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Abstract

The analysis of structure and dynamics of biological networks plays a central role in understanding the intrinsic complexity
of biological systems. Biological networks have been considered a suitable formalism to extend evolutionary and
comparative biology. In this paper we present GASOLINE, an algorithm for multiple local network alignment based on
statistical iterative sampling in connection to a greedy strategy. GASOLINE overcomes the limits of current approaches by
producing biologically significant alignments within a feasible running time, even for very large input instances. The
method has been extensively tested on a database of real and synthetic biological networks. A comprehensive comparison
with state-of-the art algorithms clearly shows that GASOLINE yields the best results in terms of both reliability of alignments
and running time on real biological networks and results comparable in terms of quality of alignments on synthetic
networks. GASOLINE has been developed in Java, and is available, along with all the computed alignments, at the following
URL: http://ferrolab.dmi.unict.it/gasoline/gasoline.html.
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Introduction

The structure and the dynamic of biological networks arise from

interactions among molecules within the cell. Biological functions

are obtained by the collaborative action of a number of cellular

constituents, such as proteins, DNA, RNA and other small

molecules [1]. Consequently, reductionism focusing only on the

study of individual molecules and their limited interactions has

shown its inadequacy in providing a comprehensive picture of

living cells. Recently, high-throughput techniques for measuring

protein-protein interactions (PPIs) have been introduced. Two-

hybrid screening [2] and coimmuno-precipitation followed by

mass-spectrometry [3] allowed the systematic study of protein

interactions on a global scale. Extensive mining of scientific

literature produces a variety of known biological interactions [4,5].

Several public and commercial databases, such as BioGRID [6],

DIP [7], STRING [8], MINT [9], Yeast Proteome Database

(YPD) [10] and Pathway Commons [11] collect specific knowledge

in this area. The rapidly growing number and size of biological

networks raises an important question on how can we make use of

this network data to infer novel biological insights. A retrospective

view of the recent history of molecular biology research shows that

most of the attention has been devoted to sequence analysis. This

indeed represents a fundamental level of biological investigation

and for a long time has been the basis of evolutionary studies [12].

Recently, it has been shown that a system oriented approach to the

study of biological phenomena may be more appropriate. In

analogy with multiple sequence alignment, in which relevant

functional parts of a single sequence are highlighted, common

patterns in biological networks of different species provide an

effective means of identifying functional modules (e.g., signaling

pathways or protein complexes) conserved through evolution.

Several research groups have proposed techniques to systemati-

cally analyze and compare biological networks. A typical network

analysis includes (i) network querying [13–17], which is commonly

used to find structural (possibly) approximated motifs and to

establish whether such motifs are functional (over-represented); (ii)

global and local network alignment [18–23], to understand if some

functional complexes are conserved through species to infer

evolutionary relationships among networks. Local network align-

ment approaches based on Hidden Markov Models have been

proposed [24,25]. However, their action has been restricted to the

identification of shared paths.

In this paper, we present GASOLINE (Greedy And Stochastic

algorithm for Optimal Local multiple alignment of Interaction

NEtworks), a novel algorithm for protein networks alignment

based on iterative sampling [26] in connection with a greedy

strategy. GASOLINE is inspired by the work of [27] and

implements a seed-and-extend approach to extract shared

complexes among a set of protein-interaction networks. The

algorithm starts by identifying a set of similar nodes, one from each

network, by using a Gibbs Sampling strategy. Then, a similar
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technique is applied to extend the alignment. This step is iterated

until the local density of the aligned subgraphs, measured through

a properly defined degree ratio, increases. The algorithm iterates the

above steps producing a set of local networks alignments (where

each local alignment consists of a set of similar, in terms of both

sequence and structure similarity, subgraphs). At the end of the

process, each set of local networks alignments is ranked according

to an index called Index of Structural Conservation. We

extensively tested GASOLINE on: (i) a set of 25 biological

networks drawn from STRING [8]; (ii) a set of artificially

generated networks using the NAPABench tool [28].

We compared our system with a selected list of state-of-the-art

methods such as SMETANA [23], IsoRank-N [22] and Network-

Blast-M [19]. The experimental results show that GASOLINE

outperforms the compared systems yielding the best results in

terms of both quality (i.e. precision and recall) and running time.

The method is very general and can be applied to any type of

networks (e.g. social, web, molecular) by using appropriate label

and graph similarities.

Methods

Given N weighted biological networks, where weights are

probabilities expressing the reliability of pairwise protein relations

(i.e. protein interactions in the case of PPI), informally, the local

alignment of biological networks aims at finding a set of N regions

(in our modeling subgraphs having the same number of proteins),

one from each network, that are conserved in their sequence and

interaction pattern.

Such a problem is related to subgraph isomorphism, which is

known to be NP-complete, therefore heuristics are needed.

GASOLINE is able to produce an approximate solution through

a stochastic-greedy strategy consisting of two phases.

During the first step called bootstrap phase, we look for

orthologous proteins across the networks and build a set of seeds.

The set of seeds initially consists of N proteins, one from each

network, and includes all the starting nodes of the suboptimal local

network alignment we are searching for.

The second step, called iterative phase, repeatedly either adds

(extension step) or removes (removal step) nodes in the network

alignment, trying to maximize the final alignment score. Each

extension step adds, in each network, a single node to the

corresponding seed. During the extension step the seeds grow up

producing a set of N subgraphs, one from each network. The

extension process is regulated by a properly defined degree ratio

measuring the average density of the aligned subgraphs with

respect to their neighbors in the networks. The extension is

performed until this degree ratio increases.

