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Abstract

Peri-implantitis is a frequently occurring gum disease linked to multi-factorial traits with various environmental and genetic
causalities and no known concrete pathogenesis. The varying severity of peri-implantitis among patients with relatively
similar environments suggests a genetic aspect which needs to be investigated to understand and regulate the
pathogenesis of the disease. Six unrelated individuals with multiple clusterization implant failure due to severe peri-
implantitis were chosen for this study. These six individuals had relatively healthy lifestyles, with minimal environmental
causalities affecting peri-implantitis. Research was undertaken to investigate pathogenic genes in peri-implantitis albeit with
a small number of subjects and incomplete elimination of environmental causalities. Whole-exome sequencing was
performed on collected saliva samples via self DNA collection kit. Common variants with minor allele frequencies (MAF) .
= 0.05 from all control datasets were eliminated and variants having high and moderate impact and loss of function were
used for comparison. Gene set enrichment analysis was performed to reveal functional groups associated with the genetic
variants. 2,022 genes were left after filtering against dbSNP, the 1000 Genomes East Asian population, and healthy Korean
randomized subsample data (GSK project). 175 (p-value ,0.05) out of 927 gene sets were obtained via GSEA (DAVID). The
top 10 was chosen (p-value ,0.05) from cluster enrichment showing significance of cytoskeleton, cell adhesion, and metal
ion binding. Network analysis was applied to find relationships between functional clusters. Among the functional groups,
ion metal binding was located in the center of all clusters, indicating dysfunction of regulation in metal ion concentration
might affect cell morphology or cell adhesion, resulting in implant failure. This result may demonstrate the feasibility of and
provide pilot data for a larger research project aimed at discovering biomarkers for early diagnosis of peri-implantitis.
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Introduction

The successful incorporation of titanium implants in the

rehabilitation of edentulous patients has been well-investigated

over the years [1]. According to statistics, over 2 million dental

implants are installed annually, a number that could rise over the

next few years. Despite the high success rates of osseointegrated

implants, increasingly frequent biological complications related to

implants often result in implant loss [2–4]. The failure rate of

dental implants as currently reported is approximately 3–5%

within the first 10 years [5,6]. Peri-implantitis is a biological

complication that occurs in dental implant patients and comprises

a range of destructive inflammatory processes affecting surround-

ing soft and hard tissues for which there is no current gold-

standard treatment [7]. Diagnosis is based on changes of color in

the gingival, bleeding and probing depth of peri-implant pockets,

suppuration, X-ray, and gradual loss of bone height around the

tooth [8]. Despite all these methods, we need to note that peri-

implantitis can develop without any obvious symptoms such as

pain [9,10] so that patients often fail to notice the development of

the disease. Due to difficulties in early detection of peri-implantitis,

implant failures are steadily increasing, with clinical studies

reporting near 4% implant loss [11–13]. Hence, we need a fresh

approach for diagnosing peri-implantitis.

Previous studies have found that peri-implantitis and implant

failures cluster in subsets of individuals and that a patient who has

lost one implant is at elevated risk of experiencing other implant

losses [14,15]. Such failure of more than one implant in a patient,

not necessarily in the same area or quadrant, is called implant

clusterization failure. In a previous literature review, findings

suggested that implant failures are not randomly distributed in the

treated populations, but rather cluster in specific high risk groups

and individuals [16]. Peri-implantits pathogenesis research has

faced the challenge of multiple casualties affecting the disease.

Both multiple genes and environmental factors may play a critical

role in peri-implantitis. Patients with clusterization failure were

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e99360

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0099360&domain=pdf


carefully chosen for the current study based on having a distinctive

phenotype of the disease, a relatively healthy lifestyle, and similar

environmental traits. The cluster phenomenon supports evidence

that specific host characteristics, including genetic factors, play an

important role in bone resorption and in the development of peri-

implantitis leading to implant failure [17]. Therefore, early

diagnosis of peri-implantitis through the detection of pathogenic

genes in advance of visual symptoms and radiographic findings

may prevent implant failure due to severe peri-implantitis and

increase the implant success rate as well.

