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Abstract

This article reports the discovery of a new genus and three species of predaceous katydid (Insecta: Orthoptera) from
Colombia and Ecuador in which males produce the highest frequency ultrasonic calling songs so far recorded from an
arthropod. Male katydids sing by rubbing their wings together to attract distant females. Their song frequencies usually
range from audio (5 kHz) to low ultrasonic (30 kHz). However, males of Supersonus spp. call females at 115 kHz, 125 kHz,
and 150 kHz. Exceeding the human hearing range (50 Hz–20 kHz) by an order of magnitude, these insects also emit their
ultrasound at unusually elevated sound pressure levels (SPL). In all three species these calls exceed 110 dB SPL rms re
20 mPa (at 15 cm). Males of Supersonus spp. have unusually reduced forewings (,0.5 mm2). Only the right wing radiates
appreciable sound, the left bears the file and does not show a particular resonance. In contrast to most katydids, males of
Supersonus spp. position and move their wings during sound production so that the concave aspect of the right wing,
underlain by the insect dorsum, forms a contained cavity with sharp resonance. The observed high SPL at extreme carrier
frequencies can be explained by wing anatomy, a resonant cavity with a membrane, and cuticle deformation.

Citation: Sarria-S FA, Morris GK, Windmill JFC, Jackson J, Montealegre-Z F (2014) Shrinking Wings for Ultrasonic Pitch Production: Hyperintense Ultra-Short-
Wavelength Calls in a New Genus of Neotropical Katydids (Orthoptera: Tettigoniidae). PLoS ONE 9(6): e98708. doi:10.1371/journal.pone.0098708

Editor: William J. Etges, University of Arkansas, United States of America

Received February 17, 2014; Accepted April 30, 2014; Published June 5, 2014

Copyright: � 2014 Sarria-S et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was sponsored by National Geographic (http://www.nationalgeographic.co.uk/explorers/grants-programs/), grant #GEFNE17-11 to FM-Z).
Royal Society (http://royalsociety.org/grants/) provided funds for equipment used in this research (grant no. RG120495) to FM-Z. JCJ was supported by the
Engineering and Physical Sciences Research Council (EPSRC) (http://www.epsrc.ac.uk/Pages/default.aspx) grant no. EP/H02848X/1. JFCW was supported by the
Biotechnology & Biological Sciences Research Council (BBSRC) (http://www.bbsrc.ac.uk/home/home.aspx) grant no. BB/H0046371. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Please note that the project received funding from National Geographic. This does not alter the authors’ adherence to PLOS ONE policies
on sharing data and materials. National Geographic has the copyright on any potential scientific documentary on expeditions and discoveries derived from this
project. National Geographic has the right on public engagement and popular articles derived from the research, but they agree with the main scientific
discoveries to be published in specialized peer-reviewed scientific journals.

* E-mail: fmontealegrez@lincoln.ac.uk

Introduction

Various animal taxa use ultrasound (.20 kHz) from bats and

cetaceans to insects. They use these shorter wavelengths for

orientation and communication with mates and rivals [1]. Among

insects, orthopterans are known for calling acoustically with many

species sensitive to ultrasound [2–6]. Tettigoniidae (katydids) are

exceptional Orthoptera in the extent to which they exploit

ultrasound. Based on a survey of published sound recordings that

address the presence of ultrasound, 70% of katydids call using

carrier frequencies (carrier in the sense of the most intense spectral

peak) beyond 20 kHz [7]. Only about 5% call below 10 kHz, and

25% between 10 and 19 kHz, [1,7–12].

Mapping carrier frequencies on to a katydid phylogeny [13]

suggested that ultrasound occurs randomly in species across

subfamilies, and is not particularly associated with broadband or

pure-tone calls. A large number of neotropical species however,

use pure-tone calls in the ultrasonic range [8,14–18], commonly

exploiting frequencies in the range 20–45 kHz, identified here as

moderately ultrasonic. A few species communicate in the high-

ultrasonic range 50–90 kHz, whereas extreme ultrasonic calls (.

100 kHz) are rare [7,19]. Some species communicating in the high

and extreme ultrasonic ranges are shown in Table S1.

Montealegre-Z et al. [20] describe the biomechanics of

stridulation in katydids that use extreme ultrasound. These

authors report a species of katydid identified as Arachnoscelis sp.

from Colombia, with an unusual ultrasonic call for sound

communication consisting of a narrow-band tone at 128 kHz. At

the time this constituted the highest ultrasonic mating call (as

dominant carrier) ever recorded for an arthropod. That article was

written by two of the authors of the present paper (FM-Z, GKM),

and we erroneously identified two of the species described herein

(S. aequoreus and S. piercei) within the genus Arachnoscelis, under a

single species Arachnoscelis sp. As such, the carrier frequency value

given (128 kHz) in 2006 [20] was actually the average of the two

species (1 male of each species).

In this article we describe a new genus Supersonus and

incorporate three new species within it: S. aequoreus, S. piercei, and
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S. undulus. The creation of this genus is required as these insects

cannot be assigned to the genus Arachnoscelis as recently shown by

Montealegre-Z et al. [21].

Males of these species produce unusually high ultrasonic mating

calls, and here we report that male S. aequoreus emits the highest

ultrasound calling carrier ever recorded in nature: 150 kHz. Using

Laser Doppler Vibrometry (LDV) and high-speed video (HSV) we

demonstrate that the observed extreme frequencies are produced

by tiny tuned sound generator, the right wing, which approaches a

monopole sound source in its efficient emission of loud ultrasonic

signals.

Material and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the University of Lincoln, UK (Permit Number:

EA1EA2 14/9), and all efforts were made to minimize suffering.

Field sampling
Depositories. The material studied in this project is depos-

ited in the following collections:

MEUV = Museo de Entomologı́a Universidad del Valle, Cali,

Colombia.

