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Abstract

Although patients with Glioblastoma multiforme (GBM) have grave prognosis, significant variability in patient outcome is
observed. The objective of this study is to identify a molecular signature for GBM prognosis. We subjected 355 mRNA and
microRNA expression profiles to elastic net-regulated Cox regression for identification of an integrated RNA signature for
GBM prognosis. A prognostic index (PI) was generated for patient stratification. Survival comparison was conducted by
Kaplan-Meier method and a general multivariate Cox regression procedure was applied to evaluate the independence of
the PI. The abilities and efficiencies of signatures to predict GBM patient outcome was assessed and compared by the area
under the curve (AUC) of the receiver-operator characteristic (ROC). An integrated RNA prognostic signature consisted by 4
protective mRNAs, 12 risky mRNAs, and 1 risky microRNA was identified. Decreased survival was associated with being in
the high-risk group (hazard ratio = 2.864, P,0.0001). The prognostic value of the integrated signature was validated in five
independent GBM expression datasets (n = 201, hazard ratio = 2.453, P,0.0001). The PI outperformed the known clinical
factors, mRNA-only, and miRNA-only prognostic signatures for GBM prognosis (area under the ROC curve for the integrated
RNA, mRNA-only, and miRNA-only signatures were 0.828, 0.742, and 0.757 at 3 years of overall survival, respectively, P,
0.0001 by permutation test). We describe the first, to our knowledge, robust transcriptome-based integrated RNA signature
that improves the current GBM prognosis based on clinical variables, mRNA-only, and miRNA-only signatures.
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Introduction

Glioblastoma multiforme (GBM) is the most common and lethal

type of primary brain tumor in adults. The median overall survival

(OS) time of patients with GBM ranges from 12 to 17 months [1].

Demographic and clinical variables such as patient age at diagnosis,

preoperative Karnofsky performance score (KPS), and adjuvant

therapy are predictive of the OS of patients with GBM [2,3]. Due to

the pathological and clinical heterogeneity of GBMs, standard

therapeutic protocols based on maximal safe surgical resection

followed by radiation and chemotherapy with temozolomide do not

greatly ameliorate the poor survival of GBM patients [1].

In recent years, efforts have been made to better understand

GBMs through basic researches (molecular and genetic) [4].

Generally, individual gene or protein assays used alone or in

combination with histological features do not predict the survival

of GBM patients and are unable to guide therapeutic decisions.

Although the genes and proteins themselves may play a role in the

biology of GBM, their utility as diagnostic or prognostic markers is

not yet clear, perhaps due to molecular heterogeneity within the

tumor groupings.

By characterizing genetic alterations, epigenetic alterations, and

the expression of cancer genomes, The Cancer Genome Atlas

(TCGA) project has provided a comprehensive way to understand

GBM [5]. As the number of GBM samples in this project grows,

the opportunities to identify prognostic molecular signatures for

patients with GBM are increasing. Intrinsic gene expression

profiles of GBM may be a better predictor of patient survival than

histological features are [6]. Several groups have investigated

molecular prognostic signatures and molecular subtypes of GBM

based on the expression of GBM genomes [7–10]. Kawaguchi et

al. [7] described an expression profiling study of a panel of 32

patients with GBM and identified 25 mRNAs that might predict

their OS. Arimappamagan et al. [8] profiled the mRNA profiles of

123 GBM patients by reverse-transcriptase polymerase chain

reaction and identified 14 mRNAs that could predict survival in

GBM patients. The group of Srinivasan et al. [9] was the first to

propose a microRNA (miRNA) signature, which consisted of 10

miRNAs and could accurately predict GBM patient survival.

These studies mainly focused on mRNA profiles or miRNA

profiles of GBM genomes independently, and the prognostic

signatures were quite different due to a low sample size or the use

of an inappropriate regression method for parameter estimation.