Each removal step replaces from the current alignment the set

of proteins (one from each network) providing the minimum score.

The initial phase and each extension step are performed

through an iterative sampling. Consequently, different iterations of

the algorithm may produce different local alignments. GASO-

LINE iterates the above steps producing a set of local networks

alignments. Those local alignments are ranked according to an

Index of Structural Conservation (ISC) score combining topology

and sequence similarity.

GASOLINE implements preprocessing and post-processing

steps. During preprocessing, the search space for potential seeds

is reduced. This is obtained by marking only proteins having

orthologs in all aligning networks and with a significant interaction

degree in each network.

All marked nodes in each network Gi (1ƒiƒN) are added to a

set called Si. These sets will be used in the initial phase and will be

updated at each iteration. Finally, during post-processing, the final

set of local alignments returned by GASOLINE is filtered by

removing highly overlapping complexes. Flowchart in Figure 1

provides a general description of GASOLINE.

The computational complexity analysis assumes that all

networks have the same number n of nodes and each iteration

of the algorithm returns an alignment of subgraphs having size W .

The complexity is given by O(n2NW ). Assuming that Nvvn the

complexity can be rewritten as O(n2W ). The worst case applies

when networks are dense and very similar implying that the

average size W of aligned complexes is O(n). In this case the

algorithm has an execution time O(n3). In the average case we can

assume that the size of aligned complexes is still function of n in

particular W~O(
ffiffiffi
n
p

). Therefore the complexity will be O(n2:5).
The best case applies when W~O(1). In this case the complexity

will be O(n2) (please refer to File S1 for the details on the

complexity analysis). Next section contains a more detailed

description of the algorithm.

Figure 1. General description of GASOLINE.
doi:10.1371/journal.pone.0098750.g001
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The algorithm
Let N be the number of aligning networks. Each iteration of

GASOLINE starts by searching an alignment of nodes (one node

from each network) which can be viewed as the seeds of a

candidate local alignment. Candidate proteins for the initial

alignment are drawn from the sets of marked nodes (S1,S2,:::,SN ),
built in the preprocessing step. Once this step has produced a set of

orthologous proteins, the iterative phase begins. Through this

phase the seeds set is extended producing a list of subgrahps one

from each subgraphs.

At the end of the iterative phase the aligned seeds are removed

from the sets Si (in order to guarantee termination) and the process

starts again from the bootstrap phase with new seeds proteins

chosen in S1,:::,SN .

Bootstrap phase. The search for an initial set of seeds is

performed by a Monte Carlo Markov Chain in connection with a

Gibbs Sampling algorithm. The Gibbs sampling builds a chain,

where each state represents a combination (i.e. alignment) of N
proteins, one from each network. First, a random initial state is

selected. Then, the sampling method iteratively performs a

transition from a state to another, by replacing a randomly

chosen protein of the current alignment with a protein of the same

network, according to a properly defined transition probability

distribution. By iterating this sampling procedure a sufficient

number of times, we eventually achieve a good alignment of seeds.

The transition probability is defined on top of a Similarity Score.

Given two proteins a and b, we define their similarity score S(a,b)
as either their Bit Score or the inverse of their BLAST E-value

[29]. Let Ai~fAi
1,:::,Ai

Ng be the alignment of proteins at the i-th

iteration of Gibbs sampling and suppose we remove the node Ai
k

from it. Let p be a candidate protein replacing Ai
k. The similarity

score of p is defined as the product of all similarity scores between

p and the proteins still belonging to the alignment:

SIM(p)~PN
j~1, j=k S(Ai

j ,p). The transition probability in p is

then computed by using such the similarity scores as follows:

P(pDAi
1, . . . ,Ai

k{1,Ai
kz1, . . . ,Ai

N )~
SIM(p)P

n[Sk
SIM(n)

Finally, the alignment score is defined as the sum-of-pairs of

similarity scores between the aligned proteins:

SCORESEED~
XN

j~1

XN

k~1

S(Ai
j ,A

i
k):

At the end of the bootstrap phase the alignment of seeds

maximizing the sum-of-pairs score over all the iterations of the

Gibbs sampling is chosen.

Extension of current seeds. Let SG~fSG1,SG2,:::,SGNg
be an alignment of N subgraphs, one for each network and Adji
the set of nodes adjacent to one or more nodes in SGi. The goal of

each extension step is to find an alignment A~fA1,A2,:::,ANg of

N proteins where Ai[Adji, and extend each SGj with Aj and the

edges connecting Aj with the remaining nodes in SGj .

Figure 2 shows a demo with two aligning networks. In Figure 2

(a) the current alignment SG~fSG1,SG2g, consisting of two

subgraphs composed by three nodes, is highlighted in green, with

dashed lines connecting aligned proteins. Figure 2 (b) highlights in

red all the nodes in Adj1 and Adj2. In Figure 2 (c) the new

alignment of subgraphs yielded after a single extension step is

shown in green.

Figure 2. A toy example of extension and removal phases of GASOLINE algorithm in a pairwise alignment instance. (a) The nodes of
the two aligned subgraphs are highlighted in green. (b) In red are highlighted those adjacent nodes of current alignment which will be explored by
the sampling algorithm during the next step of iterative phase. (c) At the end ot such iteration the alignment will be extended with a new node in
each network. (d) Once the iterative phase completes, it gives as a result the aligned subgraphs highlighted in green. In (e) the removal step identifies
the cyan nodes as those contributing less to the alignment score. (f) These will be replaced with those capable to increase the alignment score.
doi:10.1371/journal.pone.0098750.g002
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Each extension step is performed through an iterative sampling

similar to the one described above, where a state of the Markov

chain represents an alignment of N nodes, one for each set Adji.
Again, the initial state of the chain is randomly selected. Then, a

series of transitions from a state to another one is made, by

replacing a randomly chosen protein of the current alignment with

a node of the same network in the corresponding adjacent set. The

transition probabilities are computed by considering sequence

similarity in connection with neighborhood similarity.

