
Automated Assessment of b-Cell Area and Density per
Islet and Patient Using TMEM27 and BACE2
Immunofluorescence Staining in Human Pancreatic b-
Cells
Markus P. Rechsteiner1*, Xenofon Floros2, Bernhard O. Boehm3¤, Lorella Marselli4, Piero Marchetti4,

Markus Stoffel5, Holger Moch1, Giatgen A. Spinas6

1 Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland, 2 Department of Computer Science, ETH Zurich, Zurich, Switzerland, 3 Division of

Endocrinology, Diabetes and Metabolism, Ulm University Medical Centre, Ulm, Germany, 4 Department of Clinical and Experimental Medicine – Islet Cell Laboratory,

University of Pisa, Pisa, Italy, 5 Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland, 6 Division of Endocrinology, Diabetes and Clinical Nutrition,

University Hospital Zurich, Zurich, Switzerland

Abstract

In this study we aimed to establish an unbiased automatic quantification pipeline to assess islet specific features such as b-
cell area and density per islet based on immunofluorescence stainings. To determine these parameters, the in vivo protein
expression levels of TMEM27 and BACE2 in pancreatic islets of 32 patients with type 2 diabetes (T2D) and in 28 non-diabetic
individuals (ND) were used as input for the automated pipeline. The output of the automated pipeline was first compared to
a previously developed manual area scoring system which takes into account the intensity of the staining as well as the
percentage of cells which are stained within an islet. The median TMEM27 and BACE2 area scores of all islets investigated
per patient correlated significantly with the manual scoring and with the median area score of insulin. Furthermore, the
median area scores of TMEM27, BACE2 and insulin calculated from all T2D were significantly lower compared to the one of
all ND. TMEM27, BACE2, and insulin area scores correlated as well in each individual tissue specimen. Moreover, islet size
determined by costaining of glucagon and either TMEM27 or BACE2 and b-cell density based either on TMEM27 or BACE2
positive cells correlated significantly. Finally, the TMEM27 area score showed a positive correlation with BMI in ND and an
inverse pattern in T2D. In summary, automated quantification outperforms manual scoring by reducing time and individual
bias. The simultaneous changes of TMEM27, BACE2, and insulin in the majority of the b–cells suggest that these proteins
reflect the total number of functional insulin producing b–cells. Additionally, b–cell subpopulations may be identified which
are positive for TMEM27, BACE2 or insulin only. Thus, the cumulative assessment of all three markers may provide further
information about the real b–cell number per islet.
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Introduction

Assessment of b-cell area and density resulting in actual b-cell

number per islet in human type 2 diabetes is notoriously difficult

and a precise calculation of b-cell mass is only possible if the

weight of the pancreas is known. We have previously shown that

the transmembrane protein 27 (TMEM27) and the b-site amyloid

precursor protein cleaving enzyme (BACE2) are coexpressed in

pancreatic b-cells in mice [1]. Furthermore, pancreatic islets of

mice lacking functional BACE2 have elevated TMEM27 expres-

sion that correlates with an increase in b-cell mass and improved

glucose homeostasis. These results corroborate earlier findings that

revealed a growth promoting and insulin stimulatory activity of

TMEM27 in pancreatic b-cells [2,3]. Recently, b-cell mass was

successfully monitored using fluorescence and radioactively

labeled anti-TMEM27 antibody in mice [4]. Esterhazy et al. also

provided preliminary evidence that TMEM27 and BACE2 are

coexpressed in human islets and that pancreatic tissue sections of

patients with T2D exhibited decreased b-cell area per islet as

compared with ND [1]. In that dataset, TMEM27 and BACE2

expression were heterogenous among islets within the same

individual rendering manual quantification difficult and prone to

sampling errors. Recently, a novel detection algorithm for scoring

immunohistochemically stained sections and extracting islet-

specific features was developed [5]. This algorithm is based on

automatically detecting the nuclei in a tissue section and defining a

cell to be positively stained depending on its stained surrounding

or nuclear staining. However, the analysis of an immunohisto-
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Table 1. Clinical characteristics of study subjects.

