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Abstract

Microarrays based on gene expression profiles (GEPs) can be tailored specifically for a variety of topics to provide a precise
and efficient means with which to discover hidden information. This study proposes a novel means of employing existing
GEPs to reveal hidden relationships among diseases, genes, and drugs within a rich biomedical database, PubMed. Unlike
the co-occurrence method, which considers only the appearance of keywords, the proposed method also takes into
account negative relationships and non-relationships among keywords, the importance of which has been demonstrated in
previous studies. Three scenarios were conducted to verify the efficacy of the proposed method. In Scenario 1, disease and
drug GEPs (disease: lymphoma cancer, lymph node cancer, and drug: cyclophosphamide) were used to obtain lists of
disease- and drug-related genes. Fifteen hidden connections were identified between the diseases and the drug. In Scenario
2, we adopted different diseases and drug GEPs (disease: AML-ALL dataset and drug: Gefitinib) to obtain lists of important
diseases and drug-related genes. In this case, ten hidden connections were identified. In Scenario 3, we obtained a list of
disease-related genes from the disease-related GEP (liver cancer) and the drug (Capecitabine) on the PharmGKB website,
resulting in twenty-two hidden connections. Experimental results demonstrate the efficacy of the proposed method in
uncovering hidden connections among diseases, genes, and drugs. Following implementation of the weight function in the
proposed method, a large number of the documents obtained in each of the scenarios were judged to be related: 834 of
4028 documents, 789 of 1216 documents, and 1928 of 3791 documents in Scenarios 1, 2, and 3, respectively. The negative-
term filtering scheme also uncovered a large number of negative relationships as well as non-relationships among these
connections: 97 of 834, 38 of 789, and 202 of 1928 in Scenarios 1, 2, and 3, respectively.
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Background

In recent years, a considerable volume of biomedical literature

has been published, covering a range of research topics including

the functional genome, epigenetic modifications, and mRNA and

protein expression profiles. This research outlines the functions,

mechanisms, and behaviors of genes in regular cellular processes.

A considerable quantity of useful data has been obtained;

however, still more information awaits discovery. For example,

one study may identify genes related to colon cancer from a

microarray expression profile while other researchers observe

changes in the gene expression value through a study on drug

response. Thus, the same genes may possess hidden connections

based on the specifics of the disease and drugs in question.

Swanson [1] referred to this situation as undiscovered public

knowledge (UPK) residing in two previously published collections

of complementary literature. UPK can provide useful new

information of scientific interest. Swanson [1,3] combined

information related to target terms (A), intermediate concepts

(B), and other terms (C) from two discrete sources, thereby

providing new directions from which to obtain hidden relation-

ships (A-.B, B-.C = . A-.C).

A variety of methods have been developed for the extraction of

UPK from previously published studies. Spasser [2] applied the

concepts proposed by Swanson in other areas, such as library

informatics. Lamb [4] proposed a systematic method for the

construction of connectivity maps comprising a reference collec-

tion of gene expression data from human cells treated with

bioactive small molecules. However, the gene-expression signature

(one file of up-regulated genes and one file of down-regulated

genes derived from a transcriptional profiling experiment) must be

prepared in advance.

Butte and Kohane [5] used the unified medical language

systems (UMLS) meta thesaurus, Gene Expression Omnibus

(GEO) files, and publically available gene expression profiles to

construct connectivity maps which link biologically significant

terms (phenotypes, diseases, environmental and experimental

conditions) with related genes. They also performed a t-test to

determine the relationship between datasets and concepts, the

values of which were used to identify genes of significance from
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within the gene expression profiles. However, the integration of

data can be difficult when experiments are performed in different

laboratories, processing different samples, on different experimen-

tal platforms [6]. For example, the results obtained using cDNA

microarrays cannot be integrated using GEO files. Furthermore, it

is difficult to judge relationships when two conceptually similar

experiments provide opposing relationships via the expression

profiles.

A set of interactive software and database search strategies

called ARROWSMITH [7] has been developed to reveal

plausible hypotheses-linking findings from across a range of

specialties. This system collects studies from MEDLINE, the titles

of which contain term A, which are stored as File A. In the same

manner, studies are collected with titles containing term C, which

are stored as File C. A list is then compiled from Files A and C

using common term B (words or phrases). A 5000 item stop-list is

then used to filter out uninteresting terms from B before

scrutinizing list B for plausible links between A and C. For each

B term, the system generates AB files with titles containing A and

B terms as well as BC files with titles containing B and C terms.

This tool focuses on titles containing A or C terms, which are

inherently limited with regard to the number of words employed.

In addition, the system only finds co-occurrences of A and B or B

and C in the title. Finally, to generate AB or BC files,

ARROWSMITH employs manual editing in its search for

plausible links between A and C via B terms. This is a novel

approach to discover relationships between clinical conditions and

physiological states through the analysis of MEDLINE document

titles.

Homayouni et al. [8] proposed the use of latent semantic

indexing (LSI), a vector space model capable of automatically

identifying relationships among genes from titles and abstracts

listed as MEDLINE citations. A semantic gene organizer (SGO)

first retrieves LocusLink PMID abstracts from which it extracts

gene-related documents. The SGO then creates terms using a

gene-document matrix followed by singular value decomposition

(SVD) for the creation of a low-rank approximation matrix. A

vector space model is then used by the SGO to identify

relationships among genes or between genes and keywords.

However, when a large number of abstracts have been retrieved,

the gene-document matrix can become unwieldy. Determining

appropriate restrictions to control the size of the dictionary has

proven difficult.