Let Ai~fAi
1,Ai

2 � � � ,Ai
Ng be the alignment of proteins at the i-th

iteration of Gibbs sampling. Suppose we remove protein Ai
k from Ai

and let p be a protein of the same network candidate to replace it.

The Similarity Score of p takes into account both the orthology

relation and the topological similarity between p and proteins in

Ai
\fAi

kg.
The orthology score of p which takes into account the

sequence similarity, is defined as in the bootstrap phase:

SIMO(p)~P
N

j~1, i=k S(p,Ai
j).

Concerning the topology similarity, we build a vector V , called

topology vector, storing the weights of the edges linking p to the nodes

of SGk. If there is no link between two proteins the weight is set to 0.

Likewise, we build a topology vector for all the proteins in Ai
\fAi

kg.
Given two proteins a and b, and their topology vectors Va and

Vb, the topology similarity score is the scalar product of the two

vectors: TOP(a,b)~ Va,Vb . The topology similarity score of p

is then defined as: SIMT (p)~P
N

j~1,j=k TOP(p,Ai
j). The overall

similarity Score of p can the be computed as:

SIM(p)~SIMO(p)|SIMT (p). By normalizing in the range

½0,1� we obtain the transition probability of p:

P(pDAi
1, . . . ,Ai

k{1,Ai
kz1, . . . ,Ai

N )~
SIM(p)P

n[Adjk
SIM(n)

The alignment score is calculated in terms of orthology and

topology similarity by the sum-of-pair of the pairwise alignments:

SCOREEXTEND(A)~

~
XN

j~1

XN

k~1

S Ai
j ,A

i
k

� �" #
|

XN

j~1

XN

k~1

TOP Ai
j ,A

i
k

� �" #
:

At the end of Gibbs sampling, the alignment with highest sum-

of-pair score is selected for the extension of subgraphs in SG.

The extension of subgraphs mainly depends on a degree ratio of

the alignment which evaluates the local density and the modularity

of aligned subgraphs with respect to their neighborhood. Given an

aligned subgraph SGi, the degree ratio of SGi is the number of

edges linking nodes within SGi over the sum of the degrees of

nodes in SGi. Then, the degree ratio of a subgraph alignment SG

is the average degree ratio of aligned subgraphs in SG. The

extension process is repeated until the following two properties

hold: (i) all mapped proteins are in orthology relation (w.r.t.

BLAST E-values or Bit Scores); (ii) the degree ratio of SG strictly

increases.

Removal step. In the removal step, we discard from the

current alignment a set of mapped proteins which give a minimal

contribution to alignment quality. Such a step tries to refine the

topology of the aligned subgraphs and therefore does not take into

account the sequence similarity. The reason behind this choice is

that during the extension steps the subgraph topology conservation

intrinsically decreases since no backtracking is performed. Such a

step deals with such an issue by making use of a measure called

GOODNESS score.

Let SG be the current subgraph alignment and let W be the

number of proteins in each aligned subgraph. We can represent

SG as a N|W matrix, where each column contains mapped

proteins across all the networks. The goal of this step is to delete

the column minimizing Goodness. We define the GOODNESS of a

generic protein SG½i,j� of alignment SG as the ratio between the

internal degree of SG½i,j�, i.e. the number of links connecting

SG½i,j� to the remaining nodes in the aligned subgraph, and its

node degree. The GOODNESS of column j is the product of the

GOODNESS scores of all its proteins:

GOODNESS(j)~P
N

i~1
GOODNESS(SG½i,j�)

Each removal step deletes from the current alignment the nodes

corresponding to the column with the minimum GOODNESS score.

However, such proteins could be added again to the alignment, in

some future extension steps. In Figure 2 (d)–(e) we report a toy

example of the removal step. Figure 2 (d) consists of the current

local alingment identified through the iterative step; In (e) the

removal step identifies two cyan nodes as those giving a minimal

contribution to the alignment score; In (f) the nodes are replaced

with to different nodes increasing the alignment score.

Figure 3. Phylogenetic trees for the synthetic networks generated using NAPAbench. (a) 2-way alignment, (b) 4-way alignment, (c) 8-way
alignment. Below each leaf node, the number of nodes and the average number of edges across the CG, DMC and DMR families of the corresponding
network are shown in parenthesis.
doi:10.1371/journal.pone.0098750.g003
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Notice that, the topology similarity score between proteins in

the Gibbs sampling algorithm of the extension process is defined in

order to reward structural conservation, edge weights and density

of the aligning subgraphs. So, as long as the extension process

continues, the degree ratio increases. However, it tends to reach

local maxima, so the goal of the refinement phase is to try to shift

from these local maxima, in order to reach a better approximation

of the global maximum.

