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Spotted wing drosophila (Drosophila suzukii) is an emerging pest that began spreading in 2008 and its distribution now
includes 13 countries across two continents. Countries where it is established have reported significant economic losses of
fresh produce, such as cherries due to this species of fly. At larval stages, it is impossible to identify due to its striking
similarities with other cosmopolitan and harmless drosophilids. Molecular methods allow identification but the current
technique of DNA barcoding is time consuming. We developed and validated a rapid, highly sensitive and specific assay
based on real-time PCR and high resolution melt (HRM) analysis using EvaGreen DNA intercalating dye chemistry.
Performance characteristics of this qualitative assay, validation and applicability in a New Zealand quarantine framework are
discussed. Application of this robust and independently validated assay across the spectrum of key food production and
border protection industries will allow us to reduce the further spread of this damaging species worldwide.
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Introduction

The first step for the effective management of a pest is its
reliable and rapid identification. Rapid identification techniques
are not often available for emerging pests. Such is the case with the
spotted-wing drosophila, Drosophila suzukii (Diptera: Drosophili-
dae). Drosophila suzukii is a pest of major concern across the world,
both in countries where the fly is established and countries where it
is currently not present [1]. It has been placed on the European
and Mediterranean Plant Protection Organisation (EPPO) Alert
List, as it has a “high potential for spread and can cause economic
damage to many fruit crops” [1]. For example, in 2009, US$ 2.6
billion worth of strawberry, blueberry and cherry production was
lost due to damage by D. suzukit in California, Washington and
Oregon alone [2].

Drosoplila  suzukii is considered native to South East Asia,
possibly originating in South China — Northern India region and
spreading across to Japan in the early 1900s [3]. In the 1980s, it
was reported from Hawaii but not considered a pest [4]. It has
expanded its range considerably since 2008, when it was first
misidentified in a Santa Cruz County raspberry field in California,
USA [5]. Around the same time, it was also reported from Spain
[6]. By 2009, it was found across 20 counties in California and had
spread to Oregon, Washington and Florida in the USA and British
Columbia in Canada [5]. From 2010 to 2013 it has continued to
spread across northern America and mainland Europe [7]. It is
not present in Mexico, Italy, France, Switzerland, Slovenia,
Croatia, Austria, Germany, Belgium and the United Kingdom, in
addition to parts of USA, Canada and Spain [1,7-9].
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Climate modelling studies predict that this species will continue
to spread all across the USA and continental Europe, including
even the Scandinavian countries in some scenarios [7,10]. Several
factors suggest that this species has the potential to become a
global problem for fruit production [7]. Unlike most drosophilids,
the females of this species are able to lay eggs in healthy,
unwounded fruits, [11]. High fecundity [3], wide host range [12],
resistance to parasitoids [13], high dispersal potential, aided with
tolerance for a wide range of climatic conditions [14] demonstrates
its pest potential. Several countries outside its current distribution,
such as New Zealand and Australia, recognise D. suzukii as an
unwanted species and impose strict border controls to reduce the
risk of invasion [15,16].

A large proportion of suspected drosophilids in transit or
discovered in orchard surveys are in the larval stages, as their
feeding leads to observable damage to the produce [15]. As
discussed above, it is nearly impossible to identify them accurately,
unless they are reared to adults. This can be a high risk task, as
many facilities around the world may not have the quarantine
security required for rearing pests such as D. suzukii, and failure
rate of rearing from eggs can be very high [17]. Additionally, the
lengthy time component of rearing to identification may be
frustrating when hundreds of thousands to millions of dollars
worth of fresh produce is at stake.

In such circumstances, molecular identification techniques can
provide the solution. Polymerase chain reaction (PCR)-based
methods have been used for several decades now for the
identification of pests and diseases all around the world [18-21].
Techniques such as DNA barcoding, restriction fragment length
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polymorphism and microsatellite analysis allow for the identifica-
tion of otherwise difficult to identify species. DNA barcoding has
been developed for D. suzukit and is currently the only published
molecular technique available for its accurate identification [5].
Several sequences of D. suzukii COI (cytochrome oxidase I) genes
are available in GenBank [22] and BOLD [23] databases. All of
these PCR-based methods are however, open tube-based, ze. they
require post processing of the PCR product, such as gel
electrophoresis analysis or sequencing of the product. Open-tube
methods have an increased chance of contamination. Such
methods may also include multiple post-reaction processing steps,
such as restriction digests, which would require significant
resourcing if hundreds of samples were involved. With the advent
of fluorescence-based real-time PCR [24], these post-reaction
processes are eliminated and the closed-tube approach also
minimises the potential for contamination. It is often more
sensitive and accurate in identifying target organisms compared to
other DNA-based methods [25], and is independent of the life
stage involved.