There have been several studies on the role of cytokines in peri-

implantitis [18]. A recent systematic review of the association

between genetic predisposition and biological complications of

dental implants suggested that there is no strong association

among specific genetic polymorphisms (IL-1A, IL-1B, IL-17RC)

and peri-implantitis, although there was a notable tendency

indicating a link between the IL-1 genotype and peri-implantitis

[19,20]. Another study presented MMP-8 and PGE-2, both

regulated by IL-1 as possible genetic markers for unsuccessful

implants based on their role in regulating the extra cellular matrix

(ECM) which may enhance bone healing within defects and

promote implant osseointegration [21]. Nonetheless, no prior

studies have established a genetic association with peri-implantitis,

supporting the need for a new genetic association study.

Whole Exome Sequencing (WES) in genetics has had the

greatest impact on Mendelian disorders, distinguishing more than

100 genes in rare Mendelian disorders between 2010 and 2012

[22]. Approaches in investigating novel genetic mechanisms,

phenotypic variability, modifier genes, allelic variants, and genetic

variations in Mendelian disorders may also help elucidate complex

disorders such as peri-implantitis. Unlike Mendelian disorders,

peri-implantitis is a multi-factorial disorder involving complex

disorders, multiple genes, as well as lifestyle or environmental

factors. To maximize the specificity of our results, we selected

patients with clusterization failure due to peri-implantitis. WES

alone may not provide pragmatic results on the association

between a specific disease and genetic variants due to the extensive

raw data, pointing out the need to incorporate bioinformatic data

management, computational analyses, and data mining. Incorpo-

ration of Gene Set Enrichment Analysis (GSEA) and a protein

functional network study of WES data may determine genetic

variants explicitly related to peri-implantitis.

The objective of this study is to find pathogenic genes associated

with peri-implantitis via WES, GSEA, and network analysis.

Materials and Methods

Ethics Statement
All research involving human subjects or human data was

approved by the Institutional Review Board of Yonsei University

College of Dentistry (Yonsei IRB No. n2-2012-0023). All clinical

investigation was performed in accordance with the Declaration of

Helsinki. Written informed consent was obtained from all

participants before enrolling in this study.

Patient Selection
Six individuals with clusterization failure due to severe peri-

implantits aged between 50 and 68 were analyzed by massively

parallel sequencing in this study (1 male, 5 female).

The six individuals had been treated with osseointegrated

titanium implants for partial or complete edentulism in the

Implant Clinic of Yonsei University Dental Hospital from

November 2002 to October 2013. These patients had no history

of parafunctional habits, smoking experience, periodontal disease,

or systemic disease such as diabetes mellitus and osteoporosis. The

number of implants inserted to the patients was 55, 26 of which

were explanted. Presence of mobility, vertical resorption of less

than 50%, and pus discharge on patients yielded a poor prognosis

in all selected cases.

Comparing Data Set
126 Koreans from the GSK project aged between 23 and 46

(109 male, 17 female) were chosen as randomized subsample from

the reference population along with dbSNP137 and the 1000

Genomes East Asian population. Exome data of the Korean

randomized subsample, dbSNP137, and 1000 Genomes East

Asian population were used to eliminate common variants from

the six selected patients’ WES data. The 126 Korean randomized

subsamples, healthy Koreans regardless of gender and age, had

originally been recruited for a thyroid cancer study (GSK project).

This group had no history of diseases known to affect periodontal

disease, such as diabetes and osteoporosis.

Sample Collection
Each patient’s saliva was collected using self DNA collection kit.

Self DNA collection kit instructions were followed: first, all 6

individuals were asked to collect 2 mL of saliva in the tube of an

Oragene DNA Self-Collection kit containing 2 mL of DNA-

preserving solution. The lid was closed to release the storing liquid

to mix with the saliva. Genomic DNA collection, DNA extraction,

and further analysis were performed by DNA Link Inc., Seoul,

South Korea.

Whole Exome Sequencing on HISEQ 2000 using
SureSelect All Exon kit 50 Mb

With an OD260/280 ratio of 1.8–22, DNA should be as intact

as possible. Quality of DNA was checked by 1% agarose gel

electrophoresis and PicoGreen dsDNA Assay. SureSelect sequenc-

ing libraries were prepared following the manufacturer’s instruc-

tions using a Bravo automated liquid handler. One ug of genomic

DNA in 120 mL EB buffer was fragmented to a median size of

150 bp using a Covaris-S2 with the following settings: duty cycle

10%, intensity 5, cycles per burst 200, and mode frequency

sweeping for 360 s at 4uC. Capillary electrophoresis on DNA 100

chips was used to evaluate the efficiency of the fragmentation.