MEUCE = Museo de Entomologı́a, Pontificia Universidad

Católica del Ecuador, Quito, Ecuador.

MNHN: Muséum National d’Histoire Naturelle, Paris, France

Localities. National Natural Park (PNN) Gorgona: PNN

Gorgona encompasses the islands of Gorgona and Gorgonilla

35 km from the coast of Colombia (lat 2u479 to 3u69 N; long 78u69,

to 78u189W). The park has an area of 13.33 km2 with an elevation

above sea level of 338 m. The average annual temperature is

26uC, and annual rainfall is 6891 mm. Ecologically, it is tropical

rainforest with similar habitat as on the mainland. The nearest

point on the mainland is Punta Reyes where the town of Bazán is

located in the municipality of El Charco Nariño.

Watershed Pericos: This site is within the small community of El

Salto, of the municipality of Buenaventura, Valle del Cauca (lat. 3u
569N, long 76u 479W). The watershed is located at the 76-km

point of Route 40, the road that goes from the city of Cali to

Buenaventura. Due to its location on the outskirts of the Andean

western cordillera, this area is considered tropical rainforest, with

rainfall between 4,000 and 10,000 mm per year. Mean temper-

ature fluctuates daily between 18uC and 25uC [22].

Tinalandia: This site is located in a small private forest reserve

in the province of Pichincha, (lat 0u 199 S, long 79u 309W; 600 m

elevation) 112 km southwest of Quito on the road to Santo

Domingo de los Colorados and 16 km southeast of Santo

Domingo. The vegetation is lowland rainforest, typical of the

western slopes of the Andes, with faunal affinities extending into

Colombia [23].

Specimen collection
Males and females of Supersonus spp. were initially collected at

night by searching understory vegetation using headlamps.

However this method proved quite inefficient. After almost 15

years of near fruitless hunting, we discovered that species of this

genus inhabit epiphytes such as bromeliads and orchids located

between 10-15 m above the ground and a few metres below the

canopy (for details of the collecting method Montealegre-Z et al.

[24]). Specimens were transported to the University of Lincoln

and University of Strathclyde where their songs were recorded

using equipment that permitted a wide assessment of the

(ultrasonic) sound frequency range.

Sound recordings
The extreme ultrasonic nature of the calls of Supersonus spp. was

first reported by Montealegre-Z et al. [20] from one of the species

described here, but erroneously identified as Arachnoscelis sp. Once

aware of the range of sound frequencies exploited by these

creatures, we digitized audio recordings at 1200 kilosamples s21.

Insects were placed in a mesh cage, and hung from the ceiling of

an anechoic room .1 m below the ceiling and .1 m above the

floor mitigating against potential reflections. Sound recordings

were obtained using a 1/8" Brüel & Kjær Type 4138 condenser

microphone (cover not removed), connected to a Brüel & Kjær

2633 preamplifier (Brüel & Kjær, Nærum, Denmark). Data were

stored in a notebook computer using an NI USB-6259 board

(National Instruments, Austin, TX, USA) and LabVIEW version 9

(32 bit) 2009 software interface (National Instruments, Austin, TX,

USA). The microphone’s sensitivity was calibrated with a sound-

level calibrator (Brüel & Kjær, 4231) and the interface of the

Polytec Scanning Vibrometer software (version 8.5; Polytec,

Waldbronn, Germany). The sound level calibrator produces a

1 kHz tone at 1.0024 Pa (94 dB). The microphone response was

corrected digitally in the Polytec software interface against the

calibrator using a correction factor, until a value of 1.0024 Pa was

reached in the spectrum of the signal as seen in the analyzer

window. The monitoring microphone was placed at 1 cm away,

but at the same height to, the specimen. The speaker was placed at

15 cm ventral of this preparation. Signals could be recorded very

accurately using this transduction interface.

Wing resonance measurements
The wings of Supersonus spp. are unusually small (,0.4 mm2, see

Fig. 2), and as such positioning a living insect with its wings

extended for LDV scanning and resonance stimulation is

challenging. Measurements of wing resonances were achieved

only from two males of S. piercei and one of S. undulus, both species

described here. Resonances were excited with periodic chirps

including frequencies in the range 5–50 kHz, and 20–200 kHz.

Chirps were generated by the PSV 300 internal data acquisition

board and lasted 80 ms.

Sound was passed to a loudspeaker (ACR, FT 17H, Horn

Tweeter, Fostex, Tokyo, Japan, frequency response 5–50 kHz) or

to a custom-built ultrasonic transducer (capacitive membrane,

frequency response 50–700 kHz, 30 mm diameter aperture;

University of Strathclyde, UK) positioned 15 cm from the

specimen to ensure the animal was in the far-field up to 200 kHz.

Vibration velocities of the wings were measured by a

microscanning laser Doppler vibrometer (Polytec PSV-300-F;

Waldbronn, Germany) with an OFV-056 scanning head, fitted

with a close-up attachment. The laser beam on the wing

membrane was monitored by live video feed to the vibrometer’s

controlling computer. No reflective particles were required for

measuring wing vibrations. The entire stridulatory field of both

tegmina was scanned using 150–800 measurement points.

The spectrum of the stimulus was corrected to give equal energy

at all frequencies at 80 dB (re 20 mPa SPL) for each insect.

Recordings were obtained at 512 –1000 kilosamples per second.

The quality of the stimulus was monitored using a 1/8" condenser

microphone Brüel & Kjaer Type 4138, connected to a Brüel &

Kjaer 2633 preamplifier (Brüel & Kjaer, Nærum, Denmark). For

recordings, an intact specimen was mounted on a Blu-Tack (Bostik

Ltd, Leicester, UK) holder using metallic clamps to fix its legs. The
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left wings were laterally extended by fixing the axillary sclerites

with beeswax, while the right wing was left in the normal resting

position.

