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Abstract

Computational prediction of ligand entry and egress paths in proteins has become an emerging topic in computational
biology and has proven useful in fields such as protein engineering and drug design. Geometric tunnel prediction programs,
such as Caver3.0 and MolAxis, are computationally efficient methods to identify potential ligand entry and egress routes in
proteins. Although many geometric tunnel programs are designed to accommodate a single input structure, the
increasingly recognized importance of protein flexibility in tunnel formation and behavior has led to the more widespread
use of protein ensembles in tunnel prediction. However, there has not yet been an attempt to directly investigate the
influence of ensemble size and composition on geometric tunnel prediction. In this study, we compared tunnels found in a
single crystal structure to ensembles of various sizes generated using different methods on both the apo and holo forms of
cytochrome P450 enzymes CYP119, CYP2C9, and CYP3A4. Several protein structure clustering methods were tested in an
attempt to generate smaller ensembles that were capable of reproducing the data from larger ensembles. Ultimately, we
found that by including members from both the apo and holo data sets, we could produce ensembles containing less than
15 members that were comparable to apo or holo ensembles containing over 100 members. Furthermore, we found that, in
the absence of either apo or holo crystal structure data, pseudo-apo or –holo ensembles (e.g. adding ligand to apo protein
throughout MD simulations) could be used to resemble the structural ensembles of the corresponding apo and holo
ensembles, respectively. Our findings not only further highlight the importance of including protein flexibility in geometric
tunnel prediction, but also suggest that smaller ensembles can be as capable as larger ensembles at capturing many of the
protein motions important for tunnel prediction at a lower computational cost.
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Introduction

Over the past decade there has been a growing interest in a

more detailed understanding of the ligand binding process. While

resolving the lowest energy binding conformations of ligands in the

binding site has long been a part of the drug design paradigm,

there is an increasing need to understand the structural and kinetic

process by which binding occurs. This can be especially

complicated in proteins with deeply buried active sites where

additional considerations must be made regarding the path, or

tunnel, that the ligand uses to move from bulk solvent into the

binding site. Although experimental methods, often in the form of

mutational studies [1,2], have offered some insight, they cannot

provide systematic information about potential binding routes or

detailed accounts of the ligand binding process. However,

promising progress has been made toward these goals using

computational methodologies [3,4,5], and such methods have

become instrumental in generating experimentally testable

hypotheses about the ligand binding process, especially in cases

where the active site is buried [1,5,6].

Several computational approaches have emerged for predicting

protein tunnels and providing detailed accounts of the physical

properties of such tunnels. In general, these algorithms work by

approximating the protein as a set of spheres and identifying

continuous pockets of space that exist between these spheres. A

grid is then constructed within these voids and each grid point is

assigned a cost based on its proximity to surrounding protein

atoms. Points which are close to the protein atoms are assigned a

high cost, and points which are further away are assigned a lower

cost. Then, tunnels connecting the buried active site to the

surrounding bulk solvent with the lowest total cost are calculated

based on this grid. Using this scheme, tunnels are ranked

according to both the length and the narrowness of the tunnel,

where the shorter and wider a tunnel is, the more favorably it is

ranked. Variants of this method involve the use of Voronoi

diagrams, different methods of representing the location of protein

atoms, and different scoring/weighting schemes, however the

basic premise is unchanged [7]. Such algorithms have been used to

predict tunnels in a variety of enzymes [1,2,3] and channel/

transporter proteins [5,8].

Recent evidence has highlighted the importance of protein

flexibility in protein access and egress tunnels [9,10]. For instance,

Stepankova et. al. demonstrated that at low concentrations organic
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solvents cause the widening of tunnels in haloalkane dehalogenase

enzymes resulting in either increased activity or inhibition

depending on the system and the solvent used [10]. Furthermore,

in several cytochrome P450 (CYP) enzymes, phenylalanine clusters

located in ligand entrance tunnels just above the active site act as

gates that must be properly oriented to allow substrate binding

[9,11].

Ligand binding in CYP enzymes usually occurs on the order of

milliseconds to minutes [12], and involves a series of conforma-

tional changes, some of which can be observed in as little as 10

nanoseconds [13,14,15] while others can take hundreds of

nanoseconds or longer [16]. Thus, detailed investigations of the

ligand binding process, such as those described above, often

require the use of complex and resource intensive computational

methods, such as random expulsion molecular dynamics [17].

These methods usually involve specialized molecular dynamics

(MD) simulations of a particular ligand-tunnel pair and do not

directly provide information about other possible tunnels or other

potential ligands. Thus, geometric tunnel prediction methods

remain a popular and widely used choice for initial, rapid analyses.

In many cases, geometric tunnel prediction in CYP enzymes is

performed on a single crystal structure [18,19], however there is a

growing trend towards incorporating protein flexibility into tunnel

prediction by using MD-based ensembles as is often done in

docking studies [20]. Unlike in docking, where ensemble use has

been extensively studied [21], in tunnel prediction, there have

been no studies that directly investigate the influence of ensemble

based prediction and there is little consensus about the number of

ensemble members that are necessary. In tunnel prediction,

ensembles have been generated by extracting frames at rates

varying from one snapshot per nanosecond [19] up to 1000

snapshots per nanosecond [22]. Even minor secondary structure

conformational changes in CYP enzymes may take tens or

hundreds of nanoseconds of simulation time to observe [3,12]

which could result in ensembles containing several thousand

members. The inclusion of several thousand snapshots can

produce tens of thousands of tunnels, at which point the

computational cost of prediction and analysis starts approaching

that of the more advanced MD-based methods. Therefore, to

remain efficient, ensembles used for geometric tunnel prediction

must remain small, yet still incorporate important conformational

changes.

The speed and ease of use provided by geometric tunnel

prediction methods is highly dependent on the input necessary to

obtain reasonable tunnel predictions. Yet, few, if any, studies have

directly compared ensemble-based tunnel prediction to single

structure tunnel prediction or investigated the different methods of

ensemble generation and ensemble size in tunnel prediction. In

this study, we used two prominent geometric tunnel prediction

programs, Caver3.0 [22] and MolAxis [18], to predict tunnels in

both static protein structures and MD-based ensembles of the apo

and holo forms of three CYP isozymes (CYP119. CYP2C9,

CYP3A4). The tunnels of these CYP enzymes have been well

categorized [11] and thus provide an ideal system to study the

effects of different ensemble generation methods on both the

ability to predict known tunnels and the physical properties of

those tunnels.