Another common approach to identify the relationships among

biomedical concepts is the co-occurrence method, based on the

theory that if two biomedical concepts occur in the same study,

they might be related.

Frijters et al. [9] proposed a co-occurrence method called

CoPub, which uses multiple genes of humans and mice to generate

lists of keywords from several biomedical databases. These lists link

to MEDLINE abstracts, in which the keywords are highlighted. In

2010, Frijters et al. [10] applied CoPub to produce connectivity

maps by employing A to B and B to C relationships to find hidden

relationships A to C. However, unlike ARROWSMITH, A, B and

C represent biological terms such as diseases, drugs, and biological

processes. Using this approach, a collection of abstracts related to

the biological terms A and B is first obtained, and then a second

collection from B and C is also generated. The relationship

between the two collections is then calculated and a connectivity

map is then produced to display the results. This is a powerful

method of revealing hidden connections. CoPub uses catalog

terms instead of original terms to retrieve related studies; however,

this approach occasionally results in high recall but low precision.

For example, terms such as ‘‘acute lymphoblastic leukemia’’ and

‘‘acute myeloid leukemia’’ are classified using simplified terms,

such as ‘‘leukemia’’, despite the fact that studies related to

Figure 1. Connectivity map of the disease ‘‘lymphoma cancer, lymph node cancer’’ and the drug ‘‘cyclophosphamide,
cytophosphane’’ obtained using the proposed method. The node marked in blue represents the disease node; the nodes marked in
green represent the gene nodes; the node marked in yellow represents the drug node. The thicker the edge is connecting diseases and genes or
drugs and genes, the stronger the relationship. The genes that are obtained using the proposed method are connected to both diseases and drugs.
The genes bounded in a yellow box are the false-positive genes.
doi:10.1371/journal.pone.0098826.g001
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‘‘chronic lymphoblastic leukemia’’ and ‘‘chronic myeloid leuke-

mia’’ are also retrieved. When focusing on genes related to AML

or ALL, studies related to CML and CLL are regarded as false

positives and must be filtered out. In addition, terms such as

‘‘colorectal cancer’’ are often classified within a specific catalog

such as ‘‘colon cancer’’. CoPub deals only with the term ‘‘colon

cancer’’ but not the term ‘‘colorectal cancer’’, which can often

appear in the same studies. As a result, many studies that could be

highly relevant to the input terms (disease names) are often missed.

Furthermore, CoPub deals only with co-occurrences, without any

consideration of the status of the relationship (whether it is a

positive relationship, negative relationship, or non-relationship).

Li et al. [6] proposed a novel algorithm to build disease-specific

drug-protein connectivity maps using molecular interaction

networks and PubMed [11]. Proteins were imported as ‘‘seeds’’

for use in the expansion of a protein network list. The list of

proteins is used to generate queries for the identification of

relevant abstracts as well as a ‘‘drug filtering criteria’’ with which

to identify drugs of interest. After combining the disease-related

proteins and drug list, cluster analysis is used to generate a disease-

specific connectivity map. Unfortunately, this method requires

manual intervention for the selection of proteins to seed the list as

well as specific drug filter criteria.

The above methods were developed to facilitate the discovery of

UPK; however, additional information related to microarray data

remains largely unexplored. Moreover, most of these methods are

unable to adequately deal with negative relationships or non-

relationships among the entities in question. If a relationship

between a particular gene and a disease or drug is reported in an

abstract, but that relationship is in fact negative, the abstract must

be removed from the collection. For example, ‘‘hSP (human

spasmolytic polypeptide), the domain-duplicated homolog of pS2

protein is co-expressed with pS2 in stomach but not in breast

carcinoma’’ details a negative relationship between ‘‘hSP’’ and

‘‘breast carcinoma’’. Many studies [12–14] have pointed out the

importance of effectively dealing with studies that exhibit negative

relationships or non-relationships.

This study employed microarray expression profiles for the

identification of intermediate terms (genes). In the spotted

microarray technique, the genes of interest must be selected first

and corresponding probes are then printed to the glass for the

experiment [15]. For in situ synthesized microarrays, such as

Affymetrix GeneChips [16], microarray chips are produced for the

observation of several topics. In this case, probes are designed

according to pre-selected genes, thereby considerably narrowing

the scope. Microarray expression profiles also provide evidence of

the relationship between genes and various topics of interest. The

main objective of this paper was to use microarray profiles for the

discovery of relationships among diseases, genes, and drugs,

whereupon biomedical literature can be used to confirm the

obtained results. The proposed system is not intended to be a

Figure 2. ROC results of Scenario 1, Scenario 2, and Scenario 3.
The variable ‘‘score’’ is the related score of the study calculated using
the proposed method with the weight function and the negative-term
filtering scheme with zero as the threshold value. Figure 2(a) shows the
ROC results of Scenario 1. The sensitivity and the specificity of Scenario
1 results are 81.98% and 92.21%, respectively. The area under curve
(AUC) in this case is 0.883, and the 95% confidence interval (CI) is
between 0.873 and 0.893. (b) The sensitivity and the specificity of
Scenario 2 results are 92.54% and 83.27%, respectively. AUC in this case
is 0.882, and the 95% CI is between 0.862 and 0.899. (c) The sensitivity
and the specificity of Scenario 3 results are 83.78% and 83.82%,
respectively. AUC in this case is 0.822, and the 95% CI is between 0.809
and 0.834.
doi:10.1371/journal.pone.0098826.g002
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replacement for existing approaches such as CoPub, but to be a

complementary approach to obtaining hidden connections as well

as an effective means of dealing with documents that exhibit

negative relationships or non-relationships.