Following the manufacturer’s protocol, sequencing adapters were

ligated on the DNA fragments. PCR was used to amplify the

adapter ligated DNA. Capillary electrophoresis was used to ensure

the quality of the PCR products. In preparing the hybridization

buffer, #1, #2, #3, and #4 reagents were mixed. The amplified

DNA fragments were concentrated to 500 ng in 3.4 ul. The

500 ng of DNA was mixed with SureSelect block #1, #2, and #3

reagents. The hybridization buffer and DNA blocker mix were

incubated for 5 min at 95uC followed by 10 min incubation at

65uC in a thermal cycler. Rnase block was added to the SureSelect

oligo capture library and the capture library was incubated for

2 min at 65uC. In a thermal cycler, the hybridization buffer

followed by the DNA blocker mix was added to the capture library

and the mixture was incubated for 24 hours at 65uC. Fifty ul of

streptavidin coating the Dynal MyOne Streptavidin T1 were

washed three times with 200 ml SureSelect binding buffer and

resuspended in 200 ml of the binding buffer. After being added to

the bead suspension, the hybridization mixture was incubated for

30 min at room temperature with mixing. The beads were washed

with 500 mL SureSelelct wash buffer #1 for 15 min at room

temperature followed by three times wash with 500 mL SureSelect

buffer #2 for 10 min at 65uC and NDA was eluted with 50 mL
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SureSelect elution buffer for 10 min at room temperature. Fifty

mL of SureSelect neutralization buffer was added to the eluted

DNA. Purification of the reaction product was done with the

AMPure XP bead. Using Herculase II Fusing DNA Polymerase,

the captured library was amplified to add index tags, capillary

electrophoresis then being used to verify the quality of the

amplified libraries.

The 6 libraries, index tagged in equimolar amounts in the pool,

were combined after GPCR using SYBR Green PCR Master Mix.

Cluster generation appeared in the flow cell on the cBot

automated cluster generation system and the flow cell was loaded

on the HISEQ 2000 sequencing system for sequencing with

26101 bp read length.

Whole Exome Sequencing and variant analysis
On average, 5.96 gigabases of raw sequence were generated per

sample to achieve an average of 53.186 coverage of the WES

target regions (51 megabases). The 6 individuals’ raw sequencing

data was screened for common artifacts prior to comparison with

control data sets. SNP variants were selected and filtered

according to the following criteria. Variants were considered to

be common if present in the 1000 Genomes Project East Asian

database. Variants present in 1000 Genomes Project, dbSNP137,

and 126 Korean Population data were filtered out from case

variants. Variants were eliminated if they had minor allele

frequencies (MAF) . = 0.05 from all control datasets used for

comparison. Effect, impact (high or moderate), and loss of function

in WES were established with SnpEff v3.3 h (http://snpeff.

sourceforge.net/).

B37 was used to build the reference genome. For prediction of

variants (variant calling), only reads mapping to a unique position

in the reference genome were used. Variants were identified with

the Genome Analysis Toolkit (GATKv2.7-1) software, taking into

account the single nucleotide polymorphisms obtained from the

Single Nucleotide Polymorphism Database (dbSNP, National

Center for Biotechnology Information) and from the 1000

Genomes project. Annotated, non-synonymous variants found in

affected individuals were compared to variants present in the non-

affected relatives. Variants present in affected individuals but not

in healthy individuals were ranked based on this analysis to

generate a list of candidate genes. The filtering process, which

involved further bioinformatics analysis, is described in Figure 1.

Statistical Analysis
Sequence Kernel Association Test (SKAT) was implemented to

investigate candidate variants. SKAT combines squared single-

variant score statistics, making it robust in its inclusion of neutral

and protective variants and more powerful than pooling tests.