Drosophila suzukit belongs to the genus Sophophora and forms its
own species subgroup under the melanogaster species group [26].
There are detailed morphological identification keys available for
a wide range of species from this group, and recently, a refined
identification guide for D. suzukii and closely related species was
published [5]. Unfortunately, like most insects, species-level
identification keys are available only for adults and identification
of larvae, pupae and eggs is guesswork at best. There are 15 closely
related species in the D. suzukii subgroup and their interspecies
relationships are yet to be fully resolved [27]. A recent
phylogenetic analysis based on 17 gene regions, established the
long-debated monophyly of the D. suzukii species subgroup [26]. In
this analysis, among other gene regions, COI was able to be used
to differentiate between various species of this subgroup.

In this study, we developed a highly specific and sensitive real-
time PCR approach to accurately identify D. suzukii samples. Real-
time PCR is based on two major chemistries, the fluorescence
probe-based chemistry and the DNA-binding dye-based chemistry
[28]. We selected the DNA-binding dye-based chemistry as it is
simple [29], and requires non-fluorescent oligos that can be
cheaply synthesised. This real-time PCR approach can easily be
coupled with high-resolution melt (HRM) analysis, which can
provide single base-pair differentiation amongst target and non-
target DNA [30]. We used the COI gene as the target, as it is well
characterised for a range of species from the Drosophila melanogaster
group, including sequences available for some species from the D.
suzukit species subgroup. We report here the developed assay and
its performance criteria, such as analytical and diagnostic
specificity, analytical sensitivity, repeatability, reproducibility and
blind panel testing. The validation and application of the assay
within a quarantine framework is discussed.

Experimental Methods

Sample collection and identification

Three main types of drosophilids were examined in this study:
Target species: D. suzukii samples; Non-target closely related
species: D. suzukii species subgroup and sister group species; and
Non-target New Zealand (NZ) drosophilids: native and introduced
drosophilids present in New Zealand. New Zealand does not have
D. suzuki, therefore voucher specimens were sourced from a range
of recognized researchers from reference laboratories across the
United States and continental Europe. The samples had either
been captured in the wild or from laboratory colonies. Some
samples of D. suzuki (from Japan) and of closely related species
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belonging to D. suzukii species subgroup were purchased from the
laboratory colonies maintained by the Drosophila Species Stock
Centre, UC San Diego, USA.

Freshly killed flies were preserved in 1.5 mL tubes with a small
amount of Ethanol (95% - absolute) or RNAlater (Invitrogen,
Carlsbad, CA, USA) for shipment and were kept in their original
preservatives for storage post transit. Non-target NZ species were
either freshly collected by Dr. Simon Hodge (Lincoln University,
New Zealand), or available in the Plant Health and Environment
Laboratory (PHEL) Ethanol collection. Expert identifications of
the flies were sought from sample submitters and identities of the
samples were confirmed by entomologist Dr. Disna Gunawardana
(PHEL). No specific permits were required for sample collections
and sample submitters listed should be contacted for individual
sampling details. No samples were collected in national parks and
collection permits were not required (exception: some samples for
colony rearing by DSSC, which are covered by their respective
permits). No endangered or threatened flies were included in this
study. All flies imported into New Zealand were in accordance to
the Import Health Standard, Section 22 of the Biosecurity Act
1993. Ethics approval was not required as insects are not classified
as animals for the purposes of the Animal Welfare Act, 1999, New
Zealand Legislation.

DNA extraction, PCR amplification and sequencing

DNA was extracted using DNeasy Blood and Tissue kit
(Qiagen, Valencia, CA, USA) as per the manufacturer’s instruc-
tions. Since drosophilids are very small in size, physical disruption
of tissue was performed by finely chopping with sterile scissors. For
some samples, the enzymatic prepGem DNA prep kit (ZyGem
Corporation Ltd., Hamilton, New Zealand) was used to extract
DNA, as per the manufacturer’s instructions. This is a rapid
method of DNA extraction and provides a time advantage,
especially for urgent diagnostic needs. DNA extracts were
quantified on a NanoDrop 3300 spectrophotometer (Thermo
Fisher Scientific Inc., Wilmington, DE, USA).