Results

Three scenarios were used to verify the performance of the

proposed method. Scenario 1: Disease- and drug-related gene lists

are obtained from disease- and drug-related microarray expression

profiles in which the names of diseases and drugs are also adopted.

Scenario 2: Various disease- and drug-related microarray expres-

sion profiles are used to obtain disease- and drug-related gene lists.

Scenario 3: A disease-related gene expression profile is adopted

and drug-related gene files are obtained from the PharmGKB

website [17] (http:/www.pharmgkb.org/index.jsp).

In the event that GEPs are used, then a gene selection method

called the disease oriented gene selection algorithm (DOFA) [18] is

first used to obtain disease- or drug-related gene lists. DOFA

analyses each gene in the GEP. If all expression values of samples

Figure 3. Connectivity map of the disease ‘‘lymphoma cancer, lymph node cancer’’ and the drug ‘‘cyclophosphamide,
cytophosphane’’ obtained from CoPub.
doi:10.1371/journal.pone.0098826.g003

Figure 4. Hidden connections of the disease ‘‘acute lymphoblastic leukemia, acute myeloid leukemia’’ and the drug ‘‘Gefitinib,
Iressa’’ obtained using the proposed method.
doi:10.1371/journal.pone.0098826.g004
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at one gene are close to the mean value of their classes and far

from those of other classes, then this gene is regarded as important.

If the expression values of samples at one gene make it difficult to

distinguish the classes, then this gene is viewed as unimportant. In

this manner, DOFA filters out unimportant genes and then uses a

genetic algorithm (GA) for the selection of genes capable of precise

classification of the samples. These genes are deemed to be related

to the disease or drugs in question. Further details of DOFA are

provided in Algorithm S1. After obtaining gene lists related to the

diseases or drugs in question, synonyms of the gene names in the

lists are obtained from the Genebank. These names and the input

terms (disease or drug names) are then used to fetch abstracts and

titles from PubMed, which are evaluated according to relevance

using a weight function. The abstracts in PubMed are fetched

using a search engine based on the co-occurrence method;

therefore, they do not always display positive relationships. Thus,

the proposed method examines all retrieved abstracts and removes

those that are unrelated or evidence a negative relationship.

Finally, the remaining abstracts are used to identify relationships

indicative of hidden connections among genes, diseases, and drugs.

Figure 5. Connectivity map of the disease ‘‘acute lymphoblastic leukemia, acute myeloid leukemia’’ and the drug ‘‘Gefitinib,
Iressa’’ obtained from CoPub.
doi:10.1371/journal.pone.0098826.g005

Figure 6. Hidden connections of the disease ‘‘liver cancer, hepatic cancer, hepatocellular carcinoma’’ and the drug ‘‘R340,
capecitabine’’ obtained using the proposed method.
doi:10.1371/journal.pone.0098826.g006
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Further details of the proposed method are outlined in the

Methods section, and details of the experiments are presented in

the following. And all related softwares, data, analysis script and

user’s manual can be found in [40].

Scenario 1
DOFA was used for the selection of dominant genes from the

disease- and drug-related GEPs. This scenario included ‘‘lympho-

ma cancer’’ and ‘‘lymph node cancer’’ as the target disease terms

and ‘‘cyclophosphamide’’ and ‘‘cytophosphane’’ as the target drug

terms. The weight function was applied to the disease and drug

terms to evaluate the relevance of the retrieved abstracts. The

lymphoma cancer dataset reported by Shipp et al. [19] was

selected as the disease-related GEP. This dataset contains 77

samples, each of which contains 7129 genes. We also adopted the

drug-related GEP in [19], containing 58 samples, each of which

contains 7129 genes.

DOFA identified 54 genes from the disease-related GEP and 33

genes from the drug-related GEP, which were used to retrieve

related abstracts from the PubMed website. DOFA identified 15

genes with hidden connections between the input disease terms

‘‘lymphoma cancer, lymph node cancer’’ and the input drug terms

‘‘cyclophosphamide, cytophosphane’’, as shown in Fig. 1. The

node marked in blue represents the disease node; the node marked

in green represents the gene nodes; and the node marked in yellow

represents the drug node.

The gene ‘‘TOP1’’ is an intermediate node between the disease

and drug of interest. Kancherla et al. [20] claimed that ‘‘the

authors report Phase I data of topotecan and etoposide

combination for patients with recurrent or refractory non-

Hodgkin lymphoma and correlation of topoisomerase-DNA

complex formation to clinical response’’. In addition, Minagawa

et al. stated, ‘‘In 8 cases whose samples could be obtained before

and after cyclophosphamide (CAP), topoisomerase I (topo I)

activity significantly increased after CAP therapy’’ [21]. These

Figure 7. Hidden connections of the disease ‘‘liver cancer, hepatic cancer, hepatocellular carcinoma’’ and the drug ‘‘R340,
capecitabine’’ obtained from CoPub.
doi:10.1371/journal.pone.0098826.g007

Figure 8. Example abstract exhibiting a negative relationship.
doi:10.1371/journal.pone.0098826.g008
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statements attest to the relationship between the diseases and genes

as well as between the drugs and genes.

In contrast, the gene ‘‘CAST’’ was a false positive because the

term ‘‘cast’’ is a commonly used verb. The gene ‘‘ARID3A’’ was

also a false positive because its alias ‘‘bright’’ is a commonly used

adjective.