Stridulatory movements were recorded at 3000 frames per

second using a high-speed video camera NACHi-DCamII

(A504kc, NACImage Technology, Simi Valley, CA, USA). Video

and sound data were edited and synchronized using VirtualDub

V1.9.11 (http://www. virtualdub.org/) and Adobe Premiere Pro

CS4 (Adobe Systems Incorporated, San Jose, CA, USA) and

analysed frame by frame using the software ImageJ V1.42 (Wayne

Rasband, Research Services Branch, National Institute of Mental

Health, Bethesda, MD, USA).

Nomenclatural Acts
The electronic edition of this article conforms to the require-

ments of the amended International Code of Zoological

Nomenclature, and hence the new names contained herein are

available under that Code from the electronic edition of this

article. This published work and the nomenclatural acts it contains

have been registered in ZooBank, the online registration system for

the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be

resolved and the associated information viewed through any

standard web browser by appending the LSID to the prefix

‘‘http://zoobank.org/’’. The LSID for this publication is:

urn:lsid:zoobank.org:pub:9597BAC4-9C41-4269-BDDD-8F554C992875.

The electronic edition of this work was published in a journal

with an ISSN, and has been archived and is available from the

following digital repositories: PubMed Central and LOCKSS,

University of Lincoln UK and University of Strathclyde UK

repositories.

Figure 1. Morphological comparision of Supersonus spp. habitus. (A, B) Male and female of S. aequoreus. (C, D) Male and female of S. piercei,
and (E, F) Male and female of S. undulus. (A) Under a CC BY license, with permission from Natasha Mhatre, original copyright 2010. (C, D) Under a CC
BY license, with permission from Manuel Jara, original copyright 2014. (B, E, F) Under a CC BY license, with permission from Fernando Vargas-Salinas,
original copyright 2011.
doi:10.1371/journal.pone.0098708.g001
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Results

Systematics and taxa description
Order ORTHOPTERA

Family TETTIGONIIDAE

Subfamily LISTROSCELIDINAE

Supersonus gen. nov. Sarria-S, Morris, Windmill, Jackson &

Montealegre-Z, 2014 urn:lsid:zoobank.org:act:93B0C32C-1AC0-

498B-90C3-EB3324B163AB

Etymology: Named for sonus L. sound, and super L. above, in

recognition of the elevated forest singing perches of these insects,

the presence of sound energy at frequencies significantly

above100 kHz, and in acknowledgement of the original designa-

tion of ultrasonic sound wavelengths as ‘supersonic’ (e.g, Pierce

[25]).

Diagnosis: Brachypterous insects, hind wings absent in both

males and females; forewing (tegminal) sound generators extreme-

ly reduced in males to just the size of the stridulatory field (an area

of ,0.4 mm2) and with brief costal region; tegmina reduced to two

minute scaly appendages in females (Figs. 1, 2 & 3). Tegmina

strongly asymmetrical; right tegmina with subtriangular mirror

speculum frame protruding robustly above the tegminal contour

and speculum plane (Fig. 3). Tympanal slits asymmetrical, the

internal or anterior slit smaller than posterior or external slit (Fig.

S1). Cerci inflated in basal half, with a distal narrow extension

anteriorly incurved and upturned. Cerci bear a basally articulated

appendage, which projects upwards and abruptly bends postero-

laterally (Figs. 4 & 5). Titillators present in the form of two

sclerotized dentate structures projected laterad; not protruding

from the terminalia contour. A sclerotized canal, ventral to the

titillators, lies on top of the dorsal face of subgenital plate and

slightly protrudes from the plate contour (as seen ventrally and

dorsally, Figs. 4J, 4K, & 4L). Male subgenital plate truncate, with

two minute movable incurved styles. Female subgenital plate

short, usually pentagonal, medially notched and bilobulated. The

females exhibit spotted integument (Figs. 1B, 1D & 1F). Egg with

micropyle located in a depression on the anterior end (Fig. S2).

Supersonus aequoreus sp. Nov. Sarria-S, Morris, Wind-

mill, Jackson & Montealegre-Z, 2014 urn:lsid:zoobank.org:ac-

t:82E22BAC-E5B5-4A7D-B4DB-04EBB9ED605A.

Etymology: aequoreus L., surrounded by the sea. Named as

singing from an island environment surrounded by the ocean.

Diagnosis: Species recognized by male cercal morphology, right

mirror area, stridulatory file tooth arrangement and call carrier

frequency.

Description: Wings– Right speculum area ca 0.22 mm2

(Figs. 2D & 2G). Stridulatory file bearing 67–75 teeth. Measured

from anal side of the file, inter-tooth spacing varies as shown in

Fig. 6, with an average of 7.8 mm (60.8 mm). Abdomen– Male

tenth tergite with two down curved short projections (#1 mm)

separated by a broad shallow notch (Figs. 4A, 4D, & 4G).

Titillators two highly sclerotized sclerites bearing apically two

Figure 2. Male wing morphology comparison between Supersonus spp. (A–C). Left wing dorsal view. (D–F) Right wing dorsal view. (G–I)
Right wing ventral view. First row of images: S. aequoreus, middle row: S. piercei, and third row: S. undulus.
doi:10.1371/journal.pone.0098708.g002
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Figure 3. Male right wing morphology of Supersonus piercei (right side view).
doi:10.1371/journal.pone.0098708.g003

Figure 4. Male genitalia morphology comparison between Supersonus spp. (A–C) Lateral view. (D–F) Frontal view. (G–I) Dorsal view. (J–L)
Ventral view. First row of images: S. aequoreus, middle row: S. piercei, and third row S. undulus.
doi:10.1371/journal.pone.0098708.g004
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randomly organised rows of small teeth, projected laterad (Fig. 4D).