Differences in both the number of tunnels identified and

physical characteristics of predicted tunnels were found depending

on the structural input: crystal structure alone, apo ensemble, or

holo ensemble. We tested a variety of clustering methods to

generate small ensembles that retained the tunnel information

present in larger ensembles. After attempting several clustering

techniques, we found that none offered significant or consistent

improvement over ensembles generated using time point-based

selection. However, by combining time point-based selection

ensembles from two different ensembles of the same protein, the

apo and holo ensembles, we produced smaller ensembles that were

comparable to larger ensembles in terms of identifying preferred

tunnels. In addition, we found that pseudo-ensembles, derived

from adding or removing a ligand from the crystal structure, also

provide reasonable predictions of preferred tunnels. Our findings

underscore the importance of protein flexibility in tunnel

identification and also provide some general guidelines for

geometric tunnel prediction on structural ensembles generated

by MD simulations.

Methods

MD Simulations
High resolution CYP crystal structures where both the apo and

holo forms were available were selected for this study; CYP119

(apo: 1IO9, resolution 2.05 Å and holo: 1F4T, resolution 1.93 Å),

CYP2C9 (apo: 1OG2, resolution 2.60 Å and holo: 1OG5,

resolution 2.55 Å), and CYP3A4 (apo: 4I3Q, resolution 2.60 Å

and holo: 3UA1, resolution 2.15 Å). Pseudo-holo and -apo

structures were generated by either adding the crystal ligand to

the apo crystal structure or removing it from the holo crystal

structure. The crystal ligand was added to the apo structure by

aligning the apo and holo protein structures and combining the

modified coordinates of the apo protein structure with the ligand

structure from the holo form.

The heme parameters for a non-oxygenated state were

extracted from the literature [23]. Reduce [24] was used to

identify the proper rotamer and protonation states of histidine,

and the proper rotamers of asparagine and glutamine side chains.

Missing sidechains were added using the tleap module of Amber

[25]. PyMOL [26]was used to rebuild the larger missing loop

regions of CYP3A4. In the apo and holo forms of CYP3A4,

residues 282–286 (KQTQS) and 280–286 (DSKQTQS), respec-

tively, were rebuilt by hand using the PyMOL build tools.

Residues were added sequentially and the structure was mini-

mized, as described below, after the building process. In the holo

form of CYP3A4, residues 259–261 (SRL) and 266–268 (KHR)

were also missing, but this loop was present in the apo form,

therefore we used the positions of these residues in the apo form as

a guide to rebuild the loop in the holo structure. Missing terminal

residues in any CYP structure were not rebuilt. Next, Gromacs-

4.5.5 [27] was used to solvate each system in an octagonal water

box of SPC216 waters and Na+ or Cl2 ions were added to

neutralize each system. The box size was selected to guarantee a

minimum distance of 10 Å between solute and box edge for the

starting protein structure.

MD simulations were performed using Gromacs-4.5.5 [27] with

the Amber03 force field [25]. For the holo structures, ligand

charges and parameters were determined using the Antechamber

[28] package from the Amber software suite, the GAFF force field

and the AM1-BCC charge model. After solvation of the protein,

1000 steps of energy minimization were performed using the

steepest descent method and particle mesh Ewald (PME)

summation with a grid size of 0.12 nm and 4th order interpolation

to compute potential, gradients and forces between the grid points.

A switching function was applied to compute van der Waals

interactions between 1.0 nm and the cut-off of 1.4 nm. The

LINCS algorithm [29] was used to constrain bonds containing

hydrogen atoms. The integration time step was 2 fs. Next, the

hydrogen bond network of the surrounding waters was established

using a 200 ps simulation in which all but the waters were
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Figure 1. Cumulative number of tunnels found over time in the apo forms of CYP119 (A and B), CYP2C9 (C and D), and CYP3A4 (E
and F) using the geometric prediction programs MolAxis (left column) and Caver3.0 (right column). Tunnels were predicted in five
different ensembles, containing either 103, 53, 23, 13, or 8 members, generated by taking frames at evenly separated time points throughout the
trajectory and adding the crystal and minimized structures. The tunnels were then clustered and the first appearance of each tunnel cluster was
recorded. The black dot represents the number of tunnels in the crystal structure alone.
doi:10.1371/journal.pone.0099408.g001
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restrained. This and all remaining simulations were performed at

300K using PME, Berendsen thermostat, and Parrinello-Rahman

pressure coupling. A 300 ps equilibration run was performed to

equilibrate all systems before the production run. This equilibra-

tion time was found to be suitable for all simulations, including the

pseudo-simulations. The equilibration was followed by a 10 ns

production MD run using the parameters described above.

Ensemble Generation
Time Point Ensembles. Starting from the 10 ns MD

trajectories, frames were extracted every 100 ps, 200 ps, 500 ps,

1000 ps, or 2000 ps to generate a total of five ensembles. The

crystal structure and the minimized structure were added to each

ensemble, generating ensembles of 103, 53, 23, 13 or 8 members

(e.g. for the 2000 ps time point ensemble, frame 0, 2000, 4000,

6000, 8000, and 10000 were extracted from the trajectory and the

crystal structure and minimized structure were added giving a final

ensemble size of 8 members). The ensemble sizes selected are in

line with those used in many ensemble docking studies [21,30].We

refer to this set of ensembles as the ‘‘time point ensembles’’.

We compared time point based ensemble generation to

ensemble generation based on three different clustering methods;

RMSD, hydrogen bond network, and pairwise distance-based

clustering. Both the crystal structure and the minimized structure

were excluded from the clustering procedure. Using only the

structures from the trajectory, or ‘‘reference’’ ensemble, we

generated four sub-clusters equal in size to the smaller time point

ensembles (e.g. 6, 11, 21, or 51 members). By using the structures

of the 101-member ensemble as the input, the number of tunnels

predicted in each subsequent ensemble could be calculated as a

percentage of the total number of tunnels found in the 101-

member reference ensemble. The different clustering methods and

ensemble sizes could then be directly compared based on these

percentages.

RMSD Ensembles. Clustering can be sensitive to noise

caused by the highly flexible residues on the surface of the protein,

thus these residues were not included in any of the clustering

calculations used to generate ensembles. Surface exposed residues

were calculated based on the crystal structure using the

SwissPDBViewer [31], where the default settings were used.

To generate the RMSD ensemble, Gromacs was used to align

the structures based on the C-alpha atoms, and the RMSD

between all heavy atoms was calculated. Clustering of the

structures was done using gromos clustering [27]. To generate

ensembles containing a specified number of members, we

iteratively increased the clustering cutoff. Once a specified cluster

size was reached the clustering algorithm was terminated and

tunnels were predicted in the resultant structures.