SKAT is a flexible, computationally efficient regression approach

that tests for association between variants in a region (both

common and rare) and a dichotomous (i.e. case-control study) or

continuous phenotype while adjusting for covariates, such as

principle components, to account for population stratification [23].

SKAT, which performs region-based testing, directly conducts

multiple regressions of a phenotype on genotypes for all variants in

the region, adjusting for covariates [24]. SKAT results including

magnitudes and directionality of the associations are based solely

on estimates made from actual data sets. SKAT results were

categorized by p-value.

Gene set enrichment analysis
GSEA (DAVID Bioinformatics Resource 6.7) was performed to

determine the statistical significance of gene sets recovered from

SKAT analysis. DAVID (Database for Annotation, Visualization,

and Integrated discovery) is a web-accessible program that

integrates functional genomic annotations with intuitive graphical

summaries. With the GSEA results, cluster enrichment analysis

was performed to build a protein functional network. We used the

following categories in DAVID: in the ‘‘Gene Ontology’’ section:

‘‘GOTERM BP ALL’’ and ‘‘GOTERM MB ALL;’’ in the

‘‘Protein Domains’’ section, ‘‘INTERPRO and ‘‘SMART.’’ We

used the DAVID v6.7 service to compute functional enrichment

for genetic variants from implant clustering failure patients

(http://david.abcc.ncifcrf.gov/) [25,26]. The genetic variants

from implant clustering failure patients contained 2,022 unique

proteins. DAVID recognized 2,013, which were used in subse-

quent DAVID functional analyses. We used terms with p-value

calculated after Benjamini-Hochberg correction less than 0.05.

Construction of protein functional network
The protein functional network in Figure 2 was built based on

the top 10 cluster with highest enrichment scores. We linked two

functional terms if they shared more than five proteins. Nodes

represent enriched clusters of gene functions in cell morphology

(green), cell adhesion (orange), and regulation of metal ion

concentration (purple). Size of nodes shows the number of genetic

variants in each functional group. Edge thickness is proportional to

number of shared genes. Functional modules were manually

grouped and labeled using Cytoscape 2.8 [27] (www.cytoscape.

org). The labels for each node (i.e., each functional category) in

Figure 2 are further explained in Table S6.

Results

The mean age of the 6 individuals tested for WES was

59.1767.78. A total of 55 implants were placed and 26 implants

explanted from selected individuals (Table S1 in Tables S1).

Quality Control (QC) run on saliva samples obtained from the six

individuals confirmed samples were adequate for WES (Data S1).

An average of 59,053,587 reads and 5,694 megabases were

obtained from the six individual’s WES results. An average of

2,886,696,571 bases was aligned with mean coverage depth of

56.04. All information regarding number of reads, sample

coverage and sequencing depth, as well as the data quality, is

summarized in Table S2 in Tables S1. A total of 93,955 variants

were established; SnpEff, which annotates variants to eliminate

ones not altering protein sequence and predicts effects of each

variant on genes, narrowed variants down to 24,543. The 1000

Genomes East Asian population and Korean randomized

subsamples were also used to filter out common variants by

eliminating those with p-value greater than 0.05 from the two

control groups. 9,243 variants were left after filtering based on the

1000 Genomes East Asian population and 5,056 after Korean

randomized subsample filtering (Table 1).

Variants were translated into genes, with a total of 3,724 gene

transcripts remaining after filtering against the 1000 Genomes

East Asian population and Korean randomized subsamples (Table

S3 in Tables S2). SKAT analysis, which can increase statistical

power when only a small number of cases are available, was

applied to reveal the statistical significance of all genes (Table S4 in

Tables S2). Gene transcripts were categorized by p-value. 2,022

gene transcripts remained after ranking gene transcripts by p-value

(p-value ,0.05). All whole exome sequencing raw data was

submitted to SRA database (SRA, http://trace.ncbi.nlm.nih.gov/

Traces/sra/, accession number SRP041370).