Elongated distal half of male cerci with apex laterally expanded,

sharply flattened, ventral surface minutely spiculate. Articulated

cercus appendage dorso-posteriorly projected, with proximal half

dorsally flattened; distal half bent internally, spatulate, with pre-

apical dorsal tooth (Fig. 5A). Male subgenital plate basally

expanded, nearly truncate, bearing two minute lateral styli which

project inwards (Fig. 4D & 4J). Female subgenital plate distally

rounded, with a minute medial notch (Fig. 5). See Table 1 for

anatomical measurements.

Coloration: Sexual dimorphism is observed in the coloration

pattern (Figs. 1A & 1B). Males: Head, hind legs, first and middle

tibiae fulvous (Fig. 1A). Facial marks absent. Pronotum and

abdomen smaragdine. Wings olivaceous. Tenth tergite projections

dorsally fuscous. Females: Female body coloration varies from

smaragdine to resinous-amber, with a longitudinal fuscous strip on

tergum (Fig. 1B). Femur and tibia fulvotestaceous, with mottled

patterns. Head fulvous with two brunneus vertical lines on occiput,

rostrum with two vertical brunneus lines delineating the eye

sockets. Subgenital plate and cerci amber with a fuscous spot on

the distal section, ovipositor fulvotestaceous.

Material examined: Holotype: 1=, Colombia, Cauca, Guapi,

PNN Gorgona. November, 2009, (F. Sarria-S). Allotype: 1R; May

17, 2007 (F. Sarria-S). 1R, Colombia, Cauca, Guapi, PNN

Gorgona. November 16, 2007, (F. Montealegre-Z). Paratypes: 4,

Colombia, Cauca, Guapi, PNN Gorgona. 1R, December 14, 2003,

(G. K. Morris). 1=; December 19, 2003 (F. Montealegre-Z). 1R;

November 16, 2007, (F. Montealegre-Z). 1=; November 16, 2007

(F. Montealegre-Z). Depository: All material deposited at MEUV.

Supersonus piercei sp. Nov. Sarria-S, Morris, Windmill,

Jackson & Montealegre-Z, 2014 urn:lsid:zoobank.org:act:-

F9E06E3B-41F0-4193-B5FA-0D184DF4258C.

Etymology: Species named in recognition of George W. Pierce,

Professor of Physics, Harvard Univ., progenitor of ultrasound

study, who wrote in his classic 1948 ‘The songs of Insects’:

‘‘…these researches show that frequencies extending from the

audible to the superaudible exist in the sounds emitted by insects.

With some classes of insects I have found that the significant part

of their sounds is of a frequency so high as to be entirely inaudible

to the human ear…’’ [25].

Diagnosis: Species recognized by male genitalia, right mirror

area, stridulatory file tooth arrangement, and call carrier

frequency.

Distribution: Continental rain forests of the biogeographic

Chocó, situated within Valle del Cauca, Colombia. Specimens

have been collected from Bajo Anchicayá, Bajo Calima, and near

the Pacific coast at Papayal.

Wings - Right mirror area ca 0.31 mm2 (Figs. 2E and 2H).

Stridulatory file bearing 72–84 teeth. Measured from the anal side

of the file, inter-tooth spacing varies as shown in Fig. 6, and

average tooth pitch is 10.3 mm (61.5 mm). Abdomen - Male tenth

tergite bearing two incurved elongate projections with nearly

converging tips; basally these projections separated by a broad

shallow notch (Figs. 4E & 4H). Titillators heavily sclerotized,

acute, projected laterally (Fig. 4E). Male cerci basally broad,

incurved, distal half elongated, upturned, with tip flattened and

laterally expanded (Figs. 4E & 4H). Male subgenital plate distally

undulate, bearing two minute styli projected inwards and hardly

differentiated from the distal plate contour (Figs. 4E, 4H & 4K).

Female subgenital plate subtriangular, with a V-shaped notch

(Fig. 5E). See Table 1 for anatomical measurements.

Coloration: Coloration pattern sexually dimorphic (Figs. 1C &

1D). Male coloration: Head and limbs fusco-ferruginous (Fig. 1C).

Facial marks present. Pronotum and tergites of thorax fusco-

ferruginous. Abdomen smaragdine with a median fusco-ferrugi-

nous strip on tergum. Wings fusco-ferruginous with fuscous

margins. Tenth tergite projections dorsally fuscous.

Female coloration: Female body caesious with a longitudinal

fusco-testaceous strip on tergum (Fig. 1D). Facial marks present.

Pronotal disk amber, pronotal lobes irregularly covered with a

brunneus-atrous macula. Limbs resinous-amber with irregular

suffusions of brunneus dots and spots. Subgenital plate and cerci

amber, ovipositor fulvous.

Material examined: Holotype: 1=, Colombia, Valle del Cauca,

Buenaventura, El salto, Pericos watershed. September 7, 2013 (F.

Sarria-S), MEUV. Allotype: 1R Colombia, Valle del Cauca,

Buenaventura, Bajo Anchicayá. February 23, 2010 (F. Sarria-S),

MEUV. Paratypes: 1=, Colombia, Valle del Cauca, Buenaven-

tura, El salto, Pericos watershed. September 7, 2011 (F. Sarria-S),

MEUV. 1R Colombia, Valle del Cauca, Buenaventura, Bajo

Anchicayá (Fabio Sarria), MEUV. 1R Colombia, Valle del Cauca,

Buenaventura, Ladrilleros, 1989 (K. Riede) MNHN, Paris.

Supersonus undulus sp. Nov. Sarria-S, Morris, Windmill,

Jackson & Montealegre-Z, 2014 urn:lsid:zoobank.org:act:922C238F-

C587-4B88-8D75-3FAC169A9FF8.

Etymology: undulus L. diminutive of wave; named for the

shortness of this species’ dominant acoustic wavelength

(,2.7 mm).

Diagnosis: Species recognized by male coloration pattern, right

mirror area, course of the CuPab vein and female subgenital plate.