Molecular identification of all the samples used in the assay
development was also conducted by PCR amplification and
sequencing of the COI gene region. Universal insect COI primer
pair LCO1490 and HCO2198 [31] was used for the amplification
of approximately 700 bp region. Each 20 pL reaction consisted of
1 x Red N’Amp master mix (Sigma-Aldrich Co., St. Louis, MO,
USA), 250 nM of each primer, 0.04 ug/pl. Bovine Serum
Albumin (BSA) (Sigma-Aldrich Co.), 2-5 ng of DNA template
and PCR-grade water. Cycling conditions were: initial denatur-
ation at 94°C for 2 min, 30 cycles of 94°C for 15 sec, 52°C for
30 sec and 72°C for 45 sec, followed by final extension step of
7 min at 72°C. The amplicons were electrophoresed on 1% TAE-
agarose gel stained with SYBR safe, and observed under UV
illumination using the Gel-Doc system (BioRad, Hercules, CA,
USA) and images processed using the Quantity One 1-D analysis
software (BioRad). Successfully amplified products were sequenced
bi-directionally using the amplification primers, by EcoGene
(Auckland, New Zealand). All sequences were edited in Geneious
Pro 5.5.6 (Biomatters Ltd, Auckland, New Zealand). Sequences
were blasted against the GenBank nr database [32] or BOLD [23]
database to confirm morphological identification. These sequences
were used in the assay design. Sequences have been submitted to
GenBank and accession numbers are provided in Table S1.

Assay design and SNP description

Cytochrome oxidase subunit I (COI) gene sequences of
Drosophilidae, especially of the species belonging to the D. suzukii
species subgroup, were obtained from samples described above,
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and downloaded from GenBank and BOLD sequence databases.
A total of 87 sequences were aligned using the in-built Geneious
aligner and the alignment was trimmed to obtain a total of 608 bp
of each sequence aligned. The resultant alignment has been
submitted to DRYAD data repository under the doi: 10.5061/
dryad.h08b.

Drosophila suzuku sequences had a range of mismatches against
the sequences of most other drosophilid species, with the exception
of the congener, D. subpulchrella. Between D. suzuki and D.
subpulchrella there was a difference of only two single nucleotide
polymorphisms (SNPs) along the length of their COI sequences
that could reliably separate the two species. High resolution melt
(HRM) enables differentiation of SNPs, so this approach was
incorporated in the assay design. Primers were designed using the
Primer 3 plugin [33] in Geneious, putting constrains on amplicon
size to <150bp and Tm between 55-65°C, and considering each
SNP separately. The amplicon secondary structure at the primer
annealing temperature was calculated using the mFold web server

[34].

Real-time PCR optimisation

A real-time PCR protocol was setup using D. suzukit positive
control samples as well as several non-target species samples as
negative controls. The designed primer pairs that amplify D.
suzukii were used in a real-time PCR run on a CFX96 Touch
Real-time platform (BioRad, Hercules, CA, USA). Optimisation
gradients of temperature (55-65°C), primer concentration
(50 nM—400 nM) and Mg>" concentration (3 mM-5 mM) were
run to optimise the PCR conditions using the SsoFast EvaGreen
Supermix (BioRad). The assay was also preliminarily tested using
the Accumelt HRM Supermix (Quanta Biosciences, Gaithersburg,
MD, USA) which employs the SYTO9 green fluorescent dye and
Platinum Quantitative PCR SYBR Supermix UDG (Invitrogen),
which employs the SYBR Green I dye. The performance of the
optimised assay on these mastermixes was compared to select the
optimal mastermix.

For each reaction, 96-well clear bottom plates were used and all
samples, standards and controls were run in duplicate wells.
Cycling protocol including the HRM protocol was developed
based on the optimised conditions. All fluorescent data was
acquired to the SYBR channel at the end of each cycle. The
amplification and melt curves were visualised using CFX Manager
software v. 3.0 (BioRad). The difference curves for HRM were

Dsuz1F (3'-5')
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created and analysed using the Precision Melt Analysis software v.

1.2 (BioRad).

Analytical and diagnostic specificity of the Real-time PCR
assay for D. suzukii

We included a total of 65 voucher specimens in this assay of
which 23 were target and the remaining non-target species. The
analytical specificity is the percentage of samples of known identity
of the target species that return a positive outcome in the assay
while the diagnostic specificity is the percentage of non-target
samples of known identity that return a negative outcome in the
assay. All available samples were used to calculate analytical and
diagnostic specificity for the identification of D. suzuki. All the
samples used were identified prior to testing by conventional PCR
and sequencing as described in section 2.2.

Analytical sensitivity evaluation, amplification efficiency,
repeatability and reproducibility of the Real-time PCR

assay for D. suzukii

To evaluate the analytical sensitivity of the Real-time PCR
method, the 714 bp template COI gene region, amplified as
described in section 2.2 was used to prepare plasmid standards of
known copy number. The amplicon was cloned using the TOPO
TA vector Cloning kit (Invitrogen, Carlsbad, CA, USA) as per the
manufacturer’s instructions. Cloning was performed for two
biological samples of D. suzuki, DQ19 (Washington, USA) and
DQ43 (Trentino, Italy) and for each of these samples, two clones
each, containing the correct insert were selected for preparing
standards.