Final alignments ranking. Once the algorithm completes

the extraction of conserved subgraphs, GASOLINE ranks all the

alignments through a score called Index of Structural Conservation

(ISC) which measures its quality in terms of topology and sequence

similarity. Let SG be the current subgraph alignment and let W be

the number of nodes in each aligned subnetwork. SG can be

represented as a matrix with N rows and W columns, where the i-

th row stores proteins of the aligned subgraph SGi. The structural

similarity score between two aligned subgraphs, P and Q (i.e. two

rows of the above matrix), measures the similarity between the

topology vectors of the corresponding proteins in the current

mapping. Let x and y be two nodes and Vx and Vy their topology

vectors. CINTERACTIONS(x,y) denotes the percentage of entries in

Vx and Vy that are either both null or both different from zero

(consisting of conserved links in both species):

CINTERACTIONS(x,y)~

~
Df1ƒiƒW : (Vx½i�=0 ^ Vy½i�=0) _ (Vx½i�~0 ^ Vy½i�~0)gD

W{1

The pairwise structural similarity score PAIRSIM between P and

Q is given by:

PAIRSIM(P,Q)~
XW
i~1

CINTERACTIONS(P½i�,Q½i�)

where P½i� and Q½i� are the matched nodes in P and Q

respectively. The structural similarity score of alignment A,

Figure 4. The Specificity (SPE) and Number of correct nodes (CN). SPE (a) and CN (b) for various level of bias between the similarity score
distribution for orthologs and the similarity score distribution for non-orthologs.
doi:10.1371/journal.pone.0098750.g004

Figure 5. Running times of GASOLINE and SMETANA for different number of nodes (Na) of the ancestor network.
doi:10.1371/journal.pone.0098750.g005
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STRUCTSIM(A), can be defined as the sum-of-pair of all pairwise

structural similarity scores:

STRUCTSIM(A)~
XN

i~1

XN

j~1

PAIRSIM Ai,Aj

� �

According to this definition the maximum value is

N|W , achieved by N perfectly aligned cliques. Finally, the ISC
of an alignment A can be defined as the normalization of

STRUCTSIM(A) in the ½0,1� interval:

ISC(A)~
STRUCTSIM(A)

N|W

Postprocessing. The final set of local alignments returned by

GASOLINE is post-processed to filter out highly overlapping

complexes. Alignments are sorted according to their size and ISC

score. Let SGj~fSG
j
1,SG

j
2,:::,SG

j
Ng the local alignment of rank i

in the sorted list. For each subnetwork SG
j
k of the alignment SGj ,

Perc(SG
j
k) denotes the percentage of proteins in SGi

k observed in

the previous i{1 alignments. Let Perc(SGj) the average value of

Perc(SG
j
k) across all the networks. If Perc(SGj) is above a given

threshold the alignment is discarded.

Results and Discussion

We performed a set of experiments on synthetic and real

biological networks to asses the performance of GASOLINE. All

tests have been performed in a Intel Core i7-2670 2.2Ghz CPU

with a RAM of 8 GB.

Data Description and Experimental Setup
Synthetic Biological networks were generated using NAPA-

bench [28], a large-scale network alignment benchmark for

generating families of evolutionary related synthetic PPI networks,

evolved from a common ancestor, according to a given

phylogenetic tree. It has been recently used as a framework to

compare the accuracy and the scalability of different alignment

algorithms [23,28].

Real Biological networks were taken from STRING (version

9.0) [8], a database of known and predicted PPIs, collected from

different high-throughput experiments, coexpression data and

publications. For every examined species, we filtered the set of

interactions, considering only experimentally supported interac-

tions (i.e. those with positive values on ‘‘Experimental’’ field). We

point out that this kind of protein interactions can also result from

experimental knowledge transferred from one species to another.

Three different case studies have been examined:

1. Pairwise and multiple alignments of synthetic networks;

2. 6-way alignment of real PPI eukaryotic networks;

3. 25-way alignment of real PPI vertebrata networks.

In case studies a) and b) we compared our method against three

different global and local multiple network alignment algorithms:

SMETANA [23], IsoRankN [22] and NetworkBLAST-M [19].

To our knowledge, the first two methods are the best global many-

to-many aligners of two or more species, while NetworkBlast-M

represents the state-of-the-art for the local alignment problem. We

chose both global and local alignment methods in order to (i)

highlight the ability of GASOLINE to correctly map many

proteins of different species as a good global aligner does; (ii) find

many conserved complexes as a good local aligner does. In our

experiments we ran IsoRankN with a = 0.7 and K~10 and we

used the restricted-order version of NetworkBLAST-M for

computational reasons. To compute similarities between proteins,

we used Blast bit scores for GASOLINE, SMETANA and

IsoRankN, and Blast E-values for NetworkBLAST-M.

We used several measures to evaluate the specificity, the

sensitivity and the functional consistency of the alignment

algorithms, both for synthetic and for real biological networks,

following the methodology described in [28]. We also tested the

robustness of the analyzed methods in case of low sequence

similarity between homologous proteins and the scalability with

respect to the number and the size of aligned networks.

In case study c) we tested the ability of GASOLINE to find

highly conserved complexes across many species in reasonable

time. Starting from the information about orthologous groups

(COG, KOG and NOG) obtained from the STRING database,

we computed the Jaccard similarity coefficient [30] between the

sets of two proteins’ orthology groups. That is defined as the

number of common groups divided by the cardinality of the union

of the two sets.

The algorithm needs a few parameters to be set out:

N IterSeed: number of iterations of Gibbs sampling in the

bootstrap phase;

N IterExtend : number of iterations of Gibbs sampling in the

extension step;

N IterPhase: number of iterations of each iterative phase;

N s: threshold value for the degree of candidate seed nodes;

N Overlap: threshold value for overlap percentage;

N Minimumcomplexsize (MCS): minimum number of proteins

of a conserved complex;

Table 5. Features of 6 biolocial eukaryotic networks obtained from STRING.