In RNA expression microarray analysis, there is a so-called

‘‘curse of dimensionality’’ problem in that the number of genes is

much larger than the number of samples [11]. In this setting,
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ordinary regression is subject to over-fitting and instable coeffi-

cients, and stepwise variable selection methods do not scale well

[12,13]. Regression by penalization methods has been successfully

adapted to high-dimensional multiple genomic datasets and

outperforms univariate and multivariate regression methods

[14]. At present, the most commonly used penalization methods

are ridge regression, Least Absolute Shrinkage and Selection

Operator (LASSO) regression and a hybrid of these (elastic net

regression); all three methods are based on penalizing the L1

norm, the L2 norm, and both the L1 norm and L2 norm with

tuning parameters. Although the traditional Cox proportional

hazards model is widely used to discover cancer prognostic factors,

it is not appropriate for the genomic setting due to the high

dimensionality and colinearity. Several groups have proposed to

combine the Cox regression model with the elastic net dimension

reduction method to select survival-correlated genes within a high-

dimensional expression dataset and have made available the

associated computation procedures [15–17].

In the current study, we subjected the integrated mRNA and

miRNA profiles of GBM patients to elastic net-regulated Cox

regression analysis and identified an integrated prognostic RNA

signature that can predict the OS of GBM patients. The

robustness and reproducibility of the prognostic value of the

RNA signature was validated in independent external datasets and

compared with the prognostic value of previously reported

mRNA-only and miRNA-only signatures.

Material and Methods

Patient Characteristics and Integrated RNA Profiles
The clinical and raw RNA expression data for 355 patients with

GBM (i.e., TCGA GBM cohort) and 10 patients affected by

epilepsy (i.e., TCGA normal cohort) were obtained from the

TCGA data portal (http://tcga-data.nci.nih.gov/tcga/) in Febru-

ary 2013. Raw data of RNA expression were preprocessed and

log2 transformed, and the probe-centric signals were converted to

gene-centric signals using the Affy [18] and AgiMicroRNA [19]

packages in R software. Detailed methods for sample selection,

raw data preprocessing, and profile integration are described in

Material S1.

Statistical Analyses
Univariate survival analysis was performed for preliminary

screening of clinical variables that were correlated with the OS of

patients with GBM. We also used general multivariate stepwise

Cox regression analysis to evaluate the contribution of patient age,

KPS, radiotherapy, and targeted molecular therapy as indepen-

dent clinical prognostic factors. For GBM patients, OS time was

calculated from the date of the initial pathologic diagnosis and the

date of decease.

The association between continuous RNA expression and OS

was preliminarily assessed using univariate Cox regression

followed by the Benjamini–Hochberg method [20] for multiple

test false discovery rate correction. The RNAs that were

differentially expressed between the TCGA GBM cohort and

the TCGA normal cohort were further selected by Liu’s method

[21] with a fold-change .2.0 and adjusted P value ,0.05. Using

these preliminary significant RNAs, we carried out elastic net–

regulated Cox regression [15–17] with 10,000 iterations and 10

cross–validations to select the variables (i.e., RNAs) and estimate

the regression parameters accurately. RNAs with elastic–net

regulated Cox regression coefficients ? 0 were included in the

integrated prognostic RNA signature. The RNAs in the integrated

RNA signature with HR.1 were defined as risky RNAs for GBM,

and those with HR,1 were defined as protective RNAs.

A prognosis index (PI) for each GBM patient was calculated as a

linear combination of the relative expression levels of the RNAs in

the integrated RNA signature weighted by their elastic net–

regulated Cox regression coefficients. A weighted prognostic index

(WPI) defined as the standard form of the PI was adopted for

GBM patient stratification. Specifically:

PI~
X

i
bi|Gi

WPI~
PI�mean PIð Þ

sd PIð Þ

where, bi is the elastic net–regulated Cox regression coefficient of

the ith RNA, Gi is the relative expression level of the ith RNA,

mean(PI) and sd(PI) are mean and standard deviation of the PI

vector, respectively. GBM patients were assigned into the high- or

low-risk groups according to WPI. The Kaplan-Meier method was

adopted to test the prognostic value of the integrated RNA

signature in GBM, and the log-rank method was used for the

survival distribution difference test.

The ability and efficiency of the integrated RNA signature to

predict GBM patient outcome was assessed by the area under the

curve (AUC) of the receiver-operator characteristic (ROC).

Analysis was conducted by the survivalROC package in R

software [22]. A permutation test with 10,000 permutations was

adopted to test the significance of the observed AUC for the ROC

curve (See Material S1 for details on the permutation test).We also

compared the prognostic ability of the integrated RNA signature

with clinical variables, mRNA-only, and miRNA-only signatures

[8,9]. All analyses were performed using R software (version

2.15.3) [23] and Bioconductor (version 2.11) [24].