Pairwise-Distance. In addition to RMSD clustering, we

clustered the structures based on distances between all heavy atom

pairs. Unlike RMSD which compares the location of a given atom

Figure 2. Differences in the largest tunnels predicted in the apo and holo ensembles of CYP2C9. A) Tunnels predicted in both the apo
and holo ensembles using MolAxis are shown in grey, the tunnels found only in the holo ensemble are shown in blue (2d, 2e, and S) and the tunnels
exclusively predicted in the apo form are shown in orange (2a and 2f). B) An example of how the presence of the ligand in the holo ensemble hinders
identification of a tunnel that is present in the apo ensemble. In the apo ensemble (purple sticks) PHE100 rotates freely out of the 2a path whereas in
the bound ensemble (green sticks) the presence of warfarin (grey sticks and surface) prevents rotation of PHE100 out of the 2a tunnel (orange dotted
line). C) Example of how the absence of the ligand in the apo ensemble can interfere with tunnel identification. In the warfarin-bound ensemble
(green sticks), steric interaction between warfarin (grey sticks and surface) and PHE476 prevents the residue from closing off tunnel 2d (blue dashed
line), while in the apo ensemble (purple sticks) the absence of warfarin allows PHE476 to constrict the bottleneck of the tunnel and thus tunnel 2d is
not identified in the apo ensemble.
doi:10.1371/journal.pone.0099408.g002
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in two different structures, the pairwise-distance method compares

the distances between given pairs of atoms in two structures.

After aligning all structures, the pairwise-distance similarity

between each pair of structures, k and n, was calculated as:

pairwise{distance similarity~
Xall atom pairs

ij

1

dij

� �
k

{
1

dij

� �
n

 !

Where ij represents a pair of heavy atoms in the structure, and dij

is the Euclidian distance between those pairs. K-medoid clustering

was used to cluster the structures based on the calculated similarity

values.

Hydrogen Bond Network Ensembles. Hydrogen bonds

present in each structure were calculated using the g_hbond

module of Gromacs [27]. All possible pairs of structures were

compared based on the hydrogen bond matrix generated by

g_hbond. Each possible hydrogen bond position was evaluated, if

both structures had the same hydrogen bond pattern at a given

position (e.g. both had a hydrogen bond or both did not have a

hydrogen bond), the position was assigned a 0, if they did not

match a 1 was assigned. These values were averaged over the

hydrogen bond matrix to produce a similarity score, where 0

represents an exact match of the hydrogen bond network and 1

represents complete dissimilarity. K-medoid clustering was used to

cluster the structures based on the similarity score between the

structures.

Tunnel Calculation
Protein conformations of all ensembles were prepared for tunnel

calculation by removing the hydrogen atoms, solvent, ions and

ligand (if present). Tunnels were calculated in each structure using

the programs MolAxis and Caver3.0. Both programs identify and

report tunnels as a series of spheres with the radius of each sphere

being defined as the distance to the nearest protein atom. The

smallest sphere, which is the narrowest point along the tunnel, is

denoted as the bottleneck and its radius as bottleneck radius. The

tunnels are ranked according to a score, denoted flux value, that

measures a combination of width and length of a tunnel. One

major difference between MolAxis and Caver3.0 is that MolAxis

pre-clusters tunnels prior to reporting, whereas Caver3.0 does not.

This difference ultimately results in fewer, more distinct tunnels

being reported by MolAxis and more, but in some cases, highly

similar, tunnels being reported by Caver3.0. MolAxis found only a

few tunnels with a bottleneck radius below 0.75 Å, therefore, to

allow for a more equal comparison between the two programs we

excluded tunnels that had bottlenecks below 0.75 Å. In Caver3.0,

this was achieved by setting the probe radius to 0.75 Å, and in

MolAxis, these tunnels were removed manually. All other settings

for both Caver3.0 and MolAxis were left as default.

To initialize tunnel identification, a starting point inside the

binding pocket was selected by using the iron atom of the heme as

a reference point. The starting point was placed on the vector of

the iron-sulfur bond 3 Å above the ligand-binding face of the

heme for each protein conformation. In the case that one or both

programs were unable to find tunnels from the initial starting

point, the x, y, and z, coordinates were iteratively adjusted by

adding or subtracting 1 Å from the initial starting point and the

program was re-run until tunnels were identified. Tunnels that

looped back into the protein or which had a bottleneck radius

below the specified cutoff value were removed.

Tunnel Clustering
After calculating tunnels in all members of each ensemble, we

clustered the resultant tunnels to generate a representative set of

tunnels for each ensemble. The RMS between each point in the

tunnel and the nearest point (e.g. the minimum RMS) in the

comparison tunnel was calculated. The overall RMSD was

calculated by averaging over all of the individual RMS values

for that tunnel pair. K-medoid clustering was used to cluster the

tunnels and k was iteratively adjusted such that the maximum

RMSD between any cluster member and the cluster center was

less than 5.0 Å. The centroids of the resulting clusters represented

the total number of tunnels found in a given ensemble.

The centroids were used to compare the tunnels found in each

ensemble to the tunnels found in the reference ensemble (largest

time point ensemble). Clusters from the comparison ensemble and

the reference ensemble were considered to be the same tunnel if

the RMSD between the centroids was less than the largest distance

between the centroid and its original members. In other words, we

ensured that the tested centroid would fit into the original cluster

containing the reference centroid. This method was also used to

perform comparisons across all ensembles.

All tunnels were identified and named using the descriptions

and nomenclature for CYP tunnels set forth by Cojocaru et. al.

[11]. Separate tunnels that are in close vicinity to one another are

broken down into subclasses of a given tunnel; for instance tunnel

2a and 2ac, are known to be spatially nearby but are lined by

different secondary structures. In addition to numbered tunnels,

the ‘‘Solvent tunnel’’ (S) is a common feature in many CYP

enzymes and is thought to control water access to the binding site

[32].

Results and Discussion

Ensemble-based tunnel prediction vs. single structure
tunnel prediction

To assess the role that ensemble size plays in tunnel prediction,

we compared the tunnels identified in the static crystal structure to

those found in various structural ensembles. Ensembles of 103, 53,

23, 13, or 8 protein structures were generated and tunnels were

predicted in each member using either Caver3.0 or MolAxis. The

tunnels found in the ensembles were clustered and the cumulative

number of tunnels identified over the length of the simulation is

shown in Figure 1 (Figure 1 shows the apo ensembles only, the

holo ensembles demonstrated a similar trend and are shown in

Figure S1).

We first compared the tunnels identified in the raw crystal

structure (black dots on Figure 1) to the total number of tunnels

identified in the largest ensemble. Using MolAxis on the crystal

structures produced no more than 20% of the total tunnels

identified in the largest ensemble. Even using the smallest

ensemble tested (8 members), MolAxis identifies twice as many

tunnels as compared to the crystal structure alone. Caver3.0

slightly outperformed MolAxis, identifying on average about 50%

of the total tunnels in the crystal structure. Tunnel prediction in

the smallest ensemble using Caver3.0 also improved tunnel

prediction, but not as drastically as was found with MolAxis.