Description: Wings - Mirror area ca 0.39 mm2 (Figs. 2F & 2I),

CuPab abruptly sinuated near the joint CuPab+CuPb+AA1

(Fig. 2F, red arrow). Stridulatory file bearing 60 teeth. Measured

Figure 5. Left male cerci morphology (dorsal aspect) and
female subgenital plate comparison across Supersonus spp. (A–
C) Left male cerci. (D–F) female subgenital plate.
doi:10.1371/journal.pone.0098708.g005
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from the anal side of the file, inter-tooth spacing varies as shown in

Fig. 6, with a tooth pitch average of 13.9 mm (61.8 mm).

Abdomen - Male tenth tergite bearing two elongated projections

strongly deflected and separated by a broad U-shape shallow

notch (Figs. 4F & 4I). Titillators smaller than in the other two

species, apex heavily sclerotized, folded upwards and anteriorly,

with serrate margins (Fig. 4F). Ventral canal of titillator rounded

and dentate; elongate incurved distal half of male cerci with tip

ending acute and slightly curved posteriorly (Fig. 5C). Articulated

appendage dorsoposteriorly projected, with proximal half slightly

concavely depressed; distal half bent internally, continuously

tubular, not flattened, with strong pre-apical dorsal spike

(Fig. 5C). Male subgenital plate distally subsinuate, somewhat

truncate, with two minute styli projected inward; relative to

subgenital plate size, styli are larger than in the other two species

(Fig. 4L). Female subgenital plate quadrangular with a V-shaped

notch (Fig. 5F). See Table 1 for anatomical measurements.

Coloration: sexually dimorphic (Figs. 1E & 1F). Male colora-

tion: Head fusco-testaceous without facial marks. Tibiae fusco-

ferruginous. Anterior and middle femora caesious with brunneus

spots. Hind femora proximally fulvous and distally caecious

(Fig. 1E). Pronotal disk fusco-testaceous, bearing in the middle a

narrow fusco-ferruginous line. Anterior and posterior edges of the

pronotal disk olivaceous. Abdominal tergites callainus with mid

longitudinal fuscous band, which extends down to apex of the

tenth tergite lobules. Thoracic pleura and abdominal sternites

sulphureous. Wings fuscous.

Female coloration: Head albus-argentum (pearly) with brun-

neous marks. Body ventrally albus-argemtum, tergum fulvous with

a tranverse fuscescent band on the posterior edges of each

abdominal tergite. Longitudinal medial fusco-testaceous line on

tergum. Pronotal disk olivaceous, pronotal lobes irregularly

covered with a fuscescent macula. Femora olivaceous with

irregular suffusions of fuscescent dots and spots. Tibiae fusco-

testaceous. Subgenital plate and cerci amber, ovipositor fuscescent.

Material examined: Holotype: 1=, Ecuador,Pichincha, santo

Domingo de los Colorados, Tinalandia; December 18, 2011 (F.

Sarria-S & S. Valdés-R), MEUCE. Allotype: 1R, Ecuador,Pi-

chincha, santo Domingo de los Colorados, Tinalandia; December

18, 2011 (F. Sarria-S & S. Valdés-R), MEUCE. Paratypes: 1R
Ecuador,Pichincha, Santo Domingo de los Colorados, Tinalandia;

July 11–13, 2003 (G.K. Morris, P. Wall, D. Klimas, F.

Figure 6. The stridulatory file of Supersonus spp. Graphs panels on the left show measurements of inter-tooth distances in the direction of
scraper motion during stridulation (anal to basal). Panels on the right show SEM pictures of the files of each species.
doi:10.1371/journal.pone.0098708.g006
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Montealegre-Z). 1=, same locality as previous, December 15, 2011

(F. Sarria-S & S. Valdés-R). All paratypes deposited at MEUV.

Acoustics and biomechanics
Measurements of acoustic parameters for all species are shown

in Table 2.

Supersonus aequoreus. Data presented are of five males

recorded under laboratory controlled conditions. Each call of S.

aequoreus is a train of pulses lasting 13–19 ms. In the train are 10 to

13 (average 12.261.23, n = 5 males) very brief sinusoidal

temporally well-separated pulses (Fig. 7A). In a bout of singing

lasting several minutes, these trains occur in groups of two, and

each group (call) is repeated every 1.2–1.7 s (as recorded at 24uC).

The pulse train period within the group varies between 73 and

80 ms.

Peak amplitudes of early pulses are usually the same for the first

3–4 pulses of the train, gradually decreasing for later ones (Fig.7A)

and in mid-train some successive pulses may establish the same

peak amplitude peaks. Measured from the start to the end of the

train, sound pressure levels vary between 115 and 108 dB SPL rms

re 20 mPa (at 15 cm). Each pulse lasts about 62.91 (64.94) ms

(Fig. 7D); pulse period was 1.5560.31 ms. This implies that

discrete pulses are separated by silent intervals of 1.440 (60.303) –

1.480 (60.301) ms. However, pulse periods are not constant across

the train, but gradually decrease from 1.93 to 0.92 ms suggesting

the pulse rate gradually increases during the closing phase of the

wings. There are 8–10 oscillations in each pulse, the first 6 of

which are probably driven oscillations before decay begins. Pulses

recur at an average rate of 711/s660.88. Output energy of the

four specimens recorded was centred at 148.3 kHz (range 147.13–

151.10 kHz) (Fig. 7G). There was no significant energy below

100 kHz in the spectrum of either male of this species.

Sound is produced by males during the closing phase of the

wings (see Video S1). For a frequency of 148 kHz, and an average

inter-tooth spacing of 7.8 mm (see Fig. 6), wings are expected to

close at an average speed of 1154.40 mm/s. However, HSV

recording clearly shows the wings closing with an average speed of

only 12.861.4 mm/s (n = 2 males). This suggests the scraper is

uncoupled from and moving faster than the observed wing motion

to provide the necessary high tooth-strike-rate.