Validation of the Prognostic Value of the Integrated RNA
Signature

Five independent external genome-wide expression datasets,

with a total of 201 GBM patients, were used to provide robustness

and reproducibility for validation of the prognostic value of the

integrated RNA signature obtained from the TCGA GBM cohort.

One dataset from Freije et al. (n = 58, GSE4412) [25], one from

Phillips et al. (n = 54, GSE4271) [26], and three from Lee Y et al.

(n = 89, GSE13041) [27,28] —all of which were generated on the

Affymetrix U133A platform—were collected from Gene Expres-

sion Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and prepro-

cessed with the Affy package. The clinical data for the validation

datasets are listed in Table S3.

Gene Ontology and Pathway Analysis
We analyzed the gene ontology (GO) with use of the online tool

DAVID [29] (http://david.abcc.ncifcrf.gov/). Ingenuity Pathway

Analysis (IPA) was employed to obtain information on the

relationships, biological mechanisms and pathways of the genes

corresponding to the integrated RNA signature for GBM

prognosis.

Results

Demographic and Clinical Correlation of Patients in the
TCGA GBM Cohort

At the time of last follow-up for patients in the TCGA GBM

cohort, 289 patients had died due to the disease, 65 were alive, and
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1 had been lost to follow-up. The mean age of the patients in the

TCGA GBM cohort was 57.47 years, and the median survival

time was 428 days (95% confidence interval [CI], 385–463 days).

Demographic and clinical data for this cohort are summarized in

Table S1. As we expected, age, KPS, radiotherapy, chemotherapy,

tumor status, and targeted molecular therapy were significantly

correlated with GBM patient survival (Table S1 and Fig. S1).

Among these factors, age, KPS, radiotherapy, and targeted

molecular therapy were independent factors that correlated with

GBM patient survival by multivariate Cox regression (Table S1).

The results of this preliminary assessment indicated that the

survival data for the TCGA GBM cohort, although containing

censored data, were informative and appropriate for use to identify

a molecular prognostic signature.

Integrated Prognostic RNA Model Construction in the
TCGA GBM Cohort

Two hundred and twenty RNAs (adjusted P value ,0.05) were

preliminarily identified by univariate Cox regression. Sixty-nine

RNAs were selected for further analysis (Table S2) by filtering out

the RNAs that were not differentially expressed in GBM. Elastic

net–regulated Cox regression resulted in the selection of 16

mRNAs and 1 miRNA (Table 1 and Fig. S2) into the integrated

prognostic RNA signature.

As a continuous variable, the PI was significantly correlated

with GBM patient survival (HR = 4.596; 95% CI = 3.108–6.796;

P = 2.13e-14 by Wald test). The WPIs in the TCGA GBM cohort

ranged from 23.431 to 2.124 (Fig. 1A). Because GBM is a vicious

tumor and has a poor outcome, most patients with GBM are at

high risk of death, so to determine how to distribute our cohort

into high-risk and low-risk groups, we chose the point at which the

distribution changed the most abruptly (i.e., WPI = 20.7) as the

cutoff. As a result, the high-risk and low-risk groups consisted of

294 and 61 patients, respectively (Fig. 1A). Survival analysis

showed that the median survival time was significantly shorter in

the high-risk group than in the low-risk group (339.5 versus 596

days; HR = 2.864; 95% CI = 2.016–4.068; P = 4.24e-09 by Wald

test; Fig. 2A). In all of the survival analyses, fewer events occurred

after 3 years, so we tested the ability of the integrated RNA

signature to predict the survival outcome of GBM patients at, and

around, this time point. The AUC was 0.828 at 3 years of OS in

the TCGA GBM cohort (Fig. 2B). The permutation test resulted

in a P value of ,0.0001 (Fig. 1B). Multivariate stepwise Cox

regression analysis revealed that PI, age, KPS, radiotherapy, and

targeted molecular therapy were independent prognostic predic-

tors for GBM patient survival. The HR (HR = 4.167) for the

integrated RNA signature was greater than that of the demo-

graphic and clinical variables, and it implied that the integrated

RNA signature had superior performance compared with

traditional clinical variables (Table 2).

Cell Death and Survival Network
GO annotation for the mRNA component of the integrated

RNA signature revealed that these genes are highly enriched in

regulation of growth (GO: 0040008) and response to estradiol

stimulus (GO: 0032355). Network analysis revealed that the 16

genes are only involved in cell death and survival, tumor

morphology, and cellular development network (score = 49; Fig.