Notably, using an ensemble can result in differences in the

tunnels that are identified in each individual structure. This is most

evident in the tunnels predicted by Caver3.0 in the crystal

structure of CYP2C9. Clustering of the tunnels identified in the

crystal structure alone resulted in a total of 9 tunnels. However,

when the crystal structure was included as a member of either of

the two largest ensembles, the number of tunnels found in the

crystal structure doubled. Including additional tunnels that are on

Ensemble Generation in Geometric Tunnel Prediction
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Figure 3. Percentage of the total reference tunnels identified using time point ensembles, RMSD-clustered ensembles, hydrogen
bond network ensembles, and pairwise-distance ensembles in the apo form of CYP119 (A and B), CYP2C9 (C and D) and CYP3A4
(E and F) using MolAxis and Caver3.0.
doi:10.1371/journal.pone.0099408.g003
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the outskirts of an original cluster can result in the formation of

several smaller clusters derived from one larger cluster. In this

case, several members of a large central cluster broke off to join

nearby clusters of more closely related tunnels that only appeared

in the trajectory. Whereas CYP2C9 showed the largest difference,

in most cases the clustering inconsistencies resulted in a difference

of only few tunnels, and overall, ensemble-based prediction in any

size ensemble offered improvement over the crystal structure

alone.

In general, the total number of tunnels identified increased with

increasing ensemble size, but, in all cases, the greatest rate of new

tunnel identification occurred during the first few nanoseconds of

the simulation whereas few, if any, new tunnels were identified in

the later stages. This trend was especially true for the two largest

ensembles tested. Using Caver3.0, over 80% of the total tunnels

were identified in the first nanosecond by the two largest

ensembles. By the second nanosecond, there is a distinct plateau

in the total number of tunnels identified in either ensemble

(Figure 1 and S1, right column). A similar trend was observed

using MolAxis, however the plateau was less distinct and occurred

around 5–6 ns (Figure 1 and S1, left column).

The discrepancy between Caver3.0 and MolAxis in the rate at

which tunnels were identified is likely due to algorithmic

differences in the programs. In groups of nearby or highly similar

tunnels, the MolAxis algorithm selects for tunnels with wider

openings and neglects the more narrow tunnels in a process

referred to as ‘‘overshadowing’’. The removal of narrow,

‘‘overshadowed’’ tunnels is likely the reason that MolAxis

consistently reports fewer tunnels per structure than Caver3.0,

resulting in a slower plateau. When narrow tunnels are excluded

by using a larger tunnel radius cutoff (1.25 Å cutoff), which is more

representative of a biological ligands of CYP enzymes, we

observed a drastic reduction in the total number of tunnels

identified and better agreement in the rate of tunnel identification

by MolAxis and Caver3.0 (Figures S2 and S3). While the overall

number of tunnels identified decreased, the number of tunnels

found in the crystal structure also decreased resulting in poorer

overlap between the crystal structure and the largest ensemble.

One reason for the early spike in tunnel identification in the

ensemble is the importance of small scale protein motions that can

be captured in a relatively short time. Even slight conformational

changes such as small rotamer state changes can drastically impact

Figure 4. Occurrence and bottleneck widths of preferred tunnels predicted by MolAxis in CYP2C9 and CYP3A4. (A–D) The time point
at which each tunnel first observed is plotted against the widest bottleneck radius observed, at any point, for that tunnel. The color and size of the
dot corresponds to the average fluctuation in the bottleneck of that tunnel over time, tunnels which frequently oscillate between wide open and
mostly closed are shown in large green dots, alternatively those tunnels in which the bottleneck is relatively inflexible, retaining a more or less
constant diameter are shown in red dots. Preferred tunnels are denoted with arrows. Furthermore, the bottleneck radii of preferred tunnels over time
are shown in E and F. Green represents a more open bottleneck, where red represents a more closed bottleneck. *Tunnel 5, is not a preferred tunnel,
but rather a ‘‘rare’’ tunnel that serves as a point of reference to evaluate the preferred tunnels.
doi:10.1371/journal.pone.0099408.g004
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tunnel prediction results. In one instance, the phenylimidazole-

bound form of CYP119 (Figure S1–A), five tunnels were found in

the crystal structure, yet none met the 0.75 Å cutoff criteria

resulting in 0% identification in the crystal structure. However,

after minimization alone, the bottleneck of three of these tunnels

expanded due to slight rotameric changes which allowed these

three tunnels to be identified in the minimized structure.

The importance of small rotameric changes in tunnel prediction

is further highlighted by comparing the apo and holo ensembles.

In all tested data sets no more than 60% of tunnels were shared

between the apo and holo ensembles. One of the main factors

contributing to the observed differences is the steric restriction of

binding site residues by the ligand.

Figure 2A shows the differences in the top-3 widest tunnels

identified in the holo (blue tunnels) and apo (orange tunnels)

ensembles of CYP2C9 (in the holo ensemble 2c and 2f both had

the same bottleneck radius, thus four tunnels were counted in the

top 3). All of the tunnels (2a, 2d, and 2e) that differ between the

two ensembles pass directly through residues of the warfarin

binding site, just below the FG helix block. The absence of

warfarin in the apo ensemble allows for free rotation of PHE100

resulting in the opening of tunnel 2a (Figure 2B). However, the

presence of warfarin is required for the opening of tunnels 2d and

2e. The restriction of PHE476 by warfarin allows for the opening

of tunnel 2d (Figure 2C), while the restriction of PHE114 allows

for the formation of tunnel 2e (not shown). The allowed rotamer

states of these residues in their respective ensembles caused a

preferential opening of certain tunnels and the closure of others.

The degree of this preference is highlighted by the ranking of these

tunnels in the apo versus the holo ensemble. For instance, even

though tunnel 2a was found in both the apo and holo ensemble of

CYP2C9, in the apo ensemble, it was ranked 1st according to the

flux value and had a bottleneck radius of 1.64 Å, while in the holo

ensemble it was ranked 19th and had a bottleneck radius of 0.93 Å,

according to MolAxis. This was a consistent trend for tunnels 2d

and 2e using both Caver3.0 and MolAxis. Interestingly, the two

tunnels that were found in common in the apo and holo

ensembles, 2c and the solvent tunnel S (grey paths), do not

directly interact with residues of the warfarin binding site.