Two of the authors (FMZ and GKM) showed in 2006 [20] that

for katydids singing below 40 kHz scraper speed was coupled to

the instantaneous speed of the entire wing, i.e. the scraper always

moves in concert with the wing. The maximum wing speed

measured in coupled singers was ca 250 mm/s. Species singing

above 40 kHz cannot contract their muscles any faster to gain

speed. In the case of Supersonus the required speeds would exceed

1000 mm/s. So, these insects uncouple scraper speed from wing

speed where the scraper lodges behind a file tooth, deforms to

release, then springs forward at the higher speed across a small set

of file teeth. Deformation energy thus becomes the basis for

enhanced tooth-contact speed.

Supersonus piercei. Data is presented from four males

recorded under laboratory conditions at 24uC. Each syllable of S.

piercei is again a train of time-discrete pulses, the train lasting 10 to

28 ms (n = 4 males). A train carries between 5 to 13 (6.463) of

these very brief sinusoidal pulses (Fig. 7B). In a bout of singing

lasting several minutes, trains are given in groups of two to five,

with a train period of 32–64 ms (n = 4).

Peak amplitudes achieved in early pulses slightly incremented,

diminishing steadily in later ones (Fig.7B), and in mid-train a

number of pulses in succession may peak uniformly. Each pulse

lasts about 105 ms (Fig. 7E) and pulse period varied very little,

remaining between 2.39 and 2.42 ms for the three specimens
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recorded. There were about 7 oscillations in each pulse

(apparently driven oscillations) before decay began and about 12

waves including the free decay. Pulses recurred at an average rate

of 480/s. Output energy in the 1996 specimen was centred at

124.8 kHz, with 126.5 and 122.2 kHz in each of the specimens

collected in 2013 respectively, for an average of 124.562.17 kHz

(n = 4, Fig. 7H). There was no significant energy below 100 kHz in

the spectrum of either specimen measured in 2013. The sound

pressure level across each pulse train varied between 111 and

99 dB SPL rms re 20 mPa (at 15 cm).

Sound is produced by males during the closing phase of the

wings (see Video S2). For a frequency of 124.5 kHz, and an

average inter-tooth spacing of 10.3 mm (see Fig. 6), wings are

expected to close at an average speed of 1282.4 mm/s. HSV

recording indicates that for sound production the wings in males of

this species actually close with an average speed of only

14.661.4 mm/s (n = 1 male). Therefore, there is a mismatch

between scraper speed and wing speed (see above).

Supersonus undulus. The data presented correspond to

three males recorded at 23uC under lab conditions. Each syllable

was a train of discrete pulses lasting 11 to 21 ms. Each train

consisted of 5–9 very brief sinusoidal time-discrete pulses each

lasting 82.1612.2 ms (n = 2 males, Fig. 7C). Males interact

acoustically in their call timing and after short resting periods.

The call of one male stimulates singing in others. Trains are

produced individually with a period of 204664.2 ms (n = 2). The

average number of pulses in the train was 7.062 (n = 2).

As in the other two species, peak amplitude was usually high in

the initial pulses, and gradually decreasing in later ones (Fig. 7C).

During the first half of the train, a series of pulses sometimes

showed uniformly high amplitudes. The sound pressure level

across pulses in each pulse train varied with these amplitudes

between 113.32 and 103.51 dB SPL rms re 20 mPa (at 15 cm).

The pulse period decreased gradually from 2.93 to 1.52 ms for the

three specimens recorded. The number of waves in each pulse

(driven oscillations) before decay varied between 6 and 10 (Fig. 7F).

The pulses were produced at an average rate of 441.76/s623.87.

Output energy was centred at 115.2164.40 (n = 2, Fig. 7I).

Spectral energy was observed between 70 and 100 kHz, at about

10 dB below the maximum peak in the spectrum (Fig. 7I).

Wing resonances
Wing resonance was measured from two species, S. piercei and S.

aequoreus. Scanning laser vibrometry indicated the right-wing of S.

piercei resonated at 122.461.7 kHz (Fig. 8). This resonance is close

to the calling-song carrier (124 kHz). Q23dB for this observed wing

resonance was 6.260.4 (n = 130 points). The left stridulatory wing

did not show any deflection pattern, and no particularly sharp

resonance was observed, at least in the frequency range measured

(Fig. 8).

In S. aequoreus the right wing resonated at 15566 kHz, (n = 2

specimens). This observed wing resonance is close to the dominant

carrier of the calling-song (148 kHz, Fig. 7). Q23dB for this

observed wing resonance was 9.261.1 (n = 220 scanning points).

As in S. piercei, the left stridulatory wing did not show any

deflection pattern in the range of frequencies used and does not

show a particular sharp resonance.

Discussion

Supersonus is a new genus of neotropical predaceous katydids

with at least three species that use extraordinarily high ultrasonic

frequencies (.115 kHz) for conspecific communication. Males

produce these high-frequency mating calls with unusually high

SPL. Typical SPL measures of katydids for microphones

positioned at 10–15 cm dorsal to a specimen were 70–100 dB

[12,23,26] though a few katydid species have been reported to

exceed such output ranges (Table S1). For Supersonus spp., we

hypothesize their unusual intensity to be the result of special

features integrated into the mechanism of stridulation evolved by

these insects: a monopole-like source, wing resonance, and wing

deformation occurring under high shear forces. A monopole

Figure 7. Calling song features of Supersonus spp. (A–C) Syllable or pulse train produced during a closing stroke of wing motion. (D–F). Wave
form of a discrete pulse (red rectangle in A, B, and C). (G–I). Power spectrum.
doi:10.1371/journal.pone.0098708.g007
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source radiates equally in all directions. By contrast, a dipole

(doublet source) is like two monopoles of equal strength and

opposite phase set back to back, alternately radiating sound with

maxima normal to one side minima normal to the other [27,28].