S3). The prognostic genes building relationships with each other

mainly crossed TP53, STAT3, IGFBP2, and UBC. Of these four

genes, TP53, STAT3, and IGFBP2 are very important regulators

for cell growth, cell death, and survival, which suggested that this

pathway plays important roles in long-term survival for the low-

risk GBM patient group. It is well known that increased tumor cell

Table 1. The 17-RNA signature predictive of GBM patient survival.

No. Gene symbol HR Univariate Cox P value BH adjusted P value Permutation test P value

Down-regulated, protective RNAs

1 PCSK1N 0.868 5.65e-04 0.044 0.000

2 KATNB1 0.637 9.31e-05 0.017 0.000

3 DLGAP1 0.651 3.16e-04 0.031 0.000

4 CISD1 0.623 2.94e-05 0.011 0.000

Up-regulated, risky RNAs

5 LMAN2 1.544 8.76e-04 0.049 1.00e-04

6 IGFBP2 1.175 8.00e-05 0.015 0.000

7 CTNNA1 1.794 8.07e-05 0.015 0.000

8 P4HB 1.645 6.54e-05 0.014 0.000

9 IQCG 1.239 1.24e-04 0.020 0.000

10 FAM46A 1.290 8.18e-05 0.015 1.00e-04

11 SLC25A20 1.390 4.77e-05 0.013 0.000

12 STAT3 1.559 4.49e-04 0.038 0.000

13 FMOD 1.199 3.56e-06 0.006 0.000

14 ATP13A3 1.595 2.61e-05 0.011 0.000

15 EFEMP2 1.297 1.34e-06 0.004 0.000

16 BZW1 1.964 1.98e-04 0.024 0.000

17 hsa-miR-148a 1.148 5.74e-05 0.013 0.000

Protective RNAs (HR.1) were down-regulated and risky RNAs (HR,1) were up-regulated in GBM versus normal control. These 17 RNAs correlated with the OS of GBM
patients by elastic net–regulated Cox regression. BH, Benjamini-Hochberg method.
doi:10.1371/journal.pone.0098419.t001

An Integrated RNA Expression Signature for GBM Prognosis

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e98419



growth shortens GBM patient survival. Therefore, the candidate

genes are suitable for GBM prognosis.

Due to the elastic net variable selection algorithm combines the

superiorities of both LASSO regression for dimension reduction

and ridge regression for handling colinearity and the colinearity

between miRNA and its targets. Thus, targets of hsa-miR-148a in

the prognostic RNA signature may exist. Using TargetScan

software (http://www.targetscan.org/) [30], we found that

DLGPA1 was a potential target of hsa-miR-148a (Fig. S3). The

expression of DLGPA1 and hsa-miR-148a was negatively correlated

in the TCGA GBM cohort (P = 0.0002 and 0.0005 by Pearson and

Spearman correlation tests, respectively) but was not correlated in

the TCGA normal cohort (P = 0.821 and 0.967 by Pearson and

Spearman correlation tests, respectively), implying that the

interaction between hsa-miR-148a and DLGPA1 may exist in

GBM patients but not in control subjects. In addition, IPA results

revealed that DLGAP1 is regulated by TP53 and that hsa-miR-148a

is indirectly associated with cell growth and cell survival pathways

through chemical molecules and protein complex. Thus, hsa-miR-

148a regulation of DLGAP1 may play an important role in

predicting GBM patient survival.

Prognostic Value of the Integrated RNA Signature in the
Validation GBM Cohort

Because of insufficient published datasets that have both mRNA

and miRNA profiles for the same GBM patients and because our

integrated prognostic RNA signature consisted almost entirely of

mRNAs, we assembled mRNA expression data from five external

independent datasets that were generated from the Affymetrix

U133A platform to validate the robustness and reproducibility of

the prognostic value for the mRNA component of the RNA

prognostic signature.

The five expression datasets were combined and called the

validation GBM cohort (n = 201 samples). Raw CEL files were

preprocessed by the Affy package with the same parameters as

described for the TCGA GBM cohort, and the expression matrix

of the 16 mRNAs was generated. In the setting of 16 variables (i.e.,

mRNAs) and 201 samples, the sample size was enough to

accurately estimate the regression coefficients by ridge regression.