SPECIES # PROTEINS # PPIs

Caenorhabditis elengans 6173 26184

Drosophila melanogaster 8624 39466

Homo sapiens 12575 86890

Mus musculus 9781 52161

Rattus norvegicus 8763 39932

Saccharomyces cerevisiae 6136 166229

doi:10.1371/journal.pone.0098750.t005

Greedy and Stochastic Local Network Alignment

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e98750

STRUCTSIM



T
a

b
le

6
.

P
e

rf
o

rm
an

ce
o

f
al

ig
n

m
e

n
t

m
e

th
o

d
s

fo
r

p
ai

rw
is

e
al

ig
n

m
e

n
ts

an
d

3
-w

ay
al

ig
n

m
e

n
ts

o
f

re
al

b
io

lo
g

ic
al

n
e

tw
o

rk
s

(W
=

w
o

rm
,

F
=

fl
y,

Y
=

ye
as

t,
H

=
h

u
m

an
,

M
=

m
o

u
se

).

W
-Y

H
-M

W
-F

-Y

S
P

E
C

N
M

G
C

S
P

E
C

N
M

G
C

S
P

E
C

N
M

G
C

G
A

SO
LI

N
E

9
8

.2
8

%
4

3
6

0
0

.9
3

3
9

8
.3

2
%

1
7

7
9

6
0

.9
7

3
9

7
.5

2
%

6
0

4
1

0
.9

0
3

SM
ET

A
N

A
8

2
.8

9
%

4
3

5
1

0
.7

2
6

9
6

.1
%

1
8

0
0

3
0

.9
3

9
7

7
.7

9
%

6
1

1
2

0
.6

6
2

N
e

tw
o

rk
B

LA
ST

-M
9

3
.7

7
%

2
5

4
5

0
.7

4
2

8
1

.2
%

6
7

4
7

0
.7

1
3

8
4

.1
3

%
3

1
7

8
0

.5
9

5

Is
o

R
an

kN
6

7
.8

8
%

3
9

0
0

0
.6

0
1

0
%

0
0

5
6

.2
9

%
4

5
2

6
0

.4
8

5

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

8
7

5
0

.t
0

0
6

T
a

b
le

7
.

P
e

rf
o

rm
an

ce
o

f
al

ig
n

m
e

n
t

m
e

th
o

d
s

fo
r

4
-w

ay
,

5
-w

ay
an

d
6

-w
ay

al
ig

n
m

e
n

ts
o

f
re

al
b

io
lo

g
ic

al
n

e
tw

o
rk

s
(W

=
w

o
rm

,
F

=
fl

y,
Y

=
ye

as
t,

H
=

h
u

m
an

,
M

=
m

o
u

se
,

R
=

ra
t)

.

W
-H

-M
-Y

W
-F

-H
-M

-Y
W

-F
-H

-M
-R

-Y

S
P

E
C

N
M

G
C

S
P

E
C

N
M

G
C

S
P

E
C

N
M

G
C

G
A

SO
LI

N
E

9
5

.5
%

7
9

5
4

0
.8

6
1

9
4

.8
2

%
9

1
6

6
0

.8
4

7
9

3
.8

%
1

0
3

8
5

0
.8

2
2

SM
ET

A
N

A
7

6
.9

5
%

7
9

1
3

0
.6

5
3

7
5

.1
9

%
9

3
6

8
0

.6
3

1
7

3
.7

%
1

0
6

7
7

0
.6

1
2

N
e

tw
o

rk
B

LA
ST

-M
6

3
%

4
6

5
1

0
.3

0
3

6
0

.9
5

%
5

3
4

3
0

.2
6

8
5

1
.6

2
%

5
8

2
9

0
.2

2
8

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

8
7

5
0

.t
0

0
7

Greedy and Stochastic Local Network Alignment

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e98750



Some of these parameters were established experimentally:

N IterSeed~200;

N IterExtend~200;

N Overlap~0:5;

N IterPhase~10;

Notice that, some parameters are strictly related to the

stochastic nature of the algorithm (i.e. IterSeed, IterExtend,

IterPhase). Such parameters have been determined in connection

to the convergence of the algorithm on the network instances

tested. Therefore, we suggest these default parameters since are

enough to yield good alignment results.

The threshold parameter (s) for the seed selection represents a

tradeoff between speed and accuracy of our method. In order to

maximize the accuracy and the coverage of GASOLINE, its value

has been set to 1 in all comparisons. This means that no filtering

on the nodes has been applied for the networks alignment.

However, we give the possibility to the users to increase the value

of such parameter for large input instance, as we did in third case

study for the 25-way alignment. Concerning the Overlap

parameter, it allows to filter the output produced by the algorithm.

We chose an intermediate value (0.5) for this parameter. However,

the user can vary this parameter to tune the number of subgraphs

alignments that GASOLINE gives as output.

As regards the MCS parameter, this essentially allows to set the

smallest size of subgraphs alignments. In our experiments, we set

this parameter to the minimum value (1), in order to maximize

protein coverage, since we are comparing our method with global

alignment algorithms too. Unlike the threshold parameter for the

seed selection, it does not affect the running time of GASOLINE,

since it concerns the postprocessing phase.

Case study 1: alignment of synthetic networks
We first assessed the performance of the proposed method on

different datasets of synthetic similar PPI networks generated with

NAPAbench [28]. We considered three different partitions of

datasets. Each partition consists of three families of aligning

networks, generated using three different network growth models,

i.e. duplication-mutation-complementation model (DMC) [31], duplication

with random mutations model (DMR) [32,33] and crystal growth model

(CG) [34]. From now on, we will denote them as DMC, DMR and

CG families. We set qcon~0:1 and qmod~0:48 for DMC,

qnew~0:2 and qdel~0:5 for DMR and d~4 for CG.