Gender (M/F) Age (years) BMI (kg/m‘2) Antidiabetic treatment Source *Location Number of islets pictured

Non-diabetic TMEM27 BACE2 Insulin

M 51 21 no Surgery head 10 10 20

M 56 32 no Surgery head 10 3 13

F 30 28 no Surgery tail 7 10 20

M 54 25 no Surgery head 10 10 20

F 46 31 no Surgery tail 10 10 20

F 49 24 no Surgery head 10 10 20

M 78 29 no Surgery head 8 10 12

M 72 21 no Autopsy body 9 10 20

F 89 25 no Autopsy body 10 10 20

F 81 25 no Autopsy body 11 10 20

F 74 24 no Autopsy body 10 8 20

M 63 28 no Cadaveric donor body 9 10 20

M 78 24 no Cadaveric donor body 8 10 14

M 76 26 no Cadaveric donor body 10 10 20

F 70 29 no Cadaveric donor body 5 3 4

F 62 26 no Cadaveric donor body 5 10 15

F 78 26 no Cadaveric donor body 4 10 10

M 82 28 no Surgery head 10 10 9

F 76 28 no Surgery head 9 10 17

F 55 26 no Surgery body 4 10 15

M 71 24 no Surgery head 10 10 10

M 72 29 no Surgery head 10 10 10

F 57 19 no Surgery body 10 10 10

F 50 23 no Surgery head 10 10 10

F 77 28 no Surgery body 7 10 20

F 61 26 no Surgery body 3 10 18

F 69 29 no Surgery body 6 10 15

M 57 24 no Surgery body 7 5 20

Mean 66 26

SDM 14 3

Type 2 diabetes

F 66 29 Insulin Surgery head 10 5 20

F 62 32 Metformin Surgery body 12 2 13

M 70 35 Diet Surgery head 9 5 20

M 63 31 Metformin Surgery head 9 5 20

M 68 33 Metformin Surgery tail 6 15 20

F 83 23 Diet Autopsy body 10 5 20

M 77 26 Metformin Autopsy body 10 10 15

F 74 23 Metformin Autopsy body 10 10 12

M 61 28 Insulin Cadaveric donor body 11 10 20

M 66 23 Metformin Cadaveric donor body 10 10 20

F 53 30 Metformin Cadaveric donor body 1 9 20

F 54 24 Metformin Cadaveric donor body 10 10 20

F 75 27 Metformin Cadaveric donor body 6 10 14

F 62 30 Insulin Surgery not specified 10 10 20

F 78 34 Diet Surgery not specified 6 6 4

M 79 36 Diet Surgery head 6 1 15

M 60 32 Insulin Surgery head 10 10 10
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chemically stained section allows only the extraction of one stained

layer. Thus, double stainings in immunohistochemistry which

represent proteins in the same cell and same intracellular location

are difficult to interpret. To overcome this issue we adapted the

algorithm developed for scoring immunohistochemically stained

sections for the detection of immunofluorescence stainings [1,5,6].

In the present study, we applied and validated this automated

approach in a large cohort of pancreatic tissue specimens. By

integration of staining intensity and stained area per islet, we were

able to determine the b-cell area which is termed hereafter as ‘area

score’. The TMEM27 and BACE2 area scores were significantly

lower in T2D as compared ND. Furthermore, TMEM27, BACE2

and insulin area scores correlated significantly. Additionally, islet

size and b-cell density per islet based either on TMEM27 or

BACE2 staining correlated significantly.

Materials and Methods

Study design and patients
The dataset comprised tissue specimens of 32 patients with T2D

and of 28 ND, including those reported previously [1]. The tissue

specimens (autopsy, surgery, cadaveric donors) were collected by

the Institute of Surgical Pathology, University Hospital Zurich, the

Department of Clinical and Experimental Medicine – Islet Cell

Laboratory, University of Pisa and the Division of Endocrinology,

Diabetes and Metabolism, Ulm University Medical Centre.

Clinical data are summarized in Table 1. The presence of type

2 diabetes was diagnosed if glycosylated haemoglobin A1c

[HbA1c] was higher than 7%, or fasting plasma glucose [FPG]

higher than 6.9 mmol/l and/or the diagnosis confirmed in the

medical record. Exclusion criteria were specific forms of diabetes,

autolytic pancreatic tissue, evidence of pancreatitis, presence of

lymphomas or insulinomas or treatment with immunosuppressive

drugs.

Ethics Statement
The study was approved by the Cantonal Ethics Committee of

Zurich and waived the need for consent (KEK-ZH-NR: StV 29-

2006).

Immunofluorescence
Antibodies and procedures were the same as described [1].