Plasmid DNA was extracted using the Wizard Plus SV
Miniprep (Promega, Madison, WI, USA) and quantified using
MultiSkan GO DNA quantification system using a uDrop* plate
(Thermo Fisher Scientific, Waltham, MA, USA) as per manufac-
turer’s instructions. The plasmid was digested with EcoR I to
linearize it. Copy number was calculated using the following
equation:

amount of dsDNA(ng) x 6.022 x 107
length (bp) x 1 x 102 x 660

copy number =

Dsuz6R (3'-5)

aattgttaccgcacatgce ggaatgctatatctgggtcc
Primer match AATTGTTACCGCACATGC————— GGACCCAGATATAGCATTCC
D. suzukii ... i —m——— e R BRI SR, S8 TR S PR
D.subpulchrella . ......ccooveveee e BiaiCle s o on stisnss sivss 805 808 168 3149
D. lucipennis . ..... BiuToaninsne ACA. ittt
D. biarmipes  ......... T..Civiser——m Rii@Ts s Tinnns os 6556 T
D. mimetica  ......... L BiCT ssmumasions s saampe
D. takahashii ~ ......... R PSrIC v, o coutostoiton wits: ks S1id 3shee st
D. eugracilis  ......... Tommmw s s BoiCThe o Tiaimn ws 508 505 48 @
D. lutescens  ......... Teverenes——— BisiCBoc: 50 w500 0 Gis 5.5 55w
D. melanogaster . .. ... T 00 o T O S
D. simulans  ...... A..T CCAT———— TuiCsiwi s Do s sin sns 6.5 480

Figure 1. Real-time PCR assay for the identification of Drosophila suzukii primer pair alignment with closely related species. There is a
mismatch in the reverse primer target sequence match at the 3’ end and non-target sequence D. subpulchrella (G — A), due to SNP-1. An additional
mismatch was introduced in the reverse primer at third base from the 3’ end (A — C) to further suppress the binding of D. subpulchrella.

doi:10.1371/journal.pone.0098934.9001
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Table 1. Qualitative real time PCR assay for the identification of Drosophila suzukii: Reaction composition and temperature cycling

Reaction composition

Cycling conditions

Component Final concentration Step Temperature Time
SsoFastTM Eva Green Mastermix 1x Initial denature 95°C 2 min
Primer F (Dsuz1F) 300 nm Denature 95°C 10 sec
Primer R (Dsuz6R) 300 nm Anneal 61°C 40 sec x 32 cycles
BSA 0.5 pg/pL Extension* 72°C 20 sec
DNA template 1-20 ng Hold 1 95°C 10 sec
PCR grade water adjust volume to 10 uL Hold 2 70°C 10 sec
Melting profile* 70°C-80°C

ramp speed: 0.2°C for 2 sec

The denature, anneal and extension steps were cycled 32 times.

by an asterisk.
doi:10.1371/journal.pone.0098934.t001

A dilution series of the plasmid from 10’—107" copies was
created using the genomic DNA (Qiagen extraction) of a non-
target fly, Bactrocera invadens.

Analytical sensitivity of the real-time PCR assay was determined
using the dilution series with each concentration in quadruplicate.
A smaller dilution series (107'=107?) of positively identified (by
COlI sequence and morphology) D. suzukii samples were run in
parallel, to reflect a diagnostic situation. The amplification curves
were fitted using the sigmoidal model with baseline correction
using 1-12 cycles with the gpcR package [35] in the R
environment [36]. Standard curves were built using the “calib”
function with a fixed threshold of 200 and with 95% confidence
values plotted. Efficiency was calculated by the gpcR package
using the formula, E=(10—1/slope). This was converted to
percentage efficiency by using the formula, Ey, =(E —1) x 100. Fit
of the slope was recorded as /* and the AIC statistic represented
the fit of the model. Performance indicators such as the linear
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*Fluorescence signal was read in the SYBR channel at the end of each cycle during the cycling phase of the assay, and throughout the melting profile step, as identified

dynamic range and limit of detection were also calculated using
the standard curve data [37].

Repeatability (intrarun variation) and reproducibility (interrun
variation) for the real-time PCR assay were reported by means of
(g standard deviation and percent coefficient of variance (%CV)
within and between runs, as this assay is non-quantitative. For
repeatability we tested four samples (DQ11, DQ19, DQ20 and
DQ23) in triplicate, in two identical runs and calculated the %CV
for individual samples per run. This procedure, including two
separate identical runs was performed at another Ministry for
Primary Industry facility, the Animal Health Laboratory (AHL) to
address repeatability externally. The data from all the runs was
compiled to calculate %CV as a measure of reproducibility.