The wings of most male crickets and katydids are approximate

examples of dipole sources [27]. In these insects, as the mirror and

harp radiate sound from both upper and lower surfaces, moving

with opposite phase they can experience destructive interference

(short-circuiting) at their margins [27,29–31]. For most katydid

species such interference is mitigated because the forewings are

enclosed laterally by a costal field (‘skirt’). This costal baffle,

especially in species that are flightless and so are more free to

evolve specialized baffles, plays a significant role to minimize

short-circuiting between the two sides of the dipole. Our data

suggest that Supersonus spp. may have adopted a wing structure and

wing motion mechanics transforming this plesiomorphic dipole

source into something approaching a monopole radiator.

The specific acoustic resistance and the efficiency of a sound

source depend on the ratio between the source diameter and the

sound wavelength [27]. In theory, a monopole source should have

a minimum radius of 1/6 wavelength, a dipole a radius of 1/4

wavelength for good efficiency [27]. The 150 kHz produced by,

for example, the call of S. aequoreus has a wavelength of ca 2.3 mm.

For generation of such a wavelength, an efficient sound radiator

(mirror and cavity beneath) should have a minimum radius of ca

0.38 mm as a monopole, 0.58 mm as a dipole. The mirror of S.

aequoreus (the smallest of the 3 species in the genus, Fig. 2D) has a

radius of ca 0.41 mm, and the height of the space below the mirror

is between 0.2 and 0.3 mm. This suggests that the mechanism

used by this species more closely approaches a monopole radiator

than a dipole. Optimal and observed sound source dimensions for

all three species are shown in Fig. 8H.

Protruding and partially isolated from the rest of the wing due to

the smaller circumference of the ventral massive vein, the mirror

of these Supersonus spp. is peculiar in functioning as a single

Figure 8. Wing resonance in S. piercei as measured with Laser Doppler Vibrometry. (A–D) Scanned area and defection shapes of the right
wing (RW). A and B show the orientation image relating wing topology to the position of the scanning latice. (C, D) Area scans of mirror deflection at
best response (122 kHz in this species). Wings scanned in normal position close to the body. Note how the mirror membrane strongly deflects while
the rest of the wing veins and folded membranes rest in position. (E) Displacement and resonances of the left wing (LW) and RW. (F) Phase gain
response of RW vibration. (G) Coherence across the frequency range measured for the RW response. (H) Expected and observed radiator size optimal
for the frequencies used by Supersonus spp.
doi:10.1371/journal.pone.0098708.g008
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vibrating disk backed by a well-enclosed cavity (Figs. 2 & 3). This

design makes the right wing a closed box that radiates sound

mostly through its dorsal surface (Fig. 8D). Different from most

katydids, the wings of Supersonus spp. are not tilted at an angle over

the notum during sound production. Rather the open side of the

concave right wing is maintained in close contact with and parallel

to the insect notum surface (see Video S1). The notum surface, the

elevated mirror frame, its encircling veins and the adjoining wing

tissue (Fig. 3), together create the enclosed box that we suggest

produces the effect of a monopole-like radiator.

The carrier frequency of Supersonus spp. can be approximated by

a mathematical model of the frequency of a membrane backed by

a cavity:

fn~
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cP

rmdmda

s

where, c is the adiabatic constant of air, P is the pressure in the

cavity, rm is the density of the membrane, dm is the thickness of the

membrane, and da is the thickness (depth) of the air cavity [32].

From measurements of S. piercei (Fig 3) the height of the cavity is

0.21 mm, the membrane thickness is 1.18 mm, and membrane

density (insect cuticle) is ca 1 kg/m23 [33]). This general equation

for a closed cavity with a membrane gives a resonant frequency of

120.4 kHz, a value very close to that of the calling song carrier

(124 kHz for S. piercei) and that obtained from the resonant

frequency of the wing (Fig. 8).

The observed high SPLs in Supersonus spp. can thus be explained

by a combination of several variables. Mirror design and

stridulating motion in Supersonus spp. could potentially optimize

sound emission by approaching a monopole source, where

monopoles are more efficient radiators than dipole sources

[28,34]. We show here that the right wing exhibits a relatively

sharp resonance at specific frequencies (Fig. 8) and that this

resonant frequency is stimulated by elevated tooth strike rates

resulting from scraper elasticity [20]. The observed SPL results

from the interaction of these variables: a monopole-like radiator,

powered tooth impacts driven by scraper elasticity, and wing

resonance (but see Montealegre-Z et al. [20]).

The elevated and projected mirror sits on a ventral ring formed

by the massive vein that entirely encircles the ventral aspect of the

wing (Fig. 3). The mirror frame is separated from this ring by

softer tissue (atrophied cells and veins) that once had a role in

sound radiation, e.g. the harp (Fig. 3). This softer tissue may work

as a speaker surround during sound radiation. In human-made

speakers the surround can be found around the perimeter of the

cone. It is often made of foam, rubber, or other elastic materials

[35]. The speaker surround serves two purposes: 1) it supplies the

returning spring force necessary for the speaker to be a harmonic

oscillator, and 2) it also aligns the cone correctly in the basket,

which entails keeping the voice coil correctly aligned in the gap—

the optimal area in the permanent magnetic field where the coil is

designed to sit. These analogies therefore make the sound radiator

in Supersonus species an interesting model for further studies of

small resonators and speakers.

Other loud insects have been reported in nature. The cicada

Cyclochila australasiae [36], the bladder grasshopper Bullacris

membracioides [37], the water boatman bug Micronecta scholtzi [38],

and the katydid Panacanthus intensus [26], are among the loudest

insects known. The mechanism of the cicada and the bladder

grasshopper can be roughly modelled, regarded as a pulsating

sphere and so a nearly ideal monopole radiator. The mechanism

of the water boatman bug involves a combination of tiny

stridulatory structures and an air bubble resonator acting to

propagate sound in water [39]. And the mechanism of P. intensus

involves wing forces and perhaps wing deformation as well.