Primary antibodies used were rabbit anti-mouse TMEM27/

Collectrin4 (used in Figure 1A, upper panel), mouse anti-human

TMEM27 9/28 (Roche, Switzerland; used in Figure 1A, lower

panel), mouse anti-human BACE2 1/9 (Roche, Switzerland),

guinea pig anti-human insulin (Linco Research, USA), and rabbit

anti-human glucagon (Novocastra Laboratories Ltd, UK). Fluo-

rescence pictures were taken with a resolution of 13766103263

pixels and 206magnification. Raw unedited material was used for

the automated analysis pipeline. The stainings were done on serial

cuts of the same tissue block.

Automated immunofluorescence scoring and islet-
specific feature extraction

In this work, the main hypotheses are validated by both a

manual immunofluorescence scoring by a pathologist and an

automated unbiased staining estimator. The automated immuno-

fluorescence scoring attempts to approximate and mimic the

approach followed by a pathologist as described in Esterhazy et al

[1], where the scoring was assessed manually without knowledge of

the clinical diagnosis.

The manual scoring is estimated by a pathologist who takes into

account two factors: the intensity of the staining, as well as the

percentage of cells which are stained within an islet. Those two

Table 1. Cont.

Gender (M/F) Age (years) BMI (kg/m‘2) Antidiabetic treatment Source *Location Number of islets pictured

Non-diabetic TMEM27 BACE2 Insulin

M 45 34 Diet Autopsy head 10 10 12

F 59 33 Metformin Autopsy body 10 10 12

F 74 31 Sulfonylurea Autopsy head 10 10 12

M 59 32 Diet Autopsy body 10 10 12

M 80 29 Metformin Autopsy head 10 10 12

F 54 30 Metformin Autopsy head 10 10 12

F 63 32 N/A Autopsy head 10 10 12

M 58 31 Metformin Autopsy body 10 10 12

M 53 34 Metformin Autopsy body 10 10 12

F 55 33 Metformin Autopsy body 10 10 12

M 51 36 N/A Autopsy head 10 10 12

M 68 28 Sulfonylurea Autopsy head 10 9 12

F 54 29 Metformin Autopsy body 10 10 12

M 56 31 Metformin Autopsy head 10 10 12

M 57 34 Sulfonylurea Autopsy body 10 10 12

Mean 64 30

SDM 10 4

*Pancreatic tissue was obtained from cadaveric organ donors (6 non-diabetic patients/6 type 2 diabetic patients), autopsies (4 non-diabetic patients/18 type 2 diabetic
patients) or from surgically resected pancreatic tissue due to carcinoma of the pancreas of pancreatic duct (19 non-diabetic patients/9 type 2 diabetic patients).
doi:10.1371/journal.pone.0098932.t001

Assessment of b-Cell Area and Density in Human Pancreatic Islets

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e98932



factors are combined in an appropriate way to give a manual

estimator in the range [0,3], with an accuracy of 0.25. The

decision tree which describes this process, is depicted in Figure

S1A. To compensate for ‘‘subjective’’ scoring bias, all images are

presented randomly to the pathologist and the whole procedure is

repeated three times, where in each time the images are shuffled.

Finally, the mean score, over the three repetitions, per islet and

specimen is reported. Representative pictures for the scoring

scheme are shown in Figure S1B.

The automated immunofluorescence scoring approach, pro-

posed in this work, aims at providing an unbiased and objective

staining estimate, which reflects the intuition of the pathologist’s

approach and can be automatically and efficiently computed. The

implemented pipeline which provides the automated estimator, as

well as other islet-specific features, is depicted in Figure S2 and

consists of the following steps: (a) At first, for each image, the

pathologist provides a segmentation of the contained islet. This

segmentation could be also performed automatically following the

framework in [6]. However, this would introduce extra segmen-

tation bias and error, which could potentially affect the hypotheses

testing of the current work. (b) Then, based on the dapi channel

information, the cell nuclei are detected using the approach in [5]

as implemented in the TMarker software [http://comp-path.inf.