Assay robustness: testing using old, degraded, low purity

or low copy number samples
Fourteen samples of D. suzukii including single eggs, legs and
dried material were extracted using prepGem DNA extraction kit

-0.1 0.0

-0.2

Difference Raw Fluorescence Units

-0.3

70 71 72 73 74
Temperature (°C)

Figure 2. Species differentiation using the melting profile and high resolution melt analysis. A, Melting profiles of the species amplified
by the D. suzukii assay primer pair Dsuz1F - Dsuz6R. Green = D. suzukii, Red = D. subpulchrella and Blue = D. biarmipes, other species did not
amplify and had flat melt curves. B, Melt curve difference plots comparing Green = D. suzukii and Red = D. subpulchrella melt curves.

doi:10.1371/journal.pone.0098934.g002
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| ~ . . ..
c S 2 (ZyGem Corporation Ltd., Hamilton, New Zealand). Individual
‘% o e eggs were punctured with a sterile fine needle before extraction
£ ;.,', M and dried samples were soaked in the buffer for an extended time
53 § g 2 period (up to 1 hour), before extraction, following the manufac-
£3 gl = 8 turer’s instructions. These samples were analysed using the real-
QE ~ E g time assay developed here to test for robustness and the ability to
5 & . . .
R amplify degraded samples. All samples were run in duplicate wells,
c .. .
2 g and positive and no template controls were included. These
g _ e ) samples were also run using conventional PCR as described in
= % £ e section 2.2 for comparison.
2> < u s
] 5| £ 2
g R E 2 Assay validation: blind panel testing
a o .
< qg- % A total of 23 samples of drosophilids were blinded to the tester
3 & 3 by Dr. Disna Gunawardana (PHEL). These samples constituted a
X = . .
S S o range of species, life stages, and body parts, mostly collected from
ey o v . . . .
q;'s. = 2 £ ® interceptions in routine border or post-border surveys. DNA was
g 3 €| € g extracted and quantified as described in section 2.2, followed by
w =5 > 1] = . . .. .
g% % 5|2 € testing using the developed D. suzuki real-time assay. All samples
Saf B 2 g were tested in duplicate and positive controls, negative controls
f = and no template controls were used. The samples were also tested
[ . . . .
c 2 2 with a TagMan 18S internal control real-time PCR (Applied
© . ~ . .
5 2 g 2 Biosystems, CA, USA), as per manufacturer’s instructions to test
19 = . . . N
52 ol g _*E for false negatives due to lack of DNA amplification. Furthermore,
= 8 Q1 ¢ ¢ the samples were re-randomised, blinded and sent to the Animal
E T Health Laboratory, Wellington for the independent external
2 E validation of the assay. These experiments were essentially a
§_ S simulation of the New Zealand quarantine framework, in which
S é the developed assay was applied.
2 5
o >
=R
g| Sz Results
< gl €35
o =] s Yz
E= 5 S = . . .o . . .
5 S 3 gg Drosophila suzukii assay: Identification via real-time PCR
] ‘o CE . . .
e S| 2es and high resolution melt analysis
[} 2+ T .. -
-% 3| 853 A SNP located at 186 bp position of the alignment (G —A) was
2 K g £ the chosen site for the development of assay primers for D. suzukir.
[ [y . .
S 2| 245 Primer pair, DsuzlF (5'-"AATTGTTACCGCACATGC-3") and
8 § Dsuz6R  (5'-GGAATGCTATATCTGGGTCC-3’), containing
v S the SNP, was selected after @ silico specificity testing against the
e g ag
¢ E g sequence alignment using Geneious (Figure 1). The final
5 < . . .
2 s 5 alignment contained 32 D. suzukii and 8 D. subpulchrella sequences
| 82 g (DRYAD doi: 10.5061/dryad.h08b).
" kS E) ? 5 The assay was developed using EvaGreen DNA binding dye (in
'§ S| x ce SsoFast mastermix formulation). Preliminary testing of Accumelt
& g & 3 i<l and SYBR Supermix for this assay revealed performance inferior
= © . .
= 223 to that of SsoFast mastermix (data not shown). The final reaction
) s . .. . .
s¢ c 2 é mixture and assay conditions are provided in Table 1.
=~ v O . . . .
Ef, <| Eggy The selected primer pair preferentially amplified the target
sd |2 g = 8 g species D. suzukit, while non-target amplification of D. subpulchrella
- S§ 5; 3 was observed on occasion at higher Cg (>26) and once for D.
= (] . . . . .
= §S5% biarmipes after the Cq cut-off of 32 cycles. The primer pair amplified
> E <| E g T8 117 bp of the target sequence and mFold indicated very little
] = v ‘S wn . . . . .
3 2 |2 g E T?),‘ g g folding of this amplicon at 61°C (annealing temperature), with a
M TELEZ3 low AG of 0.55 kcal/mol. The amplicon subjected to high
£L 8 . S :
-§ - = 5 g§ E-g resolution melt was able to distinguish between the two species
ry g :
F qﬁ) 883 g £ 3 based on the melting curve shape and melt peaks. The melt peak
« « S g ‘:E ‘:E = § of the non-target species D. subpulchrella centred at 72.4°C
a P ‘g g8 o9 (£0.2°C), while that of the target species D. suzukii centred at
£5322es
= o s,8s5t 9 73°C (—0.2°C/40.4°C), based on a range of samples assessed over
-— T Vg 3 . .
S g | vEe2% § 10 runs. This range of melt peaks observed for D. suzuki was
v 3 g “;’E £ 52 attributed to the presence of sequence variants from different
2 % g é 2 é E populations, and therefore multiple positive controls, namely
s g § S é’.é 59 HRMI (peak @ 730(])., HRMQ (p.eak @ 72..8°C) and HRM3 (pea.tk
= “ w| = §_<=,: .EJ% ke @ 73.2°C) were used in diagnostic and blind panel assays, to pin