Minor conformational changes can drastically influence tunnel

prediction in even the widest identified tunnels and most of these

changes can be captured in the early stages of a simulation. While

any sized time point ensemble offered improvement over the

crystal structure alone, in order to produce the most detailed

Figure 5. Occurrence and bottleneck widths of preferred tunnels predicted by Caver3.0 in CYP2C9 and CYP3A4. (A–D) The time point
at which each tunnel first observed is plotted against the widest bottleneck radius observed (at any point) for that tunnel. The color and size of the
dot corresponds to the average fluctuation in the bottleneck of that tunnel over time. Preferred tunnels are denoted with arrows. Furthermore, the
bottleneck radii of biologically preferred tunnels over time are shown in E and F. Green represents a more open bottleneck, whereas red represents a
more closed bottleneck. *Tunnel 5, is not a preferred tunnel, but rather a ‘‘rare’’ tunnel that serves as a point of reference to evaluate the preferred
tunnels.
doi:10.1371/journal.pone.0099408.g005
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tunnel prediction results ensembles containing over 50 members

were required. In these ensembles we found that the majority of

tunnels were identified within the first several nanoseconds of a

trajectory. In other words, the bulk of tunnels can be found in a

small set of randomly selected structures, but the remaining

tunnels are contributed by specific structural members that might

be sampled later in the MD simulation. We hypothesized that by

identifying the specific members that contributed unique tunnels

and combining those with a few other structures that we could

produce smaller ensembles that performed as well as ensembles

containing over 100 members.

Ensemble Generation using Clustering
Using time point based ensembles is a straightforward method,

frequently used to generate ensembles in docking [21] and to a

lesser extent in tunnel prediction [22,33]. However, this method

relies on heavy sampling to cover the conformational space of the

protein and therefore typically requires a large number of

structures. The inclusion of a large number of structures in an

ensemble for tunnel prediction can become computationally costly

in terms of both time and memory [22]. Thus we attempted to

generate smaller, more productive ensembles for tunnel prediction

by utilizing clustering techniques. We hypothesized that highly

similar protein conformations would produce similar tunnels while

dissimilar structures would produce different tunnels. We used

three methods of clustering to generate the ensembles: heavy atom

RMSD based, pairwise-distance based, and hydrogen-bond

network based clustering.

Heavy atom RMSD based clustering is used routinely to

generate ensembles for various computational techniques such as

ensemble docking. Akin to RMSD based clustering, pairwise-

distance based clustering compares changes in the distances

between pairs of atoms in the protein. Hydrogen bonding is known

to play a role in tunnel closing/opening to allow ligand entry and

egress [11,34] and therefore we also generated ensembles based on

conserved hydrogen bonding patterns. In order to reduce the

potentially dominant RMSD contribution of highly flexible surface

exposed residues, which are not likely to be critical determinants of

internal tunnels, these residues were excluded in all cases.

Using these clustering techniques we generated ensembles from

the MD simulations containing either 6-, 11-, 21- or 51-members

and compared the tunnels identified by these ensembles to the

time point ensemble of the same size (the crystal and minimized

structures were excluded from all ensembles). We found, on

average, that none of the clustering methods tested produced

observable enrichment in the number of tunnels identified

compared to the time point ensembles of the same size (apo

results are shown in Figure 3 and holo results are shown in Figure

S4). We believe that this is due to the sensitivity of geometric

prediction methods to minor changes in protein structure that

cannot be adequately accounted for by a single global descriptor.

For instance, the slight rotation of a side chain may have a low

impact on the structural RMSD, but could cause severe restriction

of a given tunnel.

While no method of ensemble production consistently out- or

under-performed other methods, all methods shared some degree

of tunnel loss due to clustering. Tunnel loss occurs when fewer

tunnels are found in a larger ensemble then in the previous smaller

ensemble, for instance in CYP3A4, using Caver3.0 fewer tunnels

are found in the 21- member time point ensemble than in the 11-

member time point ensemble. Information loss can occur between

two ensembles by the inclusion of additional tunnels that lie in

boundary regions between two existing clusters. In some cases this

can lead to the merging of two smaller clusters into a single larger

T
a

b
le

1
.

P
e

rc
e

n
ta

g
e

o
f

b
io

lo
g

ic
al

ly
p

re
fe

rr
e

d
tu

n
n

e
ls

id
e

n
ti

fi
e

d
in

e
n

se
m

b
le

s.

M
o

lA
x

is
C

a
v

e
r3

.0

C
ry

st
a

l
S

tr
u

ct
u

re
7

-
m

e
m

b
e

r
p

a
re

n
t

e
n

se
m

b
le

1
4

-m
e

m
b

e
r

m
ix

e
d

e
n

se
m

b
le

a
1

0
3

-
m

e
m

b
e

r
e

n
se

m
b

le
C

ry
st

a
l

S
tr

u
ct

u
re

7
-

m
e

m
b

e
r

p
a

re
n

t
e

n
se

m
b

le
1

4
-m

e
m

b
e

r
m

ix
e

d
e

n
se

m
b

le
a

1
0

3
-

m
e

m
b

e
r

e
n

se
m

b
le

C
Y

P
2

C
9

ap
o

6
7

%
6

7
%

8
3

%
8

3
%

5
0

%
6

7
%

6
7

%
6

7
%

C
Y

P
2

C
9

h
o

lo
3

3
%

6
7

%
6

7
%

6
7

%
6

7
%

6
7

%

C
Y

P
3

A
4

ap
o

6
0

%
1

0
0

%
1

0
0

%
1

0
0

%
8

0
%

8
0

%
4

0
%

1
0

0
%

C
Y

P
3

A
4

h
o

lo
6

0
%

6
0

%
1

0
0

%
2

0
%

6
0

%
6

0
%

a
T

h
e

m
ix

e
d

e
n

se
m

b
le

co
n

ta
in

s
th

e
7

-m
e

m
b

e
r

p
ar

e
n

t
e

n
se

m
b

le
s

fr
o

m
b

o
th

th
e

ap
o

an
d

h
o

lo
si

m
u

la
ti

o
n

s.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

9
9

4
0

8
.t

0
0

1

Ensemble Generation in Geometric Tunnel Prediction

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e99408



cluster resulting in a decrease in the total number of tunnels

identified. The implications of tunnel loss due to tunnel clustering

are discussed further in the ‘‘Shortcomings of Ensemble Based

Tunnel Prediction’’ section.

In addition to clustering of the tunnels themselves, clustering the

input protein structures proved difficult. One reason for this may

be that clustering structures to optimize tunnel identification may

require more precise input. In docking studies this is often

achieved by including only residues from the binding site in

clustering. In order to use standard clustering techniques for

tunnel prediction, it may be necessary to not only remove the noise

created by surface exposed residues but to restrict clustering to

only those residues that line a specific tunnel of interest. However,

unlike in docking where the binding site is usually known a priori,

this information would not be known prior to performing the

tunnel prediction calculations and thus would not likely be of

practical use for tunnel identification. The difficulties of clustering-

based ensemble generation make it an unlikely choice to reduce

the ensemble size necessary for geometric tunnel prediction. While

our findings indicate that larger ensembles are necessary to

produce the most complete tunnel predictions, we assessed

whether larger ensembles were also necessary to extract the most

relevant tunnel information.