Gene set enrichment analysis (GSEA) was applied to investigate

genetic variants in groups of genes sharing common biological

function, domain, or pathway. We used DAVID (DAVID v6.7) to
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discover enriched functional-related gene groups and corrected the

results using the Benjamini-Hochberg corrected p-value to correct

multiple comparison errors in gene sets that can arise in WES

analysis. DAVID provides a novel way to functionally analyze a

large number of variants in a high-throughput fashion by

classifying them into gene groups based on their annotation term

co-occurrence. 927 gene sets were annotated and 175 gene sets

remained after Benjamini-Hochberg corrected p-value less than

0.05. Multiple domains emerged and a few gene sets were looked

into based on their roles in biological processes (Table S5 in Tables

S2). GSEA detected multiple gene sets related to cell adhesion,

metal ion binding, and cytoskeleton.

Protein functional network was then performed to see how

genes from different domains react with each other in a biological

system and how interactions between genes might affect patho-

genesis of peri-implantitis. To examine the function of genetic

variants from peri-implantitis patients, we searched for signifi-

cantly enriched gene function clusters. Cluster enrichment was

performed for the whole list of genes with mutations and the top

10 enriched clusters were picked for network visualization (Table

S6) (Table 2). Clusters, terms, and genes in the protein functional

network analysis were described using circular shape, nodes, and

lines (Figure 2). As nodes describe terms with p-value after

Benjamini-Hochberg corrected p-value of less than 0.05 and line

expressed number of genes shared by each term, size of nodes

shows the number of genetic variants and the thickness of the link

describes the number of shared genes. Nodes represent enriched

Figure 1. The filtration and prioritization framework used for data analysis.
doi:10.1371/journal.pone.0099360.g001
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clusters of gene functions in cell morphology, cell adhesion, and

regulation of metal ion concentration.

Network analysis showed metal ion binding in the middle of all

clusters and terms, indicating ion binding as a common factor in

genes of cell adhesion and cytoskeleton ontology. Cell adhesion

and cytoskeleton clusters, which affect cell morphology, showed

mutations. In addition, the cytoskeleton cluster is functional in cell

morphogenesis, involving dynein, myosin, actin, and ATPase

activity. Clusters shared multiples genes through the protein

functional network and all clusters showed interactions through

metal ion binding.

We also applied the IntPath pathway integration database [28]

and found that DAVID and IntPath provided equivalent results

(Table S7).

Genes known to be associated with peri-implantitis and

periodontitis were tested for their presence in our case group;

IL-1A, IL-1B, and TNF all appeared in our dataset (Table 3)

(Table S8).

Discussion

With the development of different types of genome sequencing

and associated analytical tools, biomarker discovery has emerged

as a major area of research throughout medicine. In 2009, four

individuals with Freeman-Sheldon syndrome (FSS), a rare

autosomal dominant disorder, were exome-sequenced to prove

that such sequencing could identify causal genetic variants [29]. As

WES is known to sequence thousands of functional genes at a

time, it has become the tool of choice for discovering causative

genetic variants, especially in Mendelian diseases [30]. Although

exome sequencing is often used to investigate Mendelian disorders,

it also expands our knowledge of novel mutations of established

genes linked to a particular disorder such as celiac disease and

helps to uncover the complex interplay between modifier variants

that contributes to a disease phenotype. For these reasons, WES

has been widely used to discover genetic factors related to a range

of diseases in various medical fields, particularly for diseases that

exhibit broad genetic or phenotypic heterogeneity [31–33].

The WES approach held promise for our current research given

the rarity and distinct phenotype of clustering failure in peri-

Figure 2. Analysis of gene function enrichment and construction of functional network. Gene functions significantly enriched in genetic
variants from implant clustering failure patients are visualized as a functional cluster network. Nodes represent enriched clusters of gene functions in
cell morphology (green), cell adhesion (orange), and regulation of metal ion concentration (purple). Size of nodes shows the number of genetic
variants in each functional group. Edge weight is proportional to the number of shared genes. Clusters of functionally related nodes were manually
circled and labeled.
doi:10.1371/journal.pone.0099360.g002

Table 1. Number of genes common to the 6 affected individuals in each filtering step.

Filtering Step Number of Variants Number of Genes

Total Gene Transcripts 93,955 19,919

Impact 24,543 9,651

1000 Genomes Project 9,243 4,677

Korean randomized subsample 5,056* 3,724

*Variants were filtered based on 126 Korean individuals’ alternate allele frequency .0.05
doi:10.1371/journal.pone.0099360.t001
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Table 2. Top 10 clusters ranked by enrichment score from GSEA results.