Using the same cutoff value (WPI = 20.7), 158 GBM patients

from the validation cohort were classified as high risk and 43 as

low risk. Survival analysis showed that GBM patients in the low-

risk group lived significantly longer than patients in the high-risk

group (HR = 2.453; 95% CI = 1.662–3.634; Wald test P = 3.84e-

06; Fig. 2C). The AUC of the ROC curve for the mRNA

component of the integrated RNA signature was 0.780 at 3 years

in the validation GBM cohort (Fig. 2D). The HR calculated based

on the integrated RNA signature in the TCGA GBM cohort was

2.864, When the hsa-miR-148a was removed from this signature,

the value dropped to 2.625. The HR in the validation cohort

(HR = 2.453) was less than the HR in the TCGA GBM cohort and

close to the HR with hsa-miR-148a removed in the TCGA GBM

cohort.

Comparison of Prognostic Ability of the Integrated RNA
Signature and Other Prognostic mRNA or miRNA
Signatures

We compared the prognostic value of the integrated prognostic

RNA signature with two external prognostic signatures, a 10-

miRNA model [9] and a 14-mRNA model [8], that have been

used for risk stratification of GBM patients.

GBM patient risk stratification based on the 10-miRNA model

followed by survival analysis showed a significant survival

difference between the high-risk and low-risk patient groups in

the TCGA GBM cohort (HR = 2.135; 95% CI = 1.601–2.856;

Wald test P = 2.79e-07; Fig. S4A). Similarly, for the 14-mRNA

model, the OS was significantly poorer for GBM patients in the

high-risk group than for patients in the low-risk group in the

TCGA GBM cohort (HR = 1.946; 95% CI = 1.443–2.681;

P = 2.17e-05 by Wald test; Fig. S4B). The AUC of the ROC

curve for each model in the TCGA GBM cohort at 3 years was

0.757 and 0.742, respectively (Fig. S4C and Fig. S4D). These

results validated the prognostic value of the 10-miRNA model [9]

Figure 1. WPI distribution and AUC histogram of the TCGA GBM cohort. A, WPI distribution in the TCGA GBM cohort (n = 355). The point at
which the distribution changed the most abruptly, which corresponded to (WPI = 20.7), served as the distribution cutoff. Patients were categorized
as high risk (n = 294, left double-headed arrow) or low risk (n = 61, right double-headed arrow). B, Histogram of the empirical distribution of AUC
generated from 10,000 permutations. The vertical dashed line is the observed AUC in the TCGA GBM cohort.
doi:10.1371/journal.pone.0098419.g001

An Integrated RNA Expression Signature for GBM Prognosis

PLOS ONE | www.plosone.org 4 May 2014 | Volume 9 | Issue 5 | e98419

http://www.targetscan.org/


Figure 2. Kaplan-Meier curves and ROC curves for the integrated RNA signature. Kaplan-Meier plots for GBM patients in high-risk and low-
risk groups segregated by the integrated RNA signature in the TCGA GBM cohort (A) and the validation cohort (C). The significance of survival
difference between groups was evaluated by log-rank test (P = 1.02e-09 and 3.76e-08, respectively). The respective ROC curves had AUCs of 0.828 (B)
and 0.780 (D). The permutation P value was computed to test the null hypothesis (AUC = 0.5) using 10,000 permutations.
doi:10.1371/journal.pone.0098419.g002

Table 2. Multivariate Cox stepwise regression of PI and demographic and clinical variables.

Variable HR 95% CI P value

PI 4.167 2.551–6.808 1.20e-08

Age 1.017 1.005–1.029 0.004

KPS 0.989 0.979–1.000 0.047

Radiotherapy 0.401 0.238–0.674 0.001

Targeted molecular therapy 0.619 0.446–0.859 0.004

The PI based on the integrated 17-RNA signature was an independent prognostic predictor for GBM patients relative to the demographic and clinical variables, and it
was superior to clinical variables in predicting GBM patient survival. The significance of the regression model was evaluated by Wald test (P = 8.88e-16).
doi:10.1371/journal.pone.0098419.t002
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and the 14-mRNA mode [8]. Multivariate stepwise Cox regression

that included the PI we generated from the integrated RNA

signature and the PIs from the two external RNA models as

covariates showed that all three models were found to be

independent significant predictors for GBM patient survival.