point the sequence variants of D. suzukii. In most cases, the real-
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Figure 3. Efficiency of the real-time PCR assay for the identification of D. suzukii. Plasmid dilution series were used to create calibration
curves for efficiency calculations. Top panel shows the amplification curves, threshold =100 raw fluorescence units (rfu) and coloured lines indicate
the Cq (rfu threshold cycle) values for each of the dilution series replicates. Bottom panel shows the standard curve built from Cq (threshold cycle)
values against the log copy number (range = 10’ —10? copies). The 95% confidence interval of the slope is plotted in red lines and the r#=0.998. The
fit of the slope was also optimised using the Akaike Information Criteria (AIC) and the AIC statistic=9.52.

doi:10.1371/journal.pone.0098934.g003

time component of the SYBR assay would suffice in the
identification of D. suzuku, with the appropriate melt peaks.
However, in the rare scenario that D. subpulchrella is encountered a
comparison of the melt peaks and shape of the difference curves
using high resolution melt curve analysis separates the two species
clearly (Figure 2).

Analytical and diagnostic specificity of the real-time PCR
assay for D. suzukii: the use of HRM to distinguish

between D. suzukii and D. subpulchrella
We were able to source five species belonging to the D. suzuki
species subgroup, namely D. suzukit suzukii (multiple populations

from Japan, Italy and USA), D. lucipennis, D. biarmipes, D. mimetica
and D. subpulchrella (from Japan and China) (Table 2). We also
obtained D. takahashii, D. lutescens and D. eugracilis that belong to
sister groups of D. suzukii species subgroup (Table 2). There are 11
species of Drosophila present in New Zealand, of which we were
able to source samples of nine species, namely D. buscki, D.
ummagrans, D. melanogaster, D. simulans, D. hydei, D. repleta, D. kirki, D.
neozealandica and D. pseudoobscura (Table 2). Altogether we included
65 samples in this assay of which 23 were target and the remaining
non-target species.

SYBR specificity. All the 23 D. suzukii samples and an
additional 7 D. subpulchrella samples amplified within the Cg cut-off

Table 4. Repeatability: percentage coefficient of variation (%CV) for intrarun repeatability experiments.

Sample ID DNA conc. (ng/pL) %CV

Run 1 Run 2 Run 3 Run 4
DQ11 20.03 1 0.66 1.29 0.72
DQ19 21.25 0.25 0.47 0.4 0.38
DQ20 23.83 0.71 0.21 0.94 0.83
DQ23 25.83 0.87 1.81 0.55 0.25

experiments were identical and included the same four samples.
doi:10.1371/journal.pone.0098934.t004

PLOS ONE | www.plosone.org

Three replicates of each sample were used. Two experiments were conducted internally at PHEL (Runs 1 & 2) and two experiments externally at AHL (Runs 3 & 4). All
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Table 5. Reproducibility: percentage coefficient of variation (%CV) for interrun repeatability experiments.

Sample ID Mean Cq Standard deviation % CV
DQ11 20.21 0.28 1.37
DQ19 20.50 0.32 154
DQ20 20.10 0.18 0.91
DQ23 20.08 0.27 1.34

experiments were identical and included the same four samples.
doi:10.1371/journal.pone.0098934.t005

of 32 cycles (Table 3). A single D. biarmipes sample showed
amplification after the (g cut-off. None of the remaining 34 non-
target samples showed amplification.

High resolution melt peak specificity. All the 23 D.
suzukit samples showed melt peaks in the acceptable range of
73.0%0.2°C and were clearly distinguished from D. subpulchrella
(72.4°C=£0.2°C) and the single D. biarmipes melt peak at 75.6°C
(Figure 3a). No other melt peaks were reported.