A receiver operating characteristic (ROC) curve was used to

evaluate the ability of the proposed method to uncover hidden

connections among previously published studies. All retrieved

abstracts are manually checked for relationships between diseases

and genes or drug and genes to provide a gold standard with

which to evaluate the results obtained after using the weight

function and negative-term filtering scheme. Finally, an ROC

curve is drawn with zero as the threshold value. To draw the ROC

curves, this study used the statistical software, Statistical Product

and Service Solutions (SPSS), which is commonly used for

statistical calculation. Figure 2 (a) presents the ROC results of

Scenario 1, the sensitivity and specificity of which were 80.7% and

93.10%, respectively. The area under the curve (AUC) in this case

was 0.881 with a 95% confidence interval (CI) of between 0.862

and 0.9. Data of three scenarios for drawing three ROC curves are

provided in Data S1 and also available in [40].

We also compared our results with those obtained while using

CoPub. Figure 3 lists CoPub results with the disease node marked

in yellow, the gene node marked in gray, and the drug node

marked in blue. A total of 86 genes were selected by CoPub, none

of which were obtained using the proposed method.

Scenario 2
This scenario included ‘‘acute lymphoblastic leukemia, acute

myeloid leukemia’’ as the target disease terms and ‘‘Gefitinib,

Iressa’’ as the target drug terms. The AML-ALL dataset reported

by Golub et al. [22] was used as the disease-related GEP. This

dataset contains 72 samples, each of which contains 7129 genes.

We employed the drug-related GEP reported by Stegmaier et al.

[23], which includes 12 samples, each containing 22283 genes.

Table 1. Summaries of performances of the negative-term filtering scheme of three scenarios.

Scenario 1 Scenario 2 Scenario 3

Total # of fetched document 4028 1216 3791

# of remained documents after filtering using weight function 834 789 1928

# of related documents among the remained documents (gold standard) 500 657 1335

# of unrelated documents among the remained documents (gold standard) 334 132 593

# of true positive of remained documents judged by the negative-term filtering
scheme

471 606 1272

# of false positive of remained documents judged by the negative-term filtering
scheme

237 94 391

# of true negative of remained documents judged by the negative-term filtering
scheme

97 38 202

# of false negative of remained documents judged by the negative-term filtering
scheme

29 51 63

doi:10.1371/journal.pone.0098826.t001

Table 2. Comparison between only using the weight function and using both the negative-term filtering scheme and the weight
function of three scenarios.

Scenario 1 Scenario 2 Scenario 3

Total # of fetched document 4028 1216 3791

# of related documents among the fetched documents (gold standard) 584 659 1479

# of unrelated documents among the fetched documents (gold standard) 3444 557 2312

# of true positive judged by using only the weight function 500 657 1335

# of false positive judged by using only the weight function 334 132 593

# of true negative judged by using only the weight function 3110 425 1719

# of false negative judged by using only
the weight function

84 2 144

# of true positive judged by the weight function and the negative-term
filtering scheme

471 606 1272

# of false positive judged by the weight function and the negative-term
filtering scheme

237 94 391

# of true negative judged by the weight function and the negative-term
filtering scheme

3207 463 1921

# of false negative judged by the weight function and the negative-term
filtering scheme

113 53 207

doi:10.1371/journal.pone.0098826.t002
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The proposed method identified 61 dominant genes from the

disease-related GEP and 191 genes from the drug-related GEP,

which were then used in a search for abstracts in relation to ‘‘acute

lymphoblastic leukemia, acute myeloid leukemia’’ in PubMed.

In this experiment, we identified 10 genes with hidden

connections between the disease terms ‘‘acute lymphoblastic

leukemia, acute myeloid leukemia’’ and the drug ‘‘Gefitinib,

Iressa’’, as shown in Fig. 4.

Gene CD14 represents an intermediate node between the

disease and the drug. Yu et al. [24] claimed that ‘‘the findings

suggest that CD14-260C/T polymorphism can contribute to B-

ALL risk in a Chinese population’’. In addition, Noh et al. stated

that ‘‘Gefitinib induced the expression of differentiation markers

including CD11b and CD14 in ATO-treated NB4 cells and

facilitated Arsenic trioxide (ATO)-induced morphologic changes

and reactive oxygen species (ROS) generation’’ [25]. These

statements attest to the relationships between the diseases and

genes as well as to that between the drugs and genes.

Figure 5 presents the results obtained by inputting the same

disease and drug terms into CoPub. It should be noted that the

terms ‘‘acute lymphoblastic leukemia, acute myeloid leukemia’’

are classified by CoPub under the catalog term ‘‘leukemia’’. As a

result, the disease node in Fig. 5 is labelled ‘‘leukemia’’. A total of

159 genes were selected by CoPub; however, none of these match

those obtained using the proposed method.

Figure 2 (b) presents the ROC results of Scenario 2 with

sensitivity and specificity of 92.0% and 83.1%, respectively. AUC

in this case was 0.877 with a 95% CI of between 0.856 and 0.899.