The first partition is formed by families of 2 closely related

networks, evolved from a common ancestor with Na~5000 nodes.

The families of the second partition consists of 4 evolutionary

distant networks, with a common ancestor of Na~4000 nodes. In

the last partition, each family contains 8 networks with different

Table 8. Best 10 complexes found by GASOLINE.

RANK DESCR SIZE ISC GOs NetBlast

RANK

1 Large and small subunit 59 85.6% 16 10, 12

of ribosomes in the cytosol 14, 15

2 Spliceosome 40 87.1% 13 5, 9

3 Proteasome 32 95% 17 2, 3

4 Ribosome biogenesis 25 89.2% 11 4, 16

in the nucleolus

5 Protein serine/threonine 25 75.6% 19 34, 35

kinase activity

6 DNA repair complex 24 92.5% 39 18

7 SSU processome 22 96.4% 4 1

8 DNA directed 21 94.2% 13 6, 7

RNA polymerase

9 Vesicle-mediated transport 20 85.5% 20 19

10 Prefoldin complex 19 90.6% 2 37

doi:10.1371/journal.pone.0098750.t008

Table 9. GO enriched categories related to the Proteasome complex.

GO category GASOLINE NetworkBlast-M

GO:0000502 5.551E-17 3.775E-16

GO:0005839 3.701E-17 1.110E-16

GO:0019773 1.199E-15 8.882E-17

GO:0051603 1.480E-16 2.405E-16

GO:0004298 5.551E-17 9.252E-17

doi:10.1371/journal.pone.0098750.t009
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evolutionary distances, generated from a common ancestor of

Na~3000 nodes.

Figure 3 depicts the phylogenetic trees used for the families of

each partition. All the branches of the phylogenetic tree have

weight 500, meaning that each node of the tree (except the root) is

a network obtained from the parent node by adding 500 nodes

according to the growth model used.

To measure the overall accuracy of the proposed methods, we

used functional groups associated by NAPAbench to each protein

of the aligning networks. We call equivalence class a set of proteins

of different species (one or more for each network), which are

mapped together by a given algorithm. An equivalence class is

claimed as correct if all the included nodes belong to the same

functional group. For each method we computed three different

quality measures:

N Specificity (SPE): the relative number of correct equivalence

classes;

N Correct nodes (CN): the total number of proteins assigned to

correct equivalence classes;

N Mean normalized entropy (MNE): the mean normalized entropy of

the predicted equivalence classes. Given an equivalence class

C, the normalized entropy of C is computed by:

Table 10. Running times of GASOLINE, SMETANA, NetworkBlast-M and IsoRank-N.

Alignment GASOLINE SMETANA NetworkBlast-M IsoRank-N

W-Y 154 sec 125 sec 59 sec 54460 sec

H-M 890 sec 1587 sec 205 sec 16620 sec

W-F-Y 175 sec 351 sec 281 sec 148320 sec

W-H-M-Y 409 sec 6310 sec 4854 sec w2 days

W-F-H-M-Y 533 sec 13380 sec 5999 sec w2 days

All networks 666 sec 22185 sec 12487 sec w2 days

doi:10.1371/journal.pone.0098750.t010

Table 11. Features of 25 biological eukaryotic networks downloaded from STRING.

SPECIES # PROTEINS # PPIs

Anolis carolinensis 6510 31135

Bos taurus 8474 42234

Canis familiaris 8440 42239

Cavia porcellus 8185 42208

Danio rerio 5720 25732

Dasypus novemcinctus 6850 30495

Equus caballus 8144 40703

Felis catus 7200 32547

Gallus gallus 6409 29534

Gasterosteus aculeatus 6018 28276

Homo sapiens 12575 86890

Macaca mulatta 8787 41460

Monodelphis domestica 7800 38002

Mus musculus 9781 52161

Ornithorhynchus anatinus 6035 26467

Oryctolagus cuniculus 8010 39304

Oryzias latipes 5754 26880

Pan troglodytes 8677 44263

Pongo pygmaeus 8551 43984

Rattus norvegicus 8763 39932

Sus scrofa 6752 29852

Taeniopygia guttata 6271 28791

Takifugu rubipres 5872 27077

Tetraodon nigroviridis 5779 25730

Xenopus tropicalis 6153 29769

doi:10.1371/journal.pone.0098750.t011

Greedy and Stochastic Local Network Alignment

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e98750



H(C)~{
1

log d

Xd

i~1

pi log pi

where pi is the fraction of proteins in C that belong to the i-th

functional group and d is the number of different functional

groups.

CN reflects the sensitivity of the method, while MNE measures

the consistency of the predicted alignments. For SMETANA and

IsoRankN we considered only equivalence classes that contain at

least one node from each species.

Tables 1, 2 and 3 summarize the values of SPE, CN and MNE

of the proposed methods for all the alignments of 2, 4 and 8

networks, respectively. Each table reports the results obtained for

DMC, DMR and CG families. In all cases SMETANA has the

highest sensitivity, recovering a high number of CN. However, our

method resulted more precise, especially in the 8-way alignment,

resulting in a higher specificity and a lower rate of false positives.