ethz.ch/]. (c) A crucial step follows where the parts of the image

considered as stained are separated from the background. To

achieve that, a k-means algorithm, with k = 2, is employed to

cluster the intensity histogram into two groups, namely staining

and background. This approach has the advantage that it does not

require any threshold to be set for every image, while being able to

adaptively remove the background signal and be invariant to

illumination artefacts. (d) Knowing the histogram distribution of

the staining and background signal allows us to classify each pixel

Figure 1. Expression of TMEM27 and BACE2 in pancreatic human islets. Colocalization of insulin and TMEM27 was found in pancreatic b-
cells, whereas no TMEM27 was detected in glucagon positive a-cells (A). BACE2 and insulin are coexpressed in pancreatic b-cells (B).
doi:10.1371/journal.pone.0098932.g001
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into the respective classes of either being positively stained or

belonging into the background. (e) To classify as a- or b-cells, we

look at a patch around each nuclei and count the total number of

stained pixels in the patch for both the 555 and 488 channels.

Using a majority voting scheme on those pixel sums, we can

evaluate if there exists more evidence that the cell can be classified

as a-cells (555 channel) or b-cells (488 channel). (f) The final

automated estimator can be now computed as the total number of

pixels that are classified as stained in the islet (excluding the nuclei

areas) normalized with the area of the islet. Because the automated

estimator needs to be comparable with the manual one, it is

linearly rescaled into the [0,3] interval. Other islet-specific features

can be also evaluated. For example, the b-cell density per islet is

computed as the number of cells classified as positively stained

over background and normalized to the islet area. We included the

MatLab code as Materials and Methods S1.

Immunohistochemistry
For immunohistochemical staining we used the Ventana

Benchmark platform with a standard antigen retrieval program

(pressure cooking). Mouse anti-human insulin (Novocastra Labo-

ratories Ltd, UK) was used in a dilution of 1:80 and UView DAB

anti-polyvalent as secondary antibody for detection. All islets were

manually defined by their morphology. Pictures were taken with a

resolution of 13766103263 pixels and 206magnification. Whole

islet area and percent insulin positive area per islet were calculated

using the software analySIS (Olympus Biosystems GmbH). The

percent insulin positive area was then linearly rescaled into a [0,3]

interval to match the automated and manual scoring area values.

The stainings were done on serial cuts of the same tissue block as

used for immunofluorescence stainings.

Islet selection and picturing
Only islets which showed intact morphology and accurate

staining were analysed. The exact number of islets per patient are

summarized in Table 1. In average, nine islets were pictured for

TMEM (3–12), nine for BACE (1–15), and 15 for insulin (4–20). In

total 1974 (TMEM27 n = 528, BACE2 n = 541, insulin = 905)

islets were pictured. For all pictures, scoring was done manually

with randomly shuffled pictures and automatically. Islet size was

determined three times independently with randomly shuffled

pictures.

Statistical analysis
Differences between means were assessed by unpaired, two-

tailed Student’s t-test with a confidence interval of 95%. Pearson’s

correlation coefficient r2 and according p-values were calculated

two-tailed and with a confidence interval of 95%. Analysis of

covariance (ANCOVA) was applied to fit linear models. p,0.05

was considered significant.

Results

Automated extraction of islet specific features
To assess TMEM27 and BACE2 expression in b-cells tissue

sections were stained with the specific antibody together with

insulin or glucagon staining. As depicted in Figures 1A and B,

TMEM27 and BACE2 specifically costained with insulin as a

marker for b-cells whereas no costaining was found with glucagon

as a marker for a-cells.

In total 1069 (TMEM27 n = 528, BACE2 n = 541) islets stained

with either mouse anti-human TMEM27 9/28 or mouse anti-

human BACE2 1/9 together with rabbit anti-human glucagon

were selected, pictured, and scored for the b-cell positive area per

islet using the scoring system described in Figure S1. Manual

scoring of the immunofluorescence pictures of islets stained for

TMEM27 and BACE2 showed a high heterogeneity among islets

within the same individual which made quantification of

expression difficult.

To provide unbiased quantitation and to increase sensitivity, the

pictures were separated into three layers representative for the

costainings (target 1, target 2, nucleus) and processed using the

automated quantification pipeline. The resulting TMEM27 and

BACE2 area scores were highly variable and comparable to what

was found by manual scoring (Figure S3A-B). Costaining of

TMEM27 or BACE2 together with glucagon allowed us to

determine the islet size which was also very heterogenous (Figure

S3C-D). Furthermore, cells defined as positive by TMEM27 or

BACE2 staining together with the known size of the islets resulted

in the b-cell density per islet (Figure S3E-F). The degree of

variation was similar for all parameters both in type 2 diabetic

patients and non-diabetic individuals, respectively.