Cadherin Enrichment Score: 13.69

Term Count % Benjamini

IPR013164:Cadherin, N-terminal 32 1.66 4.40E-13

IPR002126:Cadherin 44 2.29 4.40E-13

IPR015492:Protocadherin gamma 18 0.94 1.17E-12

Cell adhesion Enrichment Score: 12.64

Term Count % Benjamini

GO:0007155,cell adhesion 139 7.23 2.73E-11

GO:0022610,biological adhesion 139 7.23 1.55E-11

GO:0016337,cell-cell adhesion 65 3.38 1.77E-07

EGF Enrichment Score: 5.42

Term Count % Benjamini

IPR013032:EGF-like region, conserved site 67 3.49 1.87E-07

IPR006210:EGF-like 47 2.45 4.10E-05

IPR000742:EGF-like, type 3 43 2.24 4.95E-04

Actin Enrichment Score: 3.59

Term Count % Benjamini

IPR001715:Calponin-like actin-binding 21 1.09 0.00

IPR018159:Spectrin/alpha-actinin 12 0.62 0.01

SM00033:CH 21 1.09 0.02

Metal ion binding Enrichment Score: 3.58

Term Count % Benjamini

GO:0043167,ion binding 513 26.69 5.65E-04

GO:0046872,metal ion binding 500 26.01 7.09E-04

GO:0043169,cation binding 504 26.22 7.26E-04

Laminin/lectin Enrichment Score: 3.40

Term Count % Benjamini

IPR001791:Laminin G 15 0.78 0.01

IPR013320:Concanavalin A-like lectin/glucanase 19 0.99 0.04

SM00282:LamG 15 0.78 0.02

ATPase activity Enrichment Score: 3.17

Term Count % Benjamini

GO:0032559,adenyl ribonucleotide binding 210 10.93 2.81E-04

GO:0030554,adenyl nucleotide binding 217 11.29 6.06E-04

GO:0005524,ATP binding 205 10.67 5.67E-04

Fibronectin Enrichment Score: 2.96

Term Count % Benjamini

IPR003961:Fibronectin, type III 37 1.93 0.02

IPR008957:Fibronectin, type III-like fold 33 1.72 0.09

SM00060:FN3 37 1.93 0.09

Dynein Enrichment Score: 2.69

Term Count % Benjamini

IPR013602:Dynein heavy chain, N-terminal region 2 8 0.42 0.04

IPR004273:Dynein heavy chain 8 0.42 0.04

IPR011704:ATPase associated with various cellular activities 8 0.42 0.04

Myosin Enrichment Score: 2.36
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implantitis. Limitations of the current study include a case

population too small for generalization about the whole Korean

population, linking pathogenesis of peri-implantitis solely to

genetic causalities while peri-implantitis is multi-factorial disease,

and use of saliva samples over blood. The saliva sample collection

method was chosen based on previous studies confirming its

suitability for genetic sequencing and the high percentage of case

recruitment [34,35]. After careful consideration, a WES approach

was chosen for the current study, whose results showed a large set

of variants, necessitating filtering to discover genetic variants

specifically related to peri-implantitis. WES annotations from the 6

individuals in this study revealed a number of variants for further

analysis. Standard methods used to test a disease such as peri-

implantitis for association with a single common genetic variant

are underpowered given the insufficient sample or effect sizes

[36,37]. Hence, the sequence kernel association test (SKAT) was

used to accommodate our sample size and to improve statistical

power.