The lower sensitivity of GASOLINE is due to the fact that our

method is based on 1-to-1 mapping, while SMETANA performs a

many-to-many alignment. The other two methods generally

exhibit lower specificity, sensitivity and consistency than SME-

TANA and GASOLINE. Interestingly, the specificity of GASO-

LINE remains very high (around 90%), even though the number

of networks increases, while the accuracy of all the other

algorithms tends to decrease. In particular, the accuracy of

NetworkBLAST-M falls down from pairwise to 8-way alignment,

going from 88% to 4%.

Table 4 compares the running times of the four algorithms for

each of the nine network families considered. In the pairwise case,

NetworkBLAST-M and SMETANA are the fastest methods, while

in the multiple case GASOLINE shows the best performances.

Table 12. Best 10 conserved complexes found by GASOLINE for the alignment of 25 vertebrata PPI networks.

RANK DESCR SIZE ISC GOs

1 Protein serine/threonine kinase activity complex 26 86.1% 19

2 Proteasome 20 91.3% 14

3 Nuclear receptor DNA complex 16 78.7% 13

4 Histone deacetylase complex 14 85.4% 14

5 Vesicle-mediated transport 13 86.5% 10

6 Cyclin-dependent kinase complex 13 85.9% 8

7 Chaperonin-containing T-complex 13 85.5% 8

8 DNA directed RNA polymerase II 12 94.3% 8

9 Eukaryotic translation initiation factor 3 12 91.8% 5

10 Spliceosome 11 92.6% 5

doi:10.1371/journal.pone.0098750.t012

Figure 6. Meta-graph of complexes found by GASOLINE for the alignment of 25 PPI vertebrata networks. (a) Chaperonin complex, (b)
Proteasome complex. Cyan indicates low conservation, green medium, yellow high and red very high.
doi:10.1371/journal.pone.0098750.g006
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Surprisingly, for all DMR families SMETANA performed better

than GASOLINE, even in the multiple case. This is probably due

to the fact that networks in DMR families are sparser than the

others and GASOLINE usually works better with denser networks.

This hypotheses seems to be supported by the tests performed on

the real biological networks, which are two or three times denser

than the synthetic ones.

Next, we investigated the effects of sequence similarities on the

performances of the algorithms. Following the approach used in

[23,28], we introduced a bias term b on the similarity score

distribution of potential orthologs between different networks, in

order to increase the differences between the similarity scores of

orthologous nodes and those of non-ortologous nodes. We

generated 6 different families of aligning networks, by varying b

between 2150 and 250. Negative values of b penalize sequence

similarity scores, while positive values of b enhance them, making

the alignment easier to compute. All families consist of 4 networks

generated with CG model, using the phylogenetic tree of

Figure 3b.

Figure 4 reports the values of SPE and CN for different values of

b. GASOLINE shows the most constant level of accuracy among

all the methods, even for negative values of b. This means that our

algorithm exploits topological informations well and it can

produce many correct alignments even when sequence similarity

scores are very noisy (73% of SPE, when b~{150). Similarly,

SMETANA shows a constant level of accuracy, but its specificity is

always below that of GASOLINE for non positive values of b.

Surprisingly, for the lowest value of b (b~{150), our method

recovers more correct nodes than SMETANA. On the other

hand, NetworkBLAST-M and IsoRankN take great advantage

from the increasing bias with respect to both SPE and CN values,

so they seem to strongly rely on sequence similarity scores during

the computation of the alignments.

Finally, we tested the scalability of our method, based on the

size of aligning networks. We generated 7 different families, by

varying the number of nodes of the ancestral network, Na from

2000 and 5000. Again, all families consist of 4 networks generated

with CG model, using the phylogenetic tree of Figure 3 (b). We

performed a comparison between GASOLINE and SMETANA,

which are clearly the fastest methods, as shown before. Figure 5

shows the running time for different values of Na. As can be seen,

GASOLINE is always faster than SMETANA and generally shows

less variance in running times.

Case study 2: alignment of 6 PPI eukaryotic networks
In the second case study, we compared the four algorithms on

real biological networks of 6 species (yeast, worm, fly, human,

mouse and rat). Table 5 describes the features of the networks. Bit

scores and BLAST E-values between all pairs of proteins

belonging to different networks were computed. All pairs with

E-value greater than 10{5 were filtered out. In order to compare

the consistency and the accuracy of the algorithms, we used

orthologous groups (COG, KOG and NOG), downloaded from

STRING [8]. As in the previous case study, we define an

equivalence class as a set of proteins of different species which are

mapped together by a given algorithm. An equivalence class is

claimed as correct if all the included nodes share at least one

orthologous group.

To asses the performance of the algorithms, we computed

specificity (SPE) and number of correct nodes (CN), and we

replaced the mean normalized entropy with a different measure,

the mean group consistency (MGC), defined as follows:

MGC Cð Þ~ 1

DCD
X
C[C

CommonGr Cð Þ
Gr Cð Þ

where C is the set of all predicted equivalence classes,

CommonGr(C) is the set of groups shared by every protein in C
and Gr(C) is the set of groups associated to at least one protein in

C.

We decided to change the consistency measure because a

protein of a real biological network may be associated to more

than one groups, while in the previous case study a protein was

always associated to at most one group, assigned by NAPAbench

during the generation of synthetic networks.

Table 6 reports the quality measures for GASOLINE,

SMETANA, NetworkBlast-M and IsoRank-N in the case of

pairwise and 3-way alignment. In human-mouse alignment,

IsoRank-N unexpectedly failed and did not recover any conserved

group. Results show that GASOLINE has much higher SPE and

MGC than the compared algorithms, especially in the 3-way

alignment case. Moreover, the number of correct nodes found by

GASOLINE are now comparable to those of SMETANA, or even

higher. Low values of CN in NetworkBlast-M are probably due to

the high threshold for the minimum size of complexes (which is 5).