The HRs corresponding to the integrated RNA, 10-miRNA, and

14-mRNA models were 2.689, 1.673 and 1.520, respectively

(Table 3), which implied that our integrated RNA signature was

superior to the mRNA-only model or the miRNA-only model for

predicting GBM patient survival. GBM patient risk stratification

based on the 14-mRNA model followed by survival analysis

showed a significant survival difference between the high-risk and

low-risk patient groups in the validation GBM cohort

(HR = 1.919; 95% CI = 1.358–2.711; Wald test P = 2.2e-04).

Multivariate Cox regression with PIs generated from the 14-

mRNA model and 16-mRNA model in the validation cohort

shows that both models are independent significant factors for

GBM prognosis (Table S4). However, the hazard ratio (HR) of the

16-mRNA model is greater than the 14-mRNA model which

implies the 16-mRNA model also superior to the 14-mRNA model

in the validation cohort.

Discussion

In this study, we proposed a novel integrated mRNA and

miRNA signature including that predicting GBM patient survival

more accurately than clinical parameters, mRNA-only signature,

and miRNA-only signature. Moreover, we were able to validate

the prognostic value of our signature in five additional datasets of

GBM. Pathway analysis revealed that genes in our signature were

involved in cell death and survival. All results suggested that the

integrated signature was suitable and had superior prognostic

value for GBM patient prognosis. In addition, a potential

interaction between hsa-miR-148a and DLGAP1 correlated with

GBM patient survival was identified. Our study provides novel

insights into the significance of molecular markers in predicting

the prognosis of GBM patients.

Although markers for classifying GBM molecular subtypes have

been identified [10], markers associated mainly with the patho-

genesis of GBM may be not prognostic. For example, in the

analysis of Verhaak et al. of the TCGA data, biologically based

subtypes were not prognostic of GBM patient outcome [10]. In

contrast, we identified common RNAs that consistently drive the

outcome for GBM patients irrespective of the clinical or molecular

subtype. For GBM prognostic markers discovery, studies have

been focused on either mRNA [7,8] or miRNA [9] profiles and an

integrated RNA analysis is in need.

Of the prognostic genes, IGFBP2, EFEMP2, SLC25A20, FMOD,

BZW1, and STAT3 were previously reported to be associated with

GBM patient survival [31–36]. To the best of our knowledge, we

are the first to report the other 11 candidate genes. Consistent with

the GO result, we found that IGFBP2, STAT3 and CISD1 were

involved in the regulation of the growth process, which plays a

vital role in GBM malignancy. CISD1 plays a key role in regulating

maximal capacity for electron transport and oxidative phosphor-

ylation; decreased CISD1 induces the dysregulation of electron

transport and oxidative phosphorylation [37]. In our study, the

expression of CISD1 was down-regulated, by which we infer that

lower expression of CISD1 might be due to glycolysis enhancement

that could suppress oxidative phosphorylation (i.e., the Warburg

effect).

Among the risky genes, CTNNA1, P4HB, and LMAN2 are

associated with tumor development. CTNNA1 plays a crucial role

in cell differentiation and is over-expressed in GBM [38]. Recent

research has found that P4HB is over-expressed in temozolomide-

resistant GBM cells [39], so its up-regulation may confer drug

resistance in GBM. LMAN2 is known to be over-expressed in

gastric cancer [40], and we found it was over-expressed in GBM as

well. LMAN2 mainly participates in the early secretory pathway

and is involved in glycosylation alteration by sorting glycoproteins

carrying high mannose-type glycans, which is a general feature of

cancer cells [41]. Although the sugar-binding properties of this

gene has been characterized in detail, its biological function in

GBM has not yet been identified. The roles of the rest of the up-

regulated genes identified–IQCG, FAM46A, and ATP13A3–in

GBM remain unclear.

We identified three protective genes that were down-regulated

in GBM patients. KATNB1 mainly participates in the disassembly

of microtubules, and it may be involved in tumor development

[42]. We found KATNB1 down-regulated in our analysis and

down-regulation of KATNB1 would decrease its ability to

disassemble microtubules, thereby keeping tumor cells alive.

PCSK1N functions in the control of the neuroendocrine secretory

pathway and is a potent inhibitor of PC1/3 [43,44], but its role in

GBM is unclear. DLGAP1 is part of the postsynaptic scaffold in

neuronal cells. Down-regulation of DLGAP1 has reported in

colorectal tumor [45]. The decreased DLGAP1 expression in

tumor is mainly due to hypermethylation and that DLGAP1 might

play a growth-suppressive role in colorectal tumor [45].