No differences were observed in TMEM27 or BACE2 staining

when comparing ND or T2D grouped into autopsy/cadaveric

organ donor vs. surgery. Moreover, stainings did not differ

between different ischemic times, which were available for the

cadaveric donor group. Neither TMEM27 nor BACE2 showed a

different staining pattern or expression level depending on the

location where tissue specimens were taken (pancreatic tail vs.

body vs. head).

Correlation of b-cell area scores, islet size, and b-cell
density

In addition to the immunofluorescence stainings for TMEM27

and BACE2, insulin expression was assessed by immunohisto-

chemistry (IHC) which is nowadays used as gold standard in

pathology to determine the amount of b-cells in human pancreatic

islets. The insulin positive area per islet of 905 islets in total was

determined automatically using the commercial software analySIS

from Olympus and manually using the scoring system described in

Figure S1. The resulting median area scores of all islets per patient

are plotted in Figure 2. We found a highly significant correlation

between automatically and manually scored specimens with

regard to TMEM27 (R2 = 0.48, p,0.001), BACE2 (R2 = 0.13,

p,0.001), and insulin (R2 = 0.59, p,0.001), respectively

(Figure 2A-C).

The median of the automatically assessed area scores of all T2D

revealed significant lower TMEM27 (p,0.001), BACE2 (p,

0.001), and insulin (p,0.01) values as compared to pancreatic

tissue of ND (Figure 2D-F). Combining the three area scores and

taking the mean per patient resulted in the most stringent

separation of ND and T2D (data not shown). Of note, manually

assessed TMEM27 and insulin area scores were also significantly

different between ND and T2D. A lower, albeit not significant,

islet size was observed in T2D as assessed by costaining of

TMEM27/glucagon or BACE2/glucagon and in the b-cell

density assessed by BACE2 staining (Figure 2 G-K).

The median of automatically assessed TMEM27 and BACE2

area scores correlated significantly in each individual patient

(R2 = 0.27, p,0.001, Figure 3A). The insulin area score, which

was assessed by IHC, correlated as well with TMEM27 (R2 = 0.02,

p,0.05) and BACE2 (R2 = 0.16, p,0.01) as depicted in

Figures 3B-C. Costaining of b-cells and a-cells using immunoflu-

orescence revealed a significant correlation between islet size

defined either by TMEM27 (b-cells) and glucagon (a-cells) staining

or by BACE2 (b-cells) and glucagon staining. Moreover, islet size

defined immunohistochemically by insulin staining and by the

morphological separation of endocrine and exocrine tissue

Assessment of b-Cell Area and Density in Human Pancreatic Islets
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Figure 2. Assessment of b-cell area scores, islet size, and b-cell density. Correlation between the median of manually obtained area scores
and the median of automated area scores per patient in the whole cohort (non-diabetic patients and type 2 diabetic patients) for TMEM27 (A), BACE2
(B), and insulin (C). Median area scores of all non-diabetic patients vs. all type 2 diabetic patients for TMEM27 (D), BACE2 (E), and insulin (F). Median
islet size of all non-diabetic patients vs. all type 2 diabetic patients assessed either by TMEM27/glucagon (G), BACE2/glucagon (H), or insulin/
morphology (I). Median b-cell density of all non-diabetic patients vs. all type 2 diabetic patients assessed either by TMEM27 (J) or BACE2 positive cells
(K). Values in Figure D-K were assessed by the automated pipeline.
doi:10.1371/journal.pone.0098932.g002
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correlated as well with the islet sizes described above (R2 = 0.36,

p,0.001; R2 = 0.19, p,0.001; R2 = 0.3, p,0.001; Figure 3D-F).

Furthermore, b-cell density based on either TMEM27 or BACE2

positive cells correlated significantly (R2 = 0.17, p,0.001;

Figure 3G).

Correlation of extracted parameters with body mass
index

TMEM27 and BACE2 expression might be involved in

regulating the b-cell number not only in a disease state like type

2 diabetes but also in other conditions associated with increased

insulin demand such as the metabolic syndrome or obesity. We

therefore related the area scores of TMEM27, BACE2, and insulin

to the BMI.