Scenario 3
Not every drug has GEP; therefore, this scenario simulated the

situation in which only the disease-related GEP is used to obtain

the list of disease-related dominant genes using DOFA. The drug-

related gene list was compiled from the PharmGKB website,

Figure 9. The abstracts retrieved by Copub.
doi:10.1371/journal.pone.0098826.g009

Figure 10. Concept behind the proposed method. Given names
of target diseases and drugs and the related microarray expression
profile, the proposed method searches the abstracts of genes related to
the diseases and drugs, finds common parts, and provides the user a
visual report.
doi:10.1371/journal.pone.0098826.g010
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which provides a great deal of drug-related and gene-related

information. This scenario used the terms ‘‘liver cancer’’, ‘‘hepatic

cancer’’, and ‘‘hepatocellular carcinoma’’ as the target disease

terms and ‘‘R340’’ and ‘‘capecitabine’’ as the target drug terms.

The dataset provided by Chen et al. [26] was used as the input

GEP. This dataset contains 156 samples, each comprising 3964

genes.

The proposed method identified 65 genes from the GEP and 30

genes from the PharmGKB website, which were used to identify

target drug-related abstracts from the PubMed website. Figure 6

presents the 22 genes with hidden connections among the input

diseases and drugs.

The gene ‘‘thymidine phosphorylase’’ (TYMP) represents an

intermediate node between the disease and the drug. Ezaki et al.

[27] claimed that ‘‘the measurement of thymidine phosphorylase

(TP) activity in normal liver tissue adjacent to hepatocellular

carcinoma (HCC) may predict multicentric recurrence a long time

after an operation.’’ Ko et al. [28] also stated, ‘‘thymidine

phosphorylase (TP) is the rate-limiting enzyme for the activation

of capecitabine (pro-drug of fluorouracil) and a useful predictor of

tumor response to capecitabine-based chemotherapy.’’ Clearly,

the gene ‘‘TYMP’’ represents a hidden connection between the

disease and the drug.

Figure 7 presents the results of inputting the same terms into

CoPub. It should be noted that the term ‘‘liver cancer’’ is classified

by CoPub as a disease term; however, ‘‘hepatocellular carcinoma’’

is classified as ‘‘tissue’’. Hence, in Figure 7, the disease node

labelled ‘‘liver cancer’’ is marked in yellow, ‘‘hepatocellular

carcinoma’’ is marked in blue, and the drug node ‘‘capecitabine’’

is also marked in blue. A total of 28 genes were selected by CoPub,

but only one of these was obtained using the proposed method.

Figure 2 (c) shows the ROC results of Scenario 3 with sensitivity

and specificity of 86.0% and 83.1%, respectively. AUC in this case

was 0.833 with a 95% CI of between 0.819 and 0.848.

Discussion

Uncovering hidden connections among diseases, genes, and

drugs revealed that many of the retrieved abstracts were reported

as negative relationships or non-relationships. For example, the co-

occurrence method retrieved one study [29] pertaining to the

relationship between the gene ‘‘PDCD4’’ and the drug ‘‘cyclo-

phosphamide’’, as shown in Figure 8. Although this study contains

both of these terms, it describes a non-relationship in which the

gene is not directly influenced by the drug.

The three scenarios presented a large number of documents

providing negative relationships or non-relationships. Scenario 1

presented 17 hidden connections before negative-term filtering

and 15 hidden connections after filtering. In Scenario 1, the

proposed algorithm fetched 4028 documents (abstracts and titles).

To evaluate the performance of the negative-term filtering

scheme, we used the proposed weight function to verify whether

these fetched documents were related to the input terms (gene or

disease name), resulting in the retrieval of 834 from the 4028

documents. Then the negative-term filtering scheme removed 126

of these 834 documents. Among the removed documents, 97 were

deemed to be correctly identified as ‘‘negative’’, demonstrating the

high performance of the negative-term filtering scheme. One

example of false positives is presented by documents indicating

relationships between the genes ‘‘PDCD4’’and ‘‘STAT1’’ and the

drug ‘‘cyclophosphamide’’, which were subsequently removed.

Another example involves ‘‘STAT1’’, which recovered an abstract

reporting the following: ‘‘Cs-A and IFN-gamma, but not

glucocorticoids, cyclophosphamide, or azathioprine, inhibited

TGF-beta-induced signaling, as assessed by luciferase reporter

gene assays, and collagen deposition. In contrast, the effects of

IFN-gamma required signal transducer and activator of transcrip-

tion (STAT)-1’’ [30]. Clearly, no direct relationship is indicated

between the drug ‘‘cyclophosphamide’’ and the gene ‘‘STAT1’’.

This abstract implied a non-relationship and was therefore

removed.

In Scenario 2, 11 hidden connections were obtained prior to

negative-term filtering. The weight function removed all but 789

documents of the 1216 documents initially retrieved and negative-

term filtering removed an additional 89 documents. Among these

89 documents, 38 were deemed to be correctly identified. One

example of false positives in Scenario 2 is presented by documents

indicating relationships between the gene ‘‘CCNE2’’ and the drug

‘‘gefitinib.’’ These were judged to evidence a negative relationship

Figure 11. Flowchart of the proposed method.
doi:10.1371/journal.pone.0098826.g011

Figure 12. Flowchart of the negative-term filtering scheme.
doi:10.1371/journal.pone.0098826.g012
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or non-relationship, and thus the connection was removed. For

example, one abstract stated the following: ‘‘combination studies

revealed that the response of EGFSP genes to luteolin was not

affected by gefitinib, even though the two compounds were

additive with respect to their abilities to inhibit CCNA2, CCNE2,

CDC25A and PCNA’’ [31]. Clearly, this does not indicate a direct

relationship between the gene ‘‘CCNE2’’and the drug ‘‘gefitinib’’.

