non-fasting state. This report sets the

groundwork to expand this research in GOLDN and other cohorts

to help translate novel biomarkers of the postprandial lipid

response to use in the diagnosis, prevention and treatment of

dyslipidemias and CVD.
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