Finally, we found that hsa-miR-148a was inversely correlated

with GBM patients’ survival. This miRNA was previously reported

by other researchers to be up-regulated in GBM [46,47], although

how it might be associated with tumorigenesis and patient survival,

its function, and its biological process in GBM are unclear. Only

one suggestion has been made, that hsa-miR-148a is oncogenic in

GBM [48]. Interestingly, we found that DLGAP1 was not only one

of the target genes of hsa-miR-148a but also a prognostic gene in

our study. The dysregulation of both hsa-miR-148a and DLGAP1

may be an important predictor of GBM patient survival.

In conclusion, we have identified a 17-RNA integrated

signature that can predict the survival outcome of GBM patients

more accurately than previously developed mRNA or miRNA

signatures have. Our findings may help researchers understanding

Table 3. Multivariate Cox stepwise regression of PIs of three RNA prognostic models of GBM patient survival.

PI HR 95% CI P value

17-RNA model 2.689 1.651–4.382 7.13e-05

10-miRNA model 1.673 1.180–2.373 0.004

14-mRNA model 1.520 1.041–.217 0.030

All three models were significant predictors of GBM patient survival, but the integrated 17-RNA model was superior. The significance of the regression model was
evaluated by Wald test (P = 6.22e-15).
doi:10.1371/journal.pone.0098419.t003
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of GBM cell death and survival, develop targeted therapy, and

identify high-risk GBM patients for better disease management.

Supporting Information

Figure S1 Kaplan-Meier OS curves for demographic
and clinical variables in the TCGA GBM cohort. Age (in

years) at initial pathologic diagnosis (A), KPS (B), patient tumor

status (C), chemotherapy (D), radiotherapy (E), and targeted

molecular therapy (F) were each statistically significant variables

(P,0.05 by log-rank test) by univariate survival analysis.

(TIF)

Figure S2 Cross-validation error curve. The left vertical

line shows where the cross-validation error curve hits its minimum

(lambda = 0.56). The right vertical line shows the most regularized

model with cross-validation error within 1 standard deviation of

the minimum. The minimum was achieved by a fairly regularized

model (n = 17), but the right line indicates that the null model (no

coefficients included) is within 1 standard deviation of the

minimum. The numbers at the top of the figure indicate the

number of nonzero coefficients.

(TIF)

Figure S3 Cell death and survival, tumor morphology,
and cellular development network. Schematic representa-

tion of the most significant network for the integrated RNA

signature using IPA. This network had a high score of 49. Green

and red nodes represent down-regulated and up-regulation genes,

respectively. The red line between has-miR-148a and DLGAP1

represented negative regulation that predicted by TargetScan.

(TIF)

Figure S4 Kaplan-Meier OS curves and ROC curves for
the 10-miRNA and 14 mRNA prognostic signatures.
High-risk and low-risk patients in the TCGA GBM cohort were

segregated by the 10-miRNA (A) or 14-mRNA (B) signature. The

significance of the survival difference between groups was evaluated

using the log-rank test (P = 8.35e-07 and 6.13e-05, respectively).

The ROC curves had AUCs of 0.757 (C) and 0.742 (D).

(TIF)

Table S1 Survival analysis of patients in the TCGA
GBM cohort (n = 355), by demographic and clinical
variables. Variables with P,0.05 by log-rank test were

considered statistically significant and variables with P,0.05 by

multivariate Cox regression were considered as independent

clinical variables for GBM patient prognosis. The significance of

the multivariate Cox regression model was evaluated by Wald test

(P = 2.41e-10).

(DOCX)

Table S2 RNAs preliminarily selected by univariate Cox
regression (n = 69). RNAs up-regulated and risky (HR.1) or

down-regulated and protective (HR,1) in GBM versus normal

control. NA, not available.

(DOCX)

Table S3 Demographic characteristics of patients of the
validation GBM cohort (n = 201). Vital status denotes patient

survival outcome at the last follow up: 1, deceased and 0, alive.

(DOCX)

Table S4 Multivariate Cox stepwise regression of PIs
generated from the 16-mRNA model and the 14-mRNA
model in the validation GBM cohort.

(DOCX)

Material S1 Supporting material.

(DOC)
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