High resolution melt curve analysis. The melt profiles of
D. suzuku and D. subpulchrella were also compared by using the
“melt study” interface of the Precision Melt Analysis software
(BioRad). This provides automation for the separation of a large
number of samples of D. suzukii and D. subpulchrella. 1t requires a
dataset of melt profiles from known samples of both the species,
and creates species clusters according to melt temperature and
difference plot shape.

Overall, the analytical specificity of the assay including the
HRM component in detecting the D. suzukii samples was 100%
and the diagnostic specificity for the same in resulting negative for
the non-target species was also 100%.

Analytical sensitivity and performance of the real-time
assay for the detection of D. suzukii

PCR amplification efficiency. The slope of the calibration
curve was —3.265 (95% CI=—3.344, —3.181). The PCR
efficiency was calculated at 102.4%, which is within the 95—
105% range generally accepted for an efficient PCR reaction
(Figure 3).

Linear Dynamic Range. The linear dynamic range of the
calibration curve extended from 10°—10% copies of template
DNA. This linear dynamic range covered the interval of realistic
target diagnostic samples, as 107 '=10"% times diluted DNA
extracts were detected within this range. Very low (g variation was
observed at the higher end of target detection (10°—10* copies),
while slightly higher (g variation was observed for the lower end of
target detection (10°—10? copies). The correlation coeflicient, 7,
of the calibration curve was 0.998. The 95% confidence limits of
the linear dynamic range are plotted in Figure 3.

Limit of Detection (LOD). The LOD for the real-time assay
was determined to be 10% copies of target DNA. The calibration
curve shown in Figure 3 as well as other calibration curves run
(n = 3), were each able to detect all the samples (and replicates) at
the 10 copies/uL concentration, therefore giving 100% confi-
dence to the LOD of 10? copies.

Repeatability and reproducibility. Very low %CV was
observed for each of the samples tested within individual runs
suggesting reliable assay repeatability (Table 4). Across runs
conducted at two facilities, very low %CV was reported,
suggesting high assay reproducibility (Table 5).

PLOS ONE | www.plosone.org
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Three replicates of each sample were used. Four experiments, two conducted internally (at PHEL) and two externally (at AHL) were used to calculate %CV. All

Robustness of the real-time PCR assay for D. suzukii:
amplification of degraded/low purity/low copy number
samples

Of the 14 samples tested (comprising of old samples, eggs, legs
and dried material), 13 samples amplified successfully (Cg<<29)
with correct melting peaks (Table S2). The robustness of this assay,
calculated as percentage of correctly identified low quality
samples, was 92.8% (13/14). These samples performed poorly
otherwise with conventional PCR where only a single extract
(sample ID: DN15, 3 legs) weakly amplified, yielding a success rate
of 7%.

Validation of the real-time PCR assay for D. suzukii: Blind
panel

Of the 23 samples of unknown identity, four were accurately
identified as D. suzuki, through successful amplification and
correct melt peak temperature (Table 6). No other samples showed
positive amplification. The test results were independently
matched to the original identities of the samples by Dr Disna
Gunawardana. Independent external validation by the AHL using
the blind panel assay returned identical results.

Discussion

Real-time PCR-based techniques are increasingly being used
for the accurate and rapid identification of pest species throughout
the world. Plant pathogens such as fungi, bacteria and viruses
provide excellent examples of pests routinely identified using real-
time PCR [28,38-40]. Insects form a large and diverse group of
plant pests, but few insects have species-specific real-time PCR
assays. These assays are available for economically significant and
difficult to identify pests such as Thrps palmi [41] and Bactrocera
latifrons [42]. Both these species cause significant damage and are
often intercepted as immature stages making morphological
identification difficult, and in some cases impossible. Similarly,
Drosophila suzukii, which is an emerging pest of high economic
significance, 1s also difficult to identify as a larva. In fact, its first
record from California, United States was originally a misidenti-
fication [5]. This mistake went undiscovered until 2009 when
numerous reports of massive infestations of drosophilid larvae
surfaced from many parts of California [5]. By this time the species
had spread into over 20 counties within California, as well as into
Oregon, Washington, Florida and British Columbia (Canada) [5].
This example highlights the need for an accurate method of
identification of D. suzuku larvae.

In this study, we have developed a novel real-time PCR assay
for the detection and identification of D. suzukii. Using real-time
PCR  eliminates post-PCR processing, reducing the time to
identification by several hours. EvaGreen provides high specificity
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[43], can be transferred to any laboratory, and run cheaply as it
does not require expensive fluorescently labelled probes.