Identification of Preferred Tunnels
Ligand egress is difficult to study directly using experimental

methods, however, using resource-intensive computational ap-

proaches, many mammalian CYP enzymes, including CYP2C9

Figure 6. Occurrence and bottleneck widths of preferred tunnels predicted by MolAxis in 14- member apo/holo mixed ensembles
in CYP2C9 (A) and CYP3A4 (B). The time point at which each tunnel is first observed is plotted against the widest bottleneck radius observed (at
any point) for that tunnel. The color and size of the dot corresponds to the average fluctuation in the bottleneck of that tunnel over time.
doi:10.1371/journal.pone.0099408.g006

Figure 7. Occurrence and bottleneck widths of preferred tunnels predicted by Caver3.0 in 14- member apo/holo mixed ensembles
in CYP2C9 (A) and CYP3A4 (B). The time point at which each tunnel first observed is plotted against the widest bottleneck radius observed (at
any point) for that tunnel. The color and size of the dot corresponds to the average fluctuation in the bottleneck of that tunnel over time.
doi:10.1371/journal.pone.0099408.g007
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and CYP3A4, have been heavily studied [34,35,36]. In both

CYP2C9 and CYP3A4 several tunnels have been identified as

favorable for ligand passage using advanced MD methods, these

tunnels are thought to be ‘‘preferred’’ exit tunnels for several

ligands [37]. Using the largest time point ensembles, we identified

where along the trajectory these preferred tunnels occurred and

assessed their topological features as well as the persistence of the

tunnels over the length of the trajectory.

For all tunnels identified, we plotted the time point at which the

tunnel was first observed against the largest bottleneck radius

observed in that tunnel cluster (Figures 4 A–D and 5 A–D).

Preferred tunnels 2a, 2b, 2c, 2e and solvent (S) for CYP2C9 and

2a, 2b, 2e, 3 and S for CYP3A4 are denoted with an arrow for

each system. Preferred tunnel 2ac of CYP2C9 was not found

therefore is not indicated in Figures 4 and 5. The bottleneck radius

of the tunnel over the duration of the trajectory is also shown in

Figures 4 and 5 (E and F).

In general, preferred tunnels tended to be among those tunnels

with the largest observed bottleneck radii and showed the largest

fluctuations in bottleneck radii. For comparison, a non-preferred

tunnel, tunnel 5, is also shown. Tunnel 5 is known as ‘‘rare’’ tunnel

and it has not yet been implicated in biological function or ligand

egress [34]. This tunnel is spatially distinct from preferred tunnels

and demonstrates different behavior than the preferred channels.

In both MolAxis and Caver3.0 the tunnel is found to have only

minor fluctuations in the bottleneck radius and remains closed or

partially closed throughout the trajectory. This is in stark contrast

to the preferred tunnels, some of which were found to have

deviations exceeding 1.5 Å between the largest and smallest

observed radii for a single tunnel. This finding is consistent with

the idea that bottlenecks regions are highly flexible and may act as

gates to allow/deny ligand passage. Fluctuations of this magnitude

could prevent identification of even large tunnels in certain static

structures.

In only one case, the holo form of CYP2C9 using Caver3.0, the

crystal structure alone accounted for all of the preferred tunnels

that were identified in that trajectory. However, in all other

systems, preferred tunnels that were not identified in the crystal

structure, were identified very early in the trajectory and in most

cases, were consistently identified throughout the duration of the

trajectory. In general, most, but not all of the preferred tunnels

were identified in the smallest (7-members) ensembles (Table 1).

While the use of an ensemble improved tunnel prediction results

in both the full data set and in the preferred tunnels only data set,

the inclusion of the ensemble alone does not guarantee compre-

hensive tunnel prediction. Some tunnels were found to have very

different physical properties in the apo ensemble versus the holo

ensemble. In the most extreme case, tunnel 2a in CYP3A4 was

found in the apo, but not the holo ensemble by Caver3.0. These

differences suggest that a consensus-based approach which

combines tunnel prediction results from both the holo and apo

forms may provide improved predictions. To the best of our

knowledge, no studies have been performed that compare tunnel

prediction in apo/holo mixed ensembles.

Mixed Ensemble Tunnel Prediction
A 14-member ensemble was generated by combining seven

snapshots (the crystal structure plus frames taken every 2 ns) from

the holo and apo trajectories for both CYP2C9 and CYP3A4.

Caver3.0 and MolAxis were run on each member of these apo/

holo mixed ensembles and the resultant tunnels were clustered.

For all tunnels identified, we again plotted the time point at which

the tunnel was first observed against the largest bottleneck radius

observed in that tunnel cluster (Figure 6 and Figure 7). Tunnel
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prediction in the 14-member mixed ensemble was compared to

both the apo and holo parent (7-member) ensembles and to the

largest (103 members) apo and holo ensembles tested.

By combining the apo and holo ensembles, in three out of four

cases, we were able to identify the same number of tunnels or even

more tunnels compared to using either the apo or holo 103-

member ensembles alone (Table 1). The smaller mixed ensembles

contained fewer tunnels overall while still preserving all of the

preferred tunnels resulting in reduced noise in the prediction data.

Furthermore, using the smaller ensembles improved the rate at

which preferred tunnels were identified. For instance, tunnel 2e

was found in the holo crystal structure, but not the apo crystal

structure of CYP2C9 and by using the mixed ensemble, this tunnel

was predicted earlier than it would have been in the apo ensemble

alone. As with the non-mixed ensembles, the bottleneck radii of

the preferred tunnels in the mixed ensembles were usually among

the largest and most flexible identified. Using MD to take

advantage of different conformational states of each unique crystal

structure input, smaller apo/holo mixed ensembles outperform

tunnel prediction in the parent crystal structures and were

comparable to non-mixed ensembles containing over 100 mem-

bers in most cases.