In Scenario 3, 23 hidden connections were identified prior to

negative-term filtering. The weight function removed all but 1928

documents of the 3791 documents initially retrieved and negative-

term filtering removed an additional 265 documents. Among these

265 documents, 202 were deemed to be correctly identified. The

abstracts indicating a relationship between the input terms were

judged as negative relationships or non-relationships by the

negative-term filtering scheme and subsequently removed. For

example, one abstract stated the following: ‘‘Taq1 digestion of

PCR products revealed that both alleles were transcribed in all

samples where both were presented at the genomic level,

indicating that the RRM1 locus is not subjected to imprinting

in Wilms’ tumour or hepatoblastoma’’ [32]. This clearly

indicates that RRM1 is not subject to imprinting in hepatoblas-

toma, a type of liver cancer. The results of the three scenarios are

summarized in Table 1.

The first row presents the total number of retrieved documents;

the second row lists the documents remaining following applica-

tion of the weight function; the third and fourth rows list the

number of related and unrelated documents checked by manual;

and the last four rows list the number of true positives, false

positives, true negatives, and false negatives, respectively. In this

case, a true positive refers to a document correctly judged to be

related by the negative-term filtering scheme. A false positive

represents a document which is deemed to be related by the

negative-term filtering scheme, but is in fact unrelated. A true

negative represents a document which is correctly deemed to be

unrelated by the negative-term filtering scheme. A false negative

represents a document which is judged to be unrelated by the

negative-term filtering scheme but is in fact related.

We compared the performance of the algorithm using the

weight function and the negative-term filtering scheme. Table 1

lists only the references determined by the weight function. The

negative-term filtering scheme was then performed for a second

check to obtain the following results: true positive, false positive,

true negative, and false negative.

Table 2 lists all retrieved references acquired using 1) the weight

function and 2) using both the weight function and negative-term

filtering.

While performing these experiments, one problem was observed

in the calculation of similarity scores among the genes and

biological terms. Although synonymous gene names were obtained

from GeneBank, still others were encountered due to the

idiosyncrasies of individual authors’ writing styles. For example,

a number of authors referred to the gene ‘‘IL8’’ as ‘‘IL-8’’, others

wrote ‘‘IL 8’’, and still others wrote ‘‘(IL) 8’’. To compensate for

this kind of variation, we developed an alias expansion scheme to

accommodate a variety of styles.

Table 3. The policy for combining the nodes used in the negative-term filtering scheme.

Parent node (Positive) Parent node (Negative) Parent node (Neural)

Child node (Positive) Positive Neutral Neutral

Child node (Negative) Neutral Negative Negative

Child node (Neural) Positive Negative Neutral

Child node (Anti-) Negative Positive Neutral

doi:10.1371/journal.pone.0098826.t003

Figure 13. Examples of the negative-term filtering scheme.
doi:10.1371/journal.pone.0098826.g013
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For example, the alias expansion scheme enables the generation

of eleven different styles for the gene ‘‘IL8’’: ‘‘(IL) 8’’, ‘‘IL 8’’,

‘‘(IL)-8’’, ‘‘IL8’’, ‘‘IL-8’’, ‘‘(IL) -8’’, ‘‘(IL)-8’’, ‘‘(IL) _8’’, ‘‘IL-8’’,

‘‘IL_8’’ and ‘‘(IL)_8’’. The details of the alias expansion scheme

are described in Scheme S1.

Nonetheless, there remain a number of situations that the alias

expansion scheme is incapable of resolving. For example, in the

sentence ‘‘we have assigned the most probable six-locus haplotypes

determined by HLA-A, -Cw, -B and -DRB1 highly polymorphic

genes’’, we find a term ‘‘HLA-A’’ before the term ‘‘HLA-B’’, in

which both terms share ‘‘HLA’’; however,‘‘ HLA-B’’ is represent-

Figure 14. Pseudo-code of the alias expansion scheme.
doi:10.1371/journal.pone.0098826.g014
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ed as ‘‘-B’’. This situation can result in an erroneous classification

of the relationship between the gene ‘‘HLA-B’’ and the disease or

the drug. This complication will have to be resolved if the hit rate

is to be improved.

The results obtained using the proposed method differ

considerably from those obtained using CoPub. CoPub uses six

thesauri containing human genes, Gene Ontology biological

processes, liver pathologies, diseases, pathways, and drugs to

search MEDLINE XML files containing the title, abstract and

substances. CoPub stores the context and PubMed identifiers

(PMIDs) of the abstracts in which the keywords are identified and

then computes the strength of the hidden relationship between A

and C using the R-scaled scores between A and B, and between B

and C. An R-scaled score above a set threshold is regarded as

biologically significant. In contrast, the proposed method uses

GEPs manufactured using intermediate nodes (genes) identified by

experts through experimentation.

The proposed method also handles keywords in a different

manner. CoPub uses catalog terms (such as ‘‘Leukemia’’) instead

of the original term ‘‘acute lymphoblastic leukemia’’ as well as the

full name of the gene, symbols, and aliases. The proposed method

uses the original terms (disease or drug names) with the full name

of the gene, symbols, and aliases. Although the search range of

catalog terms appears to be wide, the fact is that some important

information is missing. For example, CoPub uses the catalog term

‘‘colon cancer’’ instead of the original term ‘‘colorectal cancer’’ as

a disease term, leading to a failure on the part of CoPub to include

abstracts containing the input term ‘‘colorectal cancer’’.

In summary, these two approaches differ with regards to the

source of the intermediate nodes as well as the queries.