Furthermore, NetworkBlast-M exhibit lower values for all

considered metrics than GASOLINE in all tested cases.

Such results are confirmed for the alignment of 4, 5 and 6

species (Table 7). It is worth noting that the specificity of

GASOLINE remains very high (around 95%) and the differences

between GASOLINE and the other methods increase (around

20% specificity more than the second best algorithm, SME-

TANA). In this case, quality measures are not reported for

IsoRank-N because of its high running time (more than 2 days of

computation).

To sum up, the performance results of GASOLINE in the

context of real biological networks are superior to those of

synthetic networks, with respect to both specificity and number of

correct nodes, which is related to the sensitivity of the algorithm.

Moreover, the values of CN are very close to or even higher than

SMETANA, though the latter is a global alignment method.

A further comparison between GASOLINE and NetworkBlast-

M was made to assess the statistical and biological significance of

complexes found by both methods in the alignment of 6 species.

We annotated aligned proteins with GO terms (cellular compo-

nents, processes and functions), taken from BioDBNet [35]. We

computed, for every GO category in each complex of the

alignments, a p-value based on the hypergeometric distribution.

Finally, p-values have been corrected by applying FDR correction

for multiple hypotheses testing, with a~0:01.

Table 8 shows the 10 best complexes identified by GASOLINE,

sorted by their size and ISC score. The number of enriched GO

categories together with the ranking of the corresponding

complexes found by NetworkBlast-M are reported. The table

shows that the best results found by GASOLINE are also among

the best results identified by NetworkBlast-M.

GASOLINE found more complexes than NetworkBlast-M (46

vs 45). However, most of the results are common to both methods.

Nine small complexes (5–7 proteins) have been identified only by

GASOLINE and eight small complexes (5–10 proteins) have been

recovered only by NetworkBlast-M.

Some of the complexes are correctly split by GASOLINE and

wrongly joined in NetworkBlast-M, while other complexes in
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PLOS ONE | www.plosone.org 13 June 2014 | Volume 9 | Issue 6 | e98750



GASOLINE are actually smaller than the corresponding ones in

NetworkBlast-M. This is probably due to the different scoring

functions used by the two methods.

All complexes returned by NetworkBlast-M can include non

1-to-1 mapping between proteins of different networks. However,

these have a fixed maximum size of 15 proteins. This is a serious

limitation in the context of local alignment of biological networks

since real biological complexes can be actually bigger [36]. Table 9

shows that the most significant GO categories found by

GASOLINE and NetworkBlast-M for the Proteasome complex

have similar significant p-values. Nevertheless, the Proteasome

complex found by GASOLINE includes more proteins than the

one found by NetworkBlast-M (32 vs 15 proteins).

In Table 10 we report the running times of GASOLINE,

SMETANA, NetworkBlast-M and IsoRank-N. In the case of

pairwise and 3-way alignment, NetworkBlast-M is faster than

GASOLINE. However, GASOLINE clearly outperforms Net-

workBlast-M and the other algorithms in the multiple case scaling

well with the number of networks.

Case study 3: alignment of 25 vertebrata PPI networks
In the last case study, we collected a dataset of 25 vertebrata

biological networks. Table 11 describes the features of these

networks. We ran GASOLINE with higher values of MCS and s
(MCS~5, s~7), for computational reasons due to the high

number of aligned networks. We found 36 complexes conserved in

all species. Table 12 lists the 10 highest-scored ones, together with

the number of significantly enriched GO categories.

Most of the complexes found by GASOLINE in the second case

study are also present in this third one. However they are smaller

here (i.e. spliceosome), due to (i) the higher number of aligned

networks; (ii) incompleteness of PPI networks data in some species.

GASOLINE took 2250 seconds (*38 minutes) to perform the

alignment of all 25 vertebrata PPI networks.

We also analyzed phylogenetic relations among corresponding

proteins of distant species in local alignments. Largest and most

conserved complexes returned by GASOLINE, the proteasome

and the chaperonin, were considered. We represented the

conserved cluster of interactions as a single meta-graph

(Figure 6), where nodes are classes of aligned proteins (one for

each species) and edges are colored according to the conservation

extent of the corresponding interaction.

In Figure 6 (a) we depict the meta-graph of Chaperonin

complex, whereas in Figure 6 (b) we present the Proteasome

complex. In both complexes, we can observe the presence of a big

core of highly conserved protein interactions. This may represent a

sort of ancestral complex from which all the species-specific

complexes have differently evolved.

Conclusions

GASOLINE is a new multiple local network alignment

algorithm based on Gibbs Sampling Experimental analysis clearly

shows that GASOLINE outperforms state-of-art systems such as:

SMETANA, NetworkBlast-M and IsoRank-N on real biological

networks. GASOLINE does not allow non 1-to-1 mapping,

although this can be viewed as a limitation, the results clearly show

that such a restriction is capable to produce more reliable results

than methods implementing many-to-many mapping. Further-

more, GASOLINE is able to find new complexes and unlikely

NetworkBlast-M it correctly splits intersecting complexes and it

does not have any size limitation. Finally it is clearly faster than all

the compare systems. GASOLINE is a very general method which

can be applied to all kinds of large networks by a suitable choice of

label and topology similarities. Applications in the field of protein

structure comparison and social networks are under development.

Supporting Information

File S1 Contains supporting material on GASOLINE
asymptotic complexity.

(PDF)
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