We found a significant positive correlation between TMEM27

area score and body mass index (BMI) in the ND (R2 = 0.223, p,

0.05; Figure 4A) and a negative correlation in T2D (R2 = 0.04, p,

0.05; Figure 4B). After correlating TMEM27 to BMI of ND and

T2D separately, the resulting slopes were significantly different

(p,0.001, Figure 4C). BACE2 and insulin expression did not

correlate with BMI (Figure 4 D-J). By combining the three values

of the area scores and taking the mean per patient did not result in

a more stringent separation of the two slopes (ND vs. T2D) than

considering TMEM27 area scores alone (data not shown).

Discussion

In the present study using a large and unique dataset of 60

pancreas biopsies, cadaveric organ donors, and autopsy material

Figure 3. Extraction of islet specific features per individual patient. Correlation of TMEM27 and BACE2 (A), TMEM27 and insulin (B), and
BACE2 and insulin area scores per patient (C). Correlation of islet size assessed either by TMEM27, BACE2, and insulin per patient (D-F). Correlation of
b-cell density assessed either by TMEM27 or BACE2 positive cells per patient (G). Values in Figure A-G were assessed by the automated pipeline and
points represent the median values per parameter and patient.
doi:10.1371/journal.pone.0098932.g003
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of T2D patients and ND individuals, we demonstrate that an

automated quantification approach of histopathological sections

stained by immunofluorescence yields reliable and consistent

results, thus saving time of analysis and diminishing subjective

error rates.

Several approaches are currently tested for direct imaging of b-

cells in humans. One of the most promising approaches is the

positron emission tomography (PET). However, PET is very

challenging due to the heterogenous distribution and the small

number of b-cells throughout the pancreas [7]. Another highly

promising method was presented by Brom and co-workers who

traced b-cells in humans by SPECT and could demonstrate, at

least in a rat model, that the results correlated with b-cell mass [8].

Thus, imaging in vivo and determination of b-cells in humans

remains still an unresoved issue. Morphometric analysis on

biopsies represents another way to determine the approximate

number of b-cells. Currently, medical imaging of biopsies for

diagnosis relies mostly on immunohistochemistry (IHC). However,

IHC stainings are hard to quantitate and allow only to extract one

stained layer, making the interpretation of costainings difficult. To

resolve this methodological problem and to improve quantification

of costainings in pancreatic islets, we adapted a recently developed

automated computational pathology scoring system described

previously [5,6]. Contrary to other approaches, we do not directly

employ the intensity values of the image pixels in the final staining

estimator resulting in b-cell area scores and b-cell density. Based

on internal tests we found this approach to be more robust to

staining artifacts and staining variability across the images.

However, it should be noted that the intensity of the staining is

taken indirectly into account in the first step where we classify the

Figure 4. Correlation of TMEM27, BACE2, and insulin area scores to BMI. Automated area scoring of TMEM27 is presented as median of
individual patients and correlated to BMI of non-diabetics (straight line; A) and patients with type 2 diabetes (dotted line; B). The slopes of the fitted
lines were significantly different for the TMEM27 area scores (C). The same is plotted for BACE2 (D-F) and insulin (H-J).
doi:10.1371/journal.pone.0098932.g004
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pixels as stained or not based on their intensity exceeding the

background estimation.

Using our adapted detection algorithm, we were able to validate

our previous findings [1], demonstrating that TMEM27 and

BACE2 are b-cell specific and costain with insulin. Manual and

automated b-cell area scoring correlated significantly for

TMEM27, BACE2, and insulin which was used as gold standard

in this study. Moreover, TMEM27, BACE2, and insulin b-cell

area scores were similar in each individual patient. These findings

underscore the specificity of our automated detection system as the

expression levels of TMEM27 and BACE2 were assessed by

immunofluorescence and insulin by immunohistochemistry. Ad-

ditionally, two different analysing algorithms were used to generate

these results. This highlights the method as a reliable high-

throughput analysis tool for possible routine applications in

diagnostic procedures. It should, however, be noted that in some

patients substantial differences between the area scores of

TMEM27, BACE2, and insulin were observed. We therefore

hypothesize that specific b-cell subpopulations exist, which express

one or the other marker to a different degree. Such a scenario was

indeed proposed by Talchai and co-workers, who identified de-

differentiated b-cells under stress conditions, which lost their

expression of insulin [9,10]. Whether such insulin negative de-

differentiated b-cells still express TMEM27 or BACE2 (and if the

process is reversible) remains elusive. If so, TMEM27 and BACE2

may represent valuable markers to track the real number of

potentially functional b-cells.