However, all these insects operate in the audio range. Loudness at

extreme ultrasonic frequencies is not that common and has been

only reported in Arachnoscelis arachnoides singing at 74 kHz [40].

Since ultrasound suffers excess attenuation in air, animals need

mechanisms to increase amplitude in order to maximize range,

although high intensities might function to impress a female in

terms of male quality.

The observed low wing speeds in both species recorded with

HSV suggest the scraper is moving faster than the wings at closing

to provide an elevated tooth strike rate. Such scraper speed,

uncoupled from wing closure and involving scraper deformation,

could be the result of stored elastic energy as proposed by

Montealegre-Z et al. [20]. Several other species singing above

40 kHz seem to utilise such a mechanism [9,20], including a newly

reported high-ultrasonic Phaneropterinae katydid [41].

Systematics and Taxonomy

A number of species, including those dealt with in the present

paper, were erroneously assigned to the genus Arachnoscelis [42–

46], mainly because of their shared general appearance, i.e. long

and spiny legged and resembling spiders (Fig. 1). Recently

Montealegre-Z et al. [21] redescribed the genus Arachnoscelis, from

a particularly abundant population of Arachnoscelis arachnoides, the

type species of the genus as originally described by Redtenbacher

1891 [47]. Those authors highlighted the fact that A. arachnoides

does not share immediate synapomorphic features with the other

species (including some Supersonus spp.) misdescribed within

Arachoscelis after the original description by Karny 1911 [48].

Gorochov [49] created the subtribe Arachnoscelidina within the

Meconematinae to incorporate two subgenera Centrophisis and

Peruphysis, within Arachnoscelis s. str. Gorochov’s delimitation of

these two subgenera was made primarily on the male terminalia.

However, it is difficult to assign Supersonus to either of these groups

following the descriptions of the author of the genitalia (unfortu-

nately the article lacks illustrations). In a strict molecular analysis

of the Tettigoniidae, Muglestone et al. [13] found that the position

of the Meconematinae and Listroscelidinae was not well resolved.

These subfamilies were recovered as paraphyletic in their analysis.

We place this new genus within the Listroscelidinae until new

molecular analyses, at higher resolution, can illuminate the

position of these groups. In this paper we present a combination

of morphological, biophysical, and behavioural characters that we

believe better help to distinguish this Supersonus from Arachnoscelis.

Supersonus differs from Arachnoscelis in the shape of the male’s

head, male terminalia, and tegminal venation. Adult males of

Arachnoscelis possess a large head with developed mandibles [21],

while the head and mandibles are not specialized in Supersonus. In

Arachnoscelis, the male cerci are elongated and incurved, and the

titillators are longer and sickle-shaped.

A major difference between Arachnoscelis and Supersonus was

found in the male 10th tergite. In Arachnoscelis this sclerite ends in a

pair of rather small lateral lobes. The male genital (subgenital)

plate has a pair of posterolateral lobes with a wide median notch

between them. In Arachnoscelis, the left tegmen preserves a reduced

mirror and harp cell, while in Supersonus the left wing is acoustically

damped (Fig. 8E) and no membranous cells are present (Fig. 2A,

2B & 2C). In Arachnoscelis, the right wing has a functional mirror

and harp cell, but in Supersonus the harp is absent and only the

mirror is preserved as a sound radiating structure.
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In Arachnoscelis, a massive vein (formed by the merging of several

veins) curves towards the anal area, partially encircles the wing but

ends bluntly leaving a soft flexible area (Fig. 2D). This massive vein

weakly connects to CuPaa2 through the narrow handle vein (h in

Fig. 2G) and vein CuPaa2+CuPab. In Supersonus the mirror frame

preserves connection with this massive vein through veins h and

CuPaa2+CuPab as in Arachnoscelis (Fig. 2D). However, in contrast

to Arachnoscelis, the massive vein encircles the entire wing, forming

a ring that is smaller than the mirror frame (see Fig. S3). This ring

appears to constrict the membranes and veins adjacent to the

mirror as if it were forcing the mirror frame to protrude upwards

(Figs. 2D, 2E, and 2F). Therefore the mirror of Supersonus spp. is

situated atop a concave cavity formed by a basal ring (the massive

vein circle) and folded wing cells, and radiates a pure signal using a

very tight baffling system.

Finally, there are strong behavioural differences in sound

production between the two genera. Arachnoscelis arachnoides

produce their calls at ca 74 kHz during the opening phase of

the wings [40], Supersonus males operate as in most katydids, during

the closing phase, reaching their more extreme ultrasonic levels (.

120 kHz).

Supporting Information

Figure S1 External morphology of the left tympanal
slits in Supersonus spp. (A–C) Males. (D–F) Females.

(JPG)

Figure S2 External morphology of the egg in Supersonus
spp. (A–C). Lateral view. (D–F). Top view of the anterior end

showing the micropyle.

(JPG)

Figure S3 Comparative anatomy of the wings of Super-
sonus and Arachnoscelis. (A) The wings of S. piercei and A.

arachnoides under same scale. (B) Wing venation patterns in both

species. Wings have been magnified to a similar size for

comparative purposes.

(JPG)

Table S1 Submitted as a pdf file with information an relevant

references inserted in the same document.

(PDF)

Video S1 High-speed video recording of Supersonus
aequoreus during sound production. Video recorded at

1000 fps, sound sampled at 400 k-samples/s, and slowed down

100x, sound resampled at 48 k-samples/s.

(MP4)

Video S2 High-speed video recording of Supersonus
piercei during sound production. Video recorded at 1000

fps, sound sampled at 300 k-samples/s, and slowed down 110x,

sound resampled at 48 k-samples/s.

(MP4)
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