Pseudo-Ensemble Tunnel Prediction
Although the performance of the mixed ensemble was

encouraging, lack of structural data may preclude the use of this

method in enzymes where only a single structure, either apo or

holo, is available. One way to address this problem is to either

Figure 8. A comparison of the bottleneck radii in the preferred tunnels reported by MolAxis in the true- and pseudo- ensembles for
both CYP2C9 (A) and CYP3A4 (B). The largest observed bottleneck for each preferred tunnel is shown for all simulations; the pseudo-apo and
true-apo are shown in black, as dots and lines, respectively, and the pseudo-holo and true-holo simulations are shown in grey using the same
symbols. Although the pseudo-simulations start from the holo/apo crystal structure, once the ligand is removed/added, to generate the pseudo-
simulation, in many cases, the bottleneck radii starts approaching that of the true-apo/true-holo simulation (e.g. the black dots approach the black
bars and the grey dots approach the grey bars).
doi:10.1371/journal.pone.0099408.g008

Figure 9. Rotameric states of PHE100 in the pseudo-simulations of CYP2C9. A) In the pseudo-apo simulation, PHE100 initially resembles its
position in the true-holo simulation (green sticks) where it does not sterically interfere with the ligand. However, throughout the course of the
simulation, PHE100 rotates and more closely resembles its conformation in the true-apo simulation, entering space that was originally occupied by
the ligand. B) In the pseudo-holo simulation, the addition of the ligand forces PHE100 to adopt a conformation that is similar to its conformation in
the true-holo simulation.
doi:10.1371/journal.pone.0099408.g009
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remove the co-crystallized ligand from the holo structure, resulting

in a pseudo-apo structure or to add an exogenous ligand to the apo

structure resulting in a pseudo-holo structure. Although such

techniques are common in in silico studies, such as docking, this

technique has not yet been used in tunnel prediction. We

produced a series of pseudo-ensembles and assessed whether the

tunnels predicted in those pseudo-ensembles provided an accurate

estimate of the tunnels predicted in the true-apo or true-holo

ensembles.

First, pseudo-apo and pseudo-holo structures of both CYP2C9

and CYP3A4 were generated by removing the ligands, warfarin

and bromoergocryptine, respectively, from the holo structures or

adding these ligands to the apo structures. A 10 ns MD simulation

was performed on each of these pseudo-structures and ‘‘pseudo-

ensembles’’ were generated by extracting frames every 100 ps, as

previously described. The tunnels predicted in pseudo-apo and

pseudo-holo ensembles were compared to those predicted in the

true-apo and true-holo ensembles, respectively. The prediction

accuracy was calculated as the percentage of true-apo (or true-

holo) tunnels identified by the pseudo-apo (or pseudo-holo)

simulation. As a point of comparison, the percentage of shared

tunnels in the original, unaltered simulation was also calculated

(this value has been denoted in parenthesis in the ‘‘prediction

accuracy column’’). For instance, because both the pseudo-apo

and the true-holo simulations start from the same crystal structure,

we compared the tunnels in both of these ensembles to those in

true apo-ensemble to determine whether the removal of the ligand

itself was responsible for differences in tunnel identification

between the structures.

Both the pseudo-apo and pseudo-holo ensembles typically

captured around 65% of the tunnels identified in the true-apo or

true-holo ensemble (Table 2). The pseudo-apo simulations resulted

in a more consistent and greater overall increase, compared to the

original simulation, in the percentage of accurately predicted

tunnels. This was especially true in the case of CYP2C9, where the

pseudo-apo simulation resulted in a nearly 20% increase over the

holo simulation using MolAxis and an increase of nearly 30%

using Caver3.0.

Using the pseudo-simulations, we also constructed pseudo-

mixed ensembles and calculated the percentage of preferred

tunnels identified in these ensembles as compared to the true-

mixed ensembles (Table 2). For instance, seven members each

from the pseudo-apo and true-holo simulations were combined

into a single pseudo-mixed ensemble. In all but one case, the

pseudo-mixed ensembles performed as well as the true mixed

ensembles at predicting preferred tunnels. Notably, in the one case

that deviated from this trend, the prediction accuracy was the

lowest of any of pseudo-simulation tested (pseudo-holo ensemble of

CYP2C9 predicted by MolAxis).

Ideally, both the number and physical properties of the tunnels

from the pseudo-simulations should more closely resemble the

tunnels of the true simulation than those of the original simulation.

For each of the preferred tunnels, we compared the largest

bottleneck radius observed in the true-simulations to the largest

observed bottleneck radius in the pseudo-simulations (Figure 8 and

Figure S5). In many, but not all, cases we found that tunnel

bottlenecks in the pseudo-simulations started approaching those in

the true simulations. For instance, the bottleneck in tunnel 2a of

CYP2C9 was found to increase from 0.93 Å in the true-holo

simulation to 1.23 Å in the pseudo-apo simulation, more closely

resembling the bottleneck in the true-apo simulation (1.64 Å).

Likewise in the pseudo-holo simulation, the bottleneck decreased

from 1.64 in the true-apo to 0.96 Å in the pseudo-holo simulation,

more closely resembling the true-holo simulation (0.93 Å).

The removal or addition of the ligand in the pseudo-simulations

allows for binding site residues in close proximity to the ligand to

adopt a unique ensemble of conformations containing rotamers

similar to those in both the true-apo and true-holo ensemble. For

instance in tunnel 2a of CYP2C9, the rotameric states of PHE100

in the pseudo-apo simulation initially resemble the true holo-

simulation (Figure 9A, green sticks), but quickly progress towards

conformations that are only observed in the true-apo simulation

(Figure 9A, purple sticks). Although, in the pseudo-apo simulation

PHE100 did not fully capture all rotameric states that were

observed in the true-apo simulation (see Figure 2B, dark purple

sticks), the expanded motion allowed for a significant increase in

the bottleneck radius as shown in Figure 8A. Likewise, when the

ligand was added to the apo conformation, PHE100 becomes

highly restricted (Figure 9B), as is observed in the true-holo

simulation, resulting in a significant decrease in the bottleneck

radius of tunnel 2a (Figure 8A).

Taken together, this data suggest that, in the case of lack of

structural data, pseudo-simulations may provide a viable alterna-

tive. We observed that a majority of the preferred tunnels were

identified in both pseudo-ensembles and in addition found that, in

many cases, the bottleneck radius of the tunnels identified in the

pseudo-simulations either increased or decreased to more closely

resemble the true-simulations.

Shortcomings of Ensemble Based Tunnel Prediction
In general we found ensemble based approaches, specifically

mixed ensembles, to be advantageous for geometric tunnel

prediction; however, the inclusion of multiple protein structures

in geometric tunnel prediction heavily relies on clustering of the

resultant tunnels. Clustering is necessary to analyze the multitude

of tunnels produced from an ensemble, but can also directly

influence the outcome of tunnel prediction. The type of clustering

used, the number of input structures, and the cutoff parameters

selected can all affect the results of geometric tunnel prediction

and in some cases can negatively impact the outcome.

For instance, loss of data due to clustering the Caver3.0 tunnels

in the mixed ensemble of CYP3A4 leads to the poor performance

of the mixed ensemble compared to non-mixed ensembles of any

size. The poor performance of the mixed ensemble was the result

of a larger central cluster, identified as tunnel 2a, which merged

with two nearby clusters, identified as tunnels 2b and 3. The

centroid of the tunnel 2a cluster was found to be extremely short, a

fairly frequent occurrence in the tunnels predicted by Caver3.0.