The median b-cell area scores of TMEM27, BACE2 and insulin

were significantly decreased in T2D as compared to ND. This

finding is in line with previous publications, where TMEM27

expression in RNA extracts of whole islets was found to be

decreased in diabetic patients compared to non-diabetic individ-

uals [11,12]. Whereas we found islets with no detectable

TMEM27 expression, BACE2 was expressed in every islet above

background staining. The ubiquitous presence of BACE2 in

human islets points to an important role of BACE2 in regulating

TMEM27 and b-cell mass [1]. As opposed to b-cell area scores

median islet size and b-cell density did not differ significantly

between T2D and ND. It is however important to note that all

three extracted islet specific features (b-cell area score, islet size,

and b-cell density) either derived from TMEM27, BACE2 or

insulin positive cells correlated significantly in each individual

patient, which underscores again the robustness of our approach.

An intriguing observation of the present study was that the

TMEM27 area score in islets correlated positively with BMI in

non-diabetic individuals. This finding could be viewed as reflecting

the compensatory increase in b-cells in response to obesity or

insulin resistance. On the other hand, the inverse correlation of

TMEM27 with BMI in T2D might be explained by a higher

metabolic stress in obese people in combination with type 2

diabetes resulting in a progressive loss of b-cell function and

number. The fact that insulin and BACE2 did not correlate with

BMI in our study suggests that TMEM27 might be more strongly

up- or downregulated upon the aforementioned compensatory and

stress conditions. There is ample evidence from mouse and rat

models of obesity and diabetes that b-cell mass increases to

compensate for the additional insulin demand [13,14] and that

TMEM27 and BACE2 might play a role in regulating b-cell mass

in ob/ob and db/db mice and in transgenic mouse models

overexpressing TMEM27 or being BACE2 deficient [1,2]. Albeit

still controversial, evidence is accumulating that also in humans b-

cell number increases under conditions associated with increased

insulin demand such as obesity, pregnancy and insulin resistance,

and decreases in longstanding T2D [14,15,16,17,18,19]. The

present finding that TMEM27 expression correlates with BMI in

pancreatic tissue specimens of non diabetic patients suggest that

higher TMEM27 expression could reflect an increase in b-cell

number in these individuals. However, whether our approach in

determining the b-cell area scores and b-cell density in human

pancreatic islets can be translated into a method to estimate b-cell

mass in vivo in humans remains to be shown.

In conclusion, we established an automated computational

pathology approach, which enabled a reliable and objective

extraction of pancreatic islet-specific features having as only input

histopathological fluorescence images. The simultaneous changes

of TMEM27, BACE2, and insulin in the majority of the b–cells

suggest that these proteins reflect the total number of functional

insulin producing b–cells. Additionally, b–cell subpopulations may

be identified which are positive for TMEM27, BACE2 or insulin

only. Thus, the cumulative assessment of all three markers may

provide further information about the real b–cell number per islet

and patient.

Supporting Information

Figure S1 Area score decision tree and representative
stainings. Decision tree for manual and automated area scoring

for islets stained either by immunofluorescence (TMEM27,

BACE2, glucagon) or immunohistochemistry (insulin) (A). Repre-

sentative stainings of TMEM27 score (0–3) together with

glucagon, BACE2 (score 1–3; no 0 assessed) together with

glucagon, and insulin (score 1–3; no 0 assessed) (B).

(ZIP)

Figure S2 Working steps of automated quantification
pipeline. (a) Manual segmentation of the islet. (b) Detection of

the cell nuclei based on the dapi channel. (c) Separation of stained

area and background. (d) Classification of each pixel into the

respective classes of either being positively stained or belonging

into background. (e) Classification into a- or b-cells by counting

the total number of stained pixels in a patch around the nuclei for

both the 555 and 488 channels. (f) Final computation of the total

number of pixels that are classified as stained in the islet (excluding

the nuclei areas) normalized with the area of the islet.

(ZIP)

Figure S3 Variability of islet specific features. TMEM27

(A) and BACE2 (B) area score variation quantified with the

automated scoring approach. Variation of islet size (C-D) and b-

cell density (E-F) assessed either by TMEM27 or BACE2 positive

cells.

(ZIP)

Materials and Methods S1

(DOC)
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