The assay was tested thoroughly  silico during the development
stage and experimentally during the specificity testing stage. We
tested a total of 17 Drosophila species in the specificity testing of this
assay (Table 1). Despite a cross continent procurement effort, some
elusive species from the D. suzukii species subgroup were not
available for testing and their sequences were not available on
GenBank either. Of these, D. pulchrella (China, Japan and India)
and D. oshimai (Japan) are the only species of concern, due to their
distributions overlapping with that of D. suzuku. Additionally, D.
prolongata, D. immacularis and D. tristipennis that are found in India
and Japan may pose an increased risk, if their distribution
increases northward or are transported northward on trade routes.
The remaining species, such as D. apodemata, D. ashburneri, D.
hypomelana, D. plagiata and D. unipunctata, are of limited concern in
influencing the success of this assay as these species are either
obscure, or have very limited or very characteristic distributions,
not overlapping that of D. suzukii. One New Zealand species that
remains untested in any form is D. broun: but it is only remotely
related to D. suzuku.

The amplification by the primer pair although biased towards
the target species, narrows down the identification to a couple of
closely related species. The high resolution melt peaks further
differentiate between D. suzukit and close congener D. subpulchrella
accurately. Drosophila subpulchrella also causes crop damage but due
to its limited distribution in parts of China and Japan [5,44] it is
not considered a pest of concern. It is unlikely to be encountered
via major trade routes such as USA and Europe that have high risk
to transport D. suzuku [5]. Nonetheless, we can easily distinguish
this species from D. suzukii through melting profile differences of
the amplicons produced in this assay. Should D. subpulchrella
become a pest of concern, our assay could be easily used for the
sensitive and accurate identification of this species as well.

The HRM assay performed optimally with 100% diagnostic
and analytical specificity in samples derived from legs of adults,
whole larvae and whole adults (extracted using Qiagen protocol).
Such accuracy is ideal in a diagnostic framework. The assay also
exhibited high efficiency and sensitivity, with the ability to identify
reliably as low as 100 copies of the template DNA. Three
calibration curves with replicates were used to validate the limit of
detection. Furthermore, the low %CV observed within and across
runs conducted at two different testing facilities indicates low intra-
assay and Inter-assay variance. Such consistency is ideal for a
diagnostic assay, with minimal operator, handling and instrument
differences observed between laboratories.

The high sensitivity of this assay means that samples yielding
low copy numbers can also be analysed. Such is often the case
when extracting DNA from intercepted eggs, or the whole
specimen cannot be used. This HRM assay accurately identified
D. suzuki from single or multiple egg samples that could not have
been confidently identified to species level morphologically.
Additionally, D. suzuki was successfully identified from low quality
samples extracted with a crude DNA preparation method. This
crude DNA extraction method (prepGem) is rapid, reducing the
time for the identification by several hours compared to extracting
high quality DNA using the Qiagen protocol. Although 100%
success with degraded samples was not observed, if was markedly
higher than using conventional PCR amplification.

The application of a diagnostic assay within the New Zealand
quarantine framework is characterised by three main tenets: high
specificity, high sensitivity and swift results. This HRM assay fulfils
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cach of these criteria. The final validation, both internally and
independently at an external testing facility (AHL) using a blind
panel, provides further confidence that this assay can be reliably
used in a routine diagnostic framework in New Zealand and
overseas. It is important to note that border-intercepted organisms
were included in the panel to simulate a realistic situation, and it
included a D. suzukii specimen actually intercepted at the New
Zealand border in 2010. It is important to note that this assay is
already being employed at the PHEL quarantine testing facility to
investigate suspect spotted-wing drosophila interceptions.

In conclusion, the novel real-time PCR developed here is
suitable for routine use by diagnostic and research agencies, for
facilitating exports and imports, as well as in aiding border security
agencies worldwide to limit and monitor the spread of this pest.
This assay provides a rapid, accurate and specific alternative to
morphology or barcoding methods of identification for D. suzukit.
Since real-time PCR machines are available in 96-well or 384-well
format, and semi-automated extraction methods are becoming
more available, this method is amenable to high throughput
applications, often necessary during large scale surveys for
delimiting infestation during an incursion. We have fully optimised
this assay for immediate deployment in New Zealand. We suggest
pre-deployment testing in locations outside New Zealand, to
ensure no false positives are detected although they would be
highly unlikely.

Supporting Information

Table S1 Accession numbers of the sequences of the
samples used in the design phase and the specificity-
testing phase of the assay development.

(XLSX)

Table S2 Robustness of the real-time PCR assay for the
detection of D. suzukii. All low quality and low DNA samples
were run in duplicate, therefore mean (g and mean Melt Peak
Temperatures are provided. Positive identifications depend on the
amplification as well as melt peak temperatures, with D. suzukii
melt peaks = 73°C (—0.2/+0.4°C).

(XLSX)
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