SKAT results were further subjected to GSEA study via

DAVID and various domains were discovered. The GSEA result

was then compared to those of IntPath for confirmation using

another bioinformatics approach. Adhesion between cells and

implant in the long term involves regulation of aspects of cell

expression such as cell membrane proteins, ECM proteins,

integrins and cytoskeleton proteins, all which work together to

maintain the proper adhesion. The external faces of focal contacts

present specific receptor proteins. Cadherins, which showed

highest association in this study, are a class of type-1 transmem-

brane proteins which play an important role in cell adhesion,

forming adherence junctions to bind cells within tissues together

and also participating in implant-bone adhesion. ECM in

intracellular fluid is another important component for cell

adhesion. Integrins are a major family of cell surface-adhesion

receptors that can mediate cell-cell, cell-matrix, and cell-pathogen

interactions. Most integrins are not intrinsically active and are

often expressed on the cell surface in an inactive state, neither

binding ligands nor signaling. Metal ion Ca2+ plays an important

role in keeping integrins inactive, removal of Ca2+ or addition of

Mn2+ remarkably increasing binding affinity and adhesiveness of

almost all intergrins. Integrin-mediated adhesion and signaling

events are important in normal physiological responses such as

immune response, tissue morphogenesis, wound healing, hemo-

stasis, cell survival, and cell differentiation [38]. Conversely,

dysregulation of integrins is involved in the pathogenesis of many

diseases, including cancer metastasis, auto-immune disease, and

thrombotic vascular diseases. It may be assumed that insufficient

metal ion concentration will cause decreased cell-to-titanium

adhesion during the healing stage of implant, resulting in

inflammatory disease. Also, some integrins are able to bind

several ligands such as laminin and fibronectin [39]. The FN

domain, a major glycoprotein in the extracellular matrix, binds

specifically to titanium implants, which can serve as a ligand for a

dozen members of the integrin receptor family [40]. It was

reported that FN III 7–10 and FN III 9–10 synthetic peptides are

effective in osteoblast adhesion, necessary for successful dental

implant outcome [41]. It was also reported that FN coatings on

titanium implants were advantageous for peri-implant bone

formation [42]. Another high-ranking gene cluster was the

Epidermal Growth Factor (EGF) domain, critical in stimulating

cellular proliferation, differentiation, and survival [43]. Consolaro

et al concluded that EGF in the saliva and in the epithelial cells

stimulates peri-implant epithelial proliferation, thereby triggering

the formation of the peri-implant junctional epithelium [44].

Remarkably, all high ranking domains in the study play a critical

role in adhesion of cells to titanium surface and in the development

of peri-implantitis. In the last ten years, implantology research has

focused on the analysis of peri-implant fluids with the basic aims of

identifying potentially valid biochemical and immunological

Table 3. Known Implantitis Genes Found in All Variants.

Gene Transcript Variant Sample Position Samples Affected Samples Heterozygous

IL6 ENST00000404625 exp1_Idx_2:7:22771039 1 1

IL1B ENST00000416750 exp6_Idx_12:2:113590977 1 1

IL1B ENST00000418817 exp6_Idx_12:2:113590977 1 1

IL1B ENST00000432018 exp6_Idx_12:2:113590977 1 1

IL1B ENST00000263341 exp6_Idx_12:2:113590977 1 1

IL1A ENST00000263339 exp3_Idx_3:2:113537072 1 1

IL6 ENST00000258743 exp1_Idx_2:7:22771039 1 1

IL6 ENST00000407492 exp1_Idx_2:7:22771039 1 1

TNF ENST00000449264 exp5_Idx_11:6:31543574 1 1

IL6 ENST00000401630 exp1_Idx_2:7:22771039 1 1

doi:10.1371/journal.pone.0099360.t003

Table 2. Cont.

Term Count % Benjamini

IPR000048:IQ calmodulin-binding region 23 1.20 0.01

IPR001609:Myosin head, motor region 14 0.73 0.01

SM00242:MYSc 14 0.73 0.02

doi:10.1371/journal.pone.0099360.t002
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markers of inflammatory processes and their levels and/or of

predicting risk for the onset of peri-implant disease. There have

been several genetic studies of the role of cytokines in peri-

implantitis [18]. Cytokines are hormonal regulators or signaling

molecules of host responses to infection, immune responses,

inflammation, and trauma, making them significant in peri-

implantitis, which broadly results from an unregulated host

inflammatory response to antigen bacterial determinants from

dental plaque. Clinical research indicates that monitoring the

dynamics of local cytokine levels during peri-implantitis, together

with research into gene polymorphism for these cytokines and

other genes involved in the inflammatory process, is a valid means

of achieving new methods of diagnosis, prognosis and treatment of

peri-implantis. A recent systematic review on the association

between genetic predisposition and dental implant biological

complications implied that there is no strong association between

specific genetic polymorphism (IL-1, IL-2, IL-6, TNF-a or TGF-

b1) and dental implant failure in terms of biological complications

although there was a potential link between the IL-1 genotype and

peri-implantitis [45]. Genes known to be associated with peri-

implantitis were also tested for our case group but did not show

significant results, suggesting the existence of undiscovered

variants linked with peri-implantitis.