Comparing a tunnel to an exceedingly short, nearby tunnel can

artificially lower the RMSD between the two members because

the initial portions of the tunnels will match very closely. This was

true for both the apo and the mixed ensembles, however, in the

large apo ensemble, divergent members of clusters 2b and 3 were

found that were further separated from the 2a centroid. This

variety allowed for new clusters (e.g. 2b and 3) to be formed in the

apo ensemble. These clusters were not formed in the mixed

ensemble because the overall number of tunnels was smaller as

were the number of divergent members that would result in new

cluster formation.

Tunnel loss of this type due to clustering could have severe

implications for smaller tunnels that lie between two larger tunnels.

Tunnel 2ac, a preferred tunnel in CYP2C9, exits between the BC

loop and the G helix, and lies between tunnels 2a and 2c. This

tunnel was not found in any CYP2C9 trajectory using either

method. Tunnel 2ac is known to merge with nearby channels

during simulations [11], which is likely a contributing factor to

why this tunnel was overlooked using both methods.
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Clustering may not only introduce the risk of overlooking

smaller, or nearby tunnels, but the three dimensional location

alone may not fully reflect the specific details of a given tunnel. For

instance the identity and the conformations of the tunnel lining

residues are not taken into account. Two nearby tunnels may have

completely different physicochemical properties that would not be

captured by location-based clustering alone. Including such

features may provide an improvement on the currently used

distance based techniques, although to date, there have not been

widespread attempts to include the physicochemical properties, or

tunnel lining residues of a given tunnel into the clustering

procedure. Ensemble-based tunnel prediction and tunnel cluster-

ing are inextricably linked. However due to the sensitivity of

clustering, careful consideration must be used to achieve a balance

between preventing redundancy and preserving critical tunnel

features.

Conclusions

One of the main challenges in tunnel prediction is the

incorporation of protein flexibility in an efficient manner. We

used MD simulations to generate a series of ensembles and

compared tunnel prediction results in ensembles of various sizes

and compositions to the tunnels predicted in a single static crystal

structure. We found that there was a sharp increase in the number

of tunnels identified within the first several nanoseconds of the MD

trajectory and including as few as seven members could capture

these additional tunnels and improve tunnel prediction results

when compared to the crystal structure alone We introduced a

novel ensemble generation method that combines time point

based snapshots from both an apo and a holo trajectory for a given

CYP system and found that, in three out of four cases, this method

performs as well or better than significantly larger ensembles

generated from the apo or holo trajectory alone. Additionally, we

found that, in the absence of structural data, pseudo-ensembles

may be suitable for use in tunnel prediction.

While MD simulations are the most typical source of structural

ensembles for geometric tunnel prediction, time constraints often

limit such simulations to small scale motions. We found that these

small scale motions accounted for the opening and closing of

several tunnels throughout the duration of each simulation and

resulted in, at times, drastic fluctuations in the bottleneck radii of

tunnels belonging to a single cluster. Interestingly, preferred

tunnels were often found to have the largest bottlenecks and also

the most variation in bottleneck radius. This finding is in line with

previous findings that bottleneck residues may act as gates to

dictate access of various substrates to the binding site [36,38].

Although in this study we focused on three enzymes of the CYP

family, the properties of the three binding sites differ quite

significantly. Thus, we believe that these findings are applicable at

least to the broader CYP family as well as other similar enzymes

with multiple tunnels and buried active sites. Taken together, our

findings highlight the importance of both ensemble generation and

selection in the tunnel prediction process, but also demonstrate

that exceedingly large ensembles do not necessarily provide an

advantage over smaller ensembles.

A more holistic knowledge of the ligand binding process has

become increasingly important in recent years as we have begun to

realize some limitations of traditional computational techniques.

Tunnel prediction is emerging as a useful computational tool to

address questions involving ligand entrance and egress and there

has been growing interest in building and improving tools in this

field. To date, tunnel prediction has proven useful in fields ranging

from understanding chemical mechanisms in channels [38], to

protein engineering [6] and drug design [39] and a better

understanding of the most efficient and practical ways to calculate

tunnels has great potential to contribute to this growing field.

Supporting Information

Figure S1 Cumulative number of tunnels found over time in the

apo forms of CYP119 (A and B), CYP2C9 (C and D), and

CYP3A4 (E and F) using the geometric prediction programs

MolAxis (left column) and Caver3.0 (right column). Tunnels were

predicted in five different ensembles, containing either 103, 53, 23,

13, or 8 members, generated by taking frames at evenly separated

time points throughout the trajectory and adding the crystal and

minimized structures. The tunnels were then clustered and the first

appearance of each tunnel cluster was recorded. The black dot

represents the number of tunnels in the crystal structure alone.

(TIF)

Figure S2 Tunnel prediction as a function of sampling time and

ensemble size in the apo ensembles (1.25 Å cutoff). Cumulative

number of tunnels found over time using a bottleneck cutoff of

1.25 Å in the apo forms of CYP119 (A and B), CYP2C9 (C and

D), and CYP3A4 (E and F) using the static prediction programs,

MolAxis (left column) and Caver3.0 (right column). Tunnels were

predicted in five different ensembles, containing either 103, 53, 23,

13, or 8 members, which were generated by taking frames at

specific time points throughout the trajectory and adding the

crystal and minimized structures.

(TIF)

Figure S3 Tunnel prediction as a function of sampling time and

ensemble size in the holo ensembles (1.25 Å cutoff). Cumulative

number of tunnels found over time using a bottleneck cutoff of

1.25 Å in the holo forms of CYP 119 (A and B), CYP2C9 (C and

D), and CYP3A4 (E and F) using the static prediction programs,

MolAxis (left column) and Caver3.0 (right column). Tunnels were

predicted in five different ensembles, containing either 102, 52, 22,

12, or 7 members, which were generated by taking frames at

specific time points throughout the trajectory and adding the

crystal and minimized structures.

(TIF)

Figure S4 Percentage of the total reference tunnels identified

using time point ensembles, RMSD-clustered ensembles, hydro-

gen-bond network ensembles, and pairwise-distance ensembles in

the holo form of CYP119 (A and B), CYP2C9 (C and D) and

CYP3A4 (E and F) using MolAxis and Caver3.0.

(TIF)

Figure S5 A comparison of the bottleneck radii in the preferred

tunnels reported by Caver3.0 in the true- and pseudo- ensembles

of CYP2C9 (A) and CYP3A4 (B). The largest observed bottleneck

for each preferred tunnel is shown for all simulations; the pseudo-

apo and true-apo tunnels are shown in black, dots and lines,

respectively, and the pseudo-holo and true-holo simulations are

shown in grey with the same symbols.

(TIF)
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