Consequently, the results also differ. Furthermore, CoPub uses

only co-occurrences without considering the effect of negative

relationships. For example, the abstracts [33–35] retrieved by

Copub indicate a negative relationship or non-relationship

between the gene ‘‘BIRC4’’ and ‘‘gefitinib’’ in Figure 9.

A number of the hidden connections in the connective map

generated by the proposed method are thin, due to the small

number of papers that mention this connection. Nonetheless, these

connections may still possess biological or medical significance. In

Scenario 3, the proposed method identified a hidden connection

between the disease ‘‘hepatocellular carcinoma’’ and the drug

‘‘capecitabine’’, which is an important relationship confirmed in

[36].

Regardless of the method used, only a portion of the hidden

connections can be identified. Both methods are based on studies

performed by experts; however, if the basic relationships between

A and B or between B and C are not established, neither method

can provide very much in the way of helpful information regarding

the hidden connections.

Methods

As illustrated in Fig. 10, the objective behind the proposed

methodology was the discovery of hidden connection between

diseases and drugs. In Fig. 10, the left area provides target disease

names such as ‘‘colon cancer’’ and ‘‘colorectal cancer’’, and the

right part lists drug names such as ‘‘5-fluorouracil’’ and ‘‘5-FU’’. If

one gene is related to a particular disease, then a line is connected

from the disease to the gene. Similarly, if one gene is related to a

drug, then a line is connected from the drug to the gene. Any gene

related to both a disease and drug is considered a hidden

connection between the disease and drug.

Figure 11 presents a flowchart of the proposed method divided

into four stages: feature selection, collection of related information,

relationship filtering, and display of results. Feature selection

(performed by the disease-oriented feature selection algorithm,

abbreviated as DOFA) [18] is used for the selection of disease- or

drug-related gene lists followed by a search for aliases and official

symbols of the related genes from within the GeneBank database

(http://www.ncbi.nlm.nih.gov/sites/entrez?db = gene). These of-

ficial names and alias names are used to generate corresponding

queries comprising Boolean operators with genes, diseases, and

drug names. These queries are used to retrieve abstracts and titles

related to these genes and the specific disease or drug names via a

search on PubMed. The proposed method uses a weight function

to evaluate the retrieved abstracts in order to remove those that

are unrelated. Differences in the writing styles of authors can lead

to discrepancies in the notation of many genes. Differences in

writing style are easily overlooked if only the relationships between

the retrieved abstracts and official names and aliases are

considered. Therefore our proposed method includes an alias

expansion scheme. In the third stage, a negative-term filtering

scheme is used to verify whether the retrieved abstracts present a

positive relationship, negative relationship, or non-relationship.

After obtaining a collection of abstracts with gene/disease links

and gene/drug links, genes occurring in two collections of

abstracts are output as hidden connections. The weight function,

alias expansion scheme, and negative-term filtering scheme are

outlined in the following.

The Weight Function
The abstracts retrieved in any search are not necessarily related

to the disease, gene, or drugs in question. For example, when

searching through documents related to ‘‘chronic myeloid

leukemia (CML)’’, the results may include documents related to

‘‘chronic lymphocytic leukemia (CLL)’’. This makes it necessary to

evaluate the abstracts collected. To calculate the relevance of the

abstract, the specific disease names, and the commonplace terms

(names or aliases of the specific gene) related to the specific disease,

a weight function W(Di,gj ,dx,Ts,St) is used to calculate the related

score among abstract Di, specific name dx, and gene gj, defined as

follows:

W (Di ,gj ,dx,Ts,St)

~

f (gj ,Di)|
P

Ts[Dic,St[D

L Ts,gj ,St

� �
z1

 !

|f (dx,Di)|
P

Ts[Dic,St[D

L Ts,dx,Stð Þz1

 ! if f (gj ,Di)w0 and f (dx,Di)w0

{f (gj ,Di)|
P

Ts[Dic,St[D

L Ts,gj ,St

� �
z1

 !
if f (gj ,Di)w0 and f (dx,Di)~0

{f (dx,Di)|
P

Ts[Dic,St[D

L Ts,dx,Stð Þz1

 ! if f (gj ,Di)~0 and f (dx,Di)w0

{1000000 otherwise

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

where the term frequency function f(t, Di) returns the number of

times the variable t appears in abstract Di. Variable t can be the

name of a gene or its alias, a drug name, or a disease name.

Function L(Ts, t, St) represents the weight of the term t in the

sentence St and is denoted as follows:
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L(Ts,t,St)~
1, Ts and t appear in the same sentence St

0, otherwise

�
:

This function is used to enforce the weight of term t when this

term and a special term Ts of the special biological dictionary Dic

appear in the same sentence St. The special biological dictionary

Dic is a collection of words from ten thousand cancer-related

studies with the common words removed. If there is no special

term Ts in sentence St, but only term t, then L(Ts, t, St) would

return zero. If all L(Ts, t, St) return zero, then the weight functions

would return zero without any special term. Hence, we add one to

the weight function. After obtaining the related score via the

weight function W(Di,gj ,dx,Ts,St), the unrelated literature is

removed from the collection of abstracts. If the related score of a

document calculated using the weight function is greater than

zero, then this document is regarded as related; otherwise, this

document is regarded as unrelated and filtered out. For example,

document D reports the following: ‘‘Two HLA-B mismatches

were also significantly associated with lymphoma in the kidney (HR

2.82, P = 0.009)’’. Sentence St is the same as D, since there is only

one sentence in D. Gene g ‘‘HLA-B’’ appears once in D, hence, the

f(g, D) returns one; for the specific name d ‘‘lymphoma’’, f(d, D)

gives one. Term Ts ‘‘significantly’’ and ‘‘associated’’ appear once

in St. Hence, the weight score of this document can be calculated

as follows:

W (D,g,d,Ts,St)

~f (g,D)|(L(00significantly00,g,St)zL(00associated00,g,St)z1)

|f (d,D)|(L(00significantly00,d,St)zL(00associated00,d,St)z1)

~1|(1z1z1)|1|(1z1z1)

~9

Negative-term Filtering Scheme
The proposed algorithm seeks hidden connections within

medical abstracts, yet abstracts containing negative relationships

or non-relationships may result in false positives. Abstracts

containing negative relationships or non-relationships should be

removed to ensure the validity of the hidden connections between

diseases and drugs.

To remove documents with negative relationships or non-

relationships, we adopted the algorithm proposed for sentiment

analysis in [37]. Figure 12 presents a flowchart of the negative-

term filtering scheme. First, sentences containing input terms, such

as ‘‘lymphoma cancer’’, are parsed into individual words. Each of

these words is then checked for the most plausible POS tag from

the POS tag database and the input terms are combined into a

single term. These combined terms do not necessarily appear in

the POS tag database and may refer to disease terms, drug terms,

or gene names; therefore, a POS tag is assigned to the input term

as ‘‘NN’’. A dependency tree of the sentence is then constructed in

accordance with the algorithm proposed by McDonald et al. [38].

The words in each sentence are treated as vertices with the

potential dependency of each word providing edges. Each edge is

assigned a weight based on the possibility of two words appearing

immediately after, which is used in the construction of graph G,

representing the sentence. Some of the words may be found in

multiple lexical categories (noun, adjective, adverbs); therefore,

this graph is used to create the maximum spanning tree (MST) by

maximizing number of ways that each term could be used in the

sentence. This can be accomplished by determining the probabil-

ity that a given term will appear in other locations, in accordance

with the lexical categories to which it may belong. We then assign

the corresponding polarity of each word in the resulting

dependency tree via the polarity database from the leaf nodes to

the root node. The policy for combining the nodes is included in

Table 3.

In this process, the term ‘‘anti-’’ inverts the polarity of the term

to follow. For example, the two words ‘‘not elicit’’ imply ‘‘anti-’’

and ‘‘positive’’. The combined polarity of these two words is

therefore negative. The proposed algorithm repeats this process of

combination until reaching the root node which contains a single

final polarity. This final polarity represents the polarity of this

sentence with regard to the input term (disease or drug name).

Figure 13 presents two examples of the negative-term filtering

scheme. In Fig. 13 (a), we used the sentence ‘‘CD14 was often

expressed in AML-M’’: CD14 and AML-M are the input terms.

The POS tagging results are ‘‘NN VB RB VBN prep NN’’, where

NN represents a noun, VB represents a verb, RB represents an

adverb, VBN represents the past participle of one verb, and prep

represents preposition. The polarities of all words are then

combined in accordance with the POS tagging results. In Fig. 13

(a), the polarity term is drawn in gray, and the combined polarity

results are underlined. For example, the polarity of ‘‘CD14’’ is

neutral and the polarity of ‘‘was’’ is neutral. When combined,

these two polarity terms output a new polarity ‘‘neutral’’. The

polarity of ‘‘expressed’’ is positive and the polarities of the other

three combined results are all neutral, such that the root node

outputs a final combined result of ‘‘positive’’. Figure 13(b) presents

an example of negative polarity derived from the sentence

‘‘(CAG)nCAA and GGN are not associated with prostate cancer’’.

It should be noted that the two databases used in the negative-

term filtering scheme were constructed in advance. The POS tag

database was constructed using the renowned Brown corpus [39].

The polarity database was manually constructed by defining the

polarities of all words in the POS tagging database. The meaning

of each word was looked up in the dictionary and a group of

experts was assembled to assign polarity to each word according to

its meaning. For example, the word ‘‘better’’, is listed as the

comparative of ‘‘well’’ in the dictionary. Thus, its polarity was

deemed ‘‘positive’’. Any word without a clear polarity was marked

‘‘neutral’’.

(The database can be downloaded in [40]).

The Brown corpus does not contain the terms ‘‘downregulate

(VB)’’, ‘‘downregulated (VBD)’’, ‘‘downregulated (VBN)’’, ‘‘upre-

gulated (VBN)’’, ‘‘upregulated (VBD)’’, and ‘‘upregulate (VB)’’, yet

these terms are important in the extraction of relationships from

documents; therefore, we manually inserted these terms into the

polarity database. These six words also follow the same rule to

assign their polarities of words. In addition, terms that were not

found in the polarity database were automatically assigned a

‘‘neutral’’ polarity.

Although the proposed negative-term filtering scheme is able to

filter out a large number of documents with negative relationships

or non-relationships, there remains considerable room for

improvement through the inclusion of additional negative-terms

and semantic analysis of greater subtlety.

Alias Expansion Scheme
The weight function uses the frequency with which the names of

input genes appear in the retrieved abstracts in order to evaluate
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the relevance of the documents. This necessitated developing the

means to generate a comprehensive list of gene formats to

accommodate variations in the writing styles of authors and

subsequently minimize the possibility of misjudging the weights in

the proposed algorithm. Figure 14 shows the pseudo code of the

alias expansion scheme, which is presented in further detail in

Scheme S1.
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