The current study chose six patients with cluster failure to

investigate genetic variants involved with peri-implantitis. Cluster

failure is a technical term used to describe the phenomenon in

which a few individuals have a concentrated risk for multiple

implant failure and subsequently experience multiple losses.

Among individuals sharing relatively similar environmental

factors, cluster failure has low occurrence among the total

population, suggesting its association with genetic factors rather

than behavioral ones such as smoking, stress, or maintenance of

dental implant after surgery [46]. The patients selected for the

current study had severe peri-implantitis leading to implant failure

with the number of occurrences varying among the individuals.

The current study is limited in having selected a case population

with the exclusion of environmental factors known to affect peri-

implantitis. Under similar environmental influence, the distinctive

phenotypes of the six patients with clustering failure were very rare

among implant patients, indicating that such clustering failure was

likely to be caused by individual genetic differences. With these

limitations in mind, a case population with clusterization was

chosen for genetic analysis. WES was thus applied in the current

study to detect pathogenic genes associated with peri-implantitis in

these patients experiencing clustering failure. Following WES and

statistical analysis, a bioinformatics study was conducted to reveal

possible pathogenic genes associated with peri-implantitis. Refer-

encing the work of Zhou and Wong [47], which provides a

thorough description of the well-known functional association

database STRING, which this study initially used for functional

network analysis. As the use of STRING yielded insufficient data,

we built an independent functional network to investigate the

relationships among functions.

Other risk factors linked with peri-implantitis include smoking,

stress, diabetes, osteoporosis, and genetics. Due to the multiple

causalities of peri-implantitis, patient recruitment for the current

study was relatively difficult. As environmental factors such as

smoking behavior can greatly affect the occurrence of peri-

implantitis [48–50], careful consideration was given eliminating

patients with environmental risk factors. Also, a randomized

subsample of 126 Koreans was chosen with exclusion of disease

that could affect peri-implantitis such as diabetes and osteoporosis

though monitoring of other risk factors in this randomized

subsample group was limited. Machalowicz et al indicated that

genetics constituted the most important factor influencing

differences in periodontal disease, based on studies involving

twins. Moreover, that study characterized individuals varying from

one another because of differences in genetic makeup and

environment, as if variances in the population for a given measure

could simply be partitioned into genetic and environmental causes

[51]. This study focused on choosing individuals experiencing

severe peri-implantitis with relatively similar environmental factors

and showing a distinctive phenotype for the sake of genetic

association. The small study population recruitment limits

concrete conclusions. To fully elucidate the effect of environmental

and genetic variances in peri-implantitis, WES results for each case

population could be compared to family members without the

indication of peri-implantitis.

Conclusions

Previous analyses of peri-implant fluids aimed at identifying

potentially valid biochemical and immunological markers of

inflammatory processes have focused on cytokines. However, our

results suggest that various genes and gene sets related to factors

involved in cell adhesion such as cadherin, fibronectin, integrins,

EGF domains, and cytoskeletons play critical roles in the

osseointegration and pathogenesis of peri-implantitis. Interestingly,

these two gene sets are indirectly linked via the metal ion binding

protein. One may conclude that regulatory imbalance in metal ion

concentration elicits dysfunction in cell morphology and cell

adhesion, eventually causing peri-implantitis. The discovery of

metal ions in this protein functional network study implies

dysregulation of integrins, which could affect surface adhesion,

and, subsequently, the occurrence of peri-implantitis. Genetic

diagnosis before implant surgery would highlight those genes

related to peri-implantitis and help clinicians to determine

appropriate treatment. Also, the pathogenesis of peri-implantitis

can be investigated through genetic research similar to the current

study to generate tailored treatment options. Further research with

more cases and controls, along with functional animal studies, may

yield legitimate biomarkers for early diagnosis of peri-implantitis.

Data from this research will be used to develop analytic methods

for small case-only samples.
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