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Abstract

Despite the pleiotropic effects of the progesterone receptor in breast cancer, the molecular mechanisms in play remain
largely unknown. To gain a global view of the PR-orchestrated networks, we used next-generation sequencing to determine
the progestin-regulated transcriptome in T47D breast cancer cells. We identify a large number of PR target genes involved
in critical cellular programs, such as regulation of transcription, apoptosis, cell motion and angiogenesis. Integration of the
transcriptomic data with the PR-binding profiling of hormonally treated cells identifies numerous components of the small-
GTPases signaling pathways as direct PR targets. Progestin-induced deregulation of the small GTPases may contribute to the
PR’s role in mammary tumorigenesis. Transcript expression analysis reveals significant expression changes of specific
transcript variants in response to the extracellular hormonal stimulus. Using the NET1 gene as an example, we show that the
PR can dictate alternative promoter usage leading to the upregulation of an isoform that may play a role in metastatic
breast cancer. Future studies should aim to characterize these selectively regulated variants and evaluate their clinical utility
in prognosis and targeted therapy of hormonally responsive breast tumors.
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Introduction

Progesterone is a steroid hormone that plays a pivotal role in

female physiology by co-coordinating diverse aspects of the

reproductive system [1] and regulating mammary gland morpho-

genesis [2]. It exerts its actions through the two isoforms of the

progesterone receptor (PR-A and PR-B), which are ligand-

activated transcription factors that belong to the nuclear receptor

super-family. Deregulation of progesterone signaling is implicated

in the development and progression of cancer in the hormone’s

target tissues [3]. In breast cancer the role of PR is well

documented both in vivo and in vitro [4]. Experiments in PR

knock-out mice demonstrated that progestins promote mammary

tumor progression and growth [2,5,6]. Two large clinical studies in

women [7,8] have also provided supporting evidence for a

tumorigenic role of progesterone in the mammary tissue. In vitro

studies have confirmed that progestin treatment affects important

cellular programs, such as proliferation, apoptosis and differenti-

ation [3,9], all of which have the potential to lead to a malignant

phenotype when deregulated.

To develop effective therapeutic schemes against PR signaling

in breast cancer, a major requirement is the determination of the

full repertoire of progestin-regulated genes in target cells. Gene

expression microarray studies have been useful in characterizing

transcriptional effects of progestin signaling [10,11,12,13,14,15].

However, this approach is lacking due to high levels of noise,

relatively low sensitivity and limited number of array probes

suggesting that a plethora of PR-regulated genes may still remain

undetected.

More than 90% of human genes can generate multiple

transcript variants, which are, oftentimes, designated with tissue-

or developmental- specific functional roles [16]. A growing

number of studies have demonstrated the expression of cancer-

associated variants participating in specific cellular programs,

including apoptosis, cell growth, angiogenesis and cell motility,

during tumor initiation and progression [17,18]. Detection and

characterization of such variants can improve our understanding

of the molecular mechanisms in play; it can also have significant

impact in the clinic, since they have emerged as a promising tool

for the diagnosis and management of the disease [19,20]. Studies

using exon-specific microarrays have identified estrogen-regulated

transcript variants in breast cancer cell lines [21,22]. However, it is

currently unknown to what extent progestin-regulated transcript

variants contribute to the expression profile of breast cancer cells.

The gene expression microarrays studies described above could

not discriminate between variants and the reports of up- or down-

regulation of mRNA expression levels are confounded by the

effects of mixtures of these transcripts [19].

To address the above issues, we employed paired-end, next-

generation sequencing (NGS) to interrogate the transcriptome of

vehicle- and progestin- treated T47D breast cancer cells in an

unbiased way. We identified hundreds of PR regulated genes that

participate in important cellular processes, including apoptosis and

transcription as reported before [14], but also angiogenesis and
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cell migration. More importantly, we identified a novel group of

PR targets that are involved in small-GTPases signaling. By

employing ChIP-seq experiments for the PR, we showed that

many of these genes were under direct progestin transcriptional

regulation via the receptor’s binding in their promoters or distal

enhancer elements. Small-GTPases signaling pathways are widely

implicated in normal physiology and disease [23]. According to

our data some of them may be subject to PR-regulation and may

be mediating the receptor’s effects in breast cancer cells. On the

transcript level we find that the receptor can dictate alternative

promoter use decisions leading to significant expression changes of

specific transcript variants as a response to the external hormonal

stimulus. Transcript variants often encode for unique protein

isoforms with different, even antagonizing, functions [24];

consequently, expression data on the transcript level are necessary

to paint an accurate picture of the PR-regulated proteome.

In overall, our findings provide new insights into the molecular

mechanisms of PR signaling and the progestin-regulated tran-

scriptome of breast cancer cells.

Materials and Methods

Cell culture and Reagents
T47D cells were purchased from ATCC and were grown in

RPMI supplemented with 10% fetal calf serum and glutamine (Life

Technologies) at 37uC under 5% CO2. Before hormonal treatment

(10 nM R5020) cells were plated in RPMI/charcoal-stripped fetal

bovine serum either 24 hours (RNA isolation) or 3 days (ChIP

assays) before harvesting. The a-PR antibody (catalog no. sc-7208)

was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz,

CA), the a-PolII was from Covance (catalog no. MMS-126R) and

the antibody against mono/di/trimethyl-Histone H3 (Lys4) was

from Millipore (clone AW304 catalog no 04-791).

Reverse Transcription qPCR
Total RNA was extracted from cells using the Trizol reagent

(Life Technologies), and 2.5 mg of RNA were reverse transcribed

using the RevertAid First-Strand cDNA Synthesis System

(ThermoCcientific) according to the manufacturers’ instructions.

cDNA was amplified by quantitative PCR (qPCR) using the SYBR

FAST Universal 2X qPCR Master Mix (KAPA Biosystems). All

experiments were performed in at least 3 biological replicates.

Statistical analysis was performed by Student’s t-test (compared

with vehicle treatment). Primer sequences used for RT-qPCR are

available upon request.

Chromatin immunoprecipitation assays
ChIPs were performed as described before [25]. Briefly, T47D

cells were grown for 3 days in RPMI/charcoal-treated fetal calf

serum and then treated with 10 nm R5020 for 1 hr. Fixation with

1% formaldehyde proceeded for 10 min at 37uC and was stopped

by the addition of glycine to a final concentration of 0.125 M.

Cells were harvested, resuspended in lysis buffer (50 mM Tris-HCl

pH 8, 10 mm EDTA, 1% sodium dodecyl sulfate) and fragmented

chromatin (500–1000 bp) was generated through sonication

(Misonix sonicator). Samples were diluted in ChIP dilution buffer

(1.2 mM EDTA; 167 mM NaCl; 16.7 mM Tris-HCl, pH 8; 1.1%

Triton X-100; and 0.01% SDS), precleared for 2 hr at 4uC with

protein A+G magnetic beads (Life Technologies) and used for the

ChIP assays with the addition of 5 mg of antibody. The next day

the recovered immunocomplexes were washed with the following

buffers: washing buffer I (2 mM EDTA; 20 mM Tris-HCl,

pH 8.0; 0.1% SDS; 1% Triton X-100; 150 mM NaCl), washing

buffer II (2 mM EDTA; 20 mM Tris-HCl, pH 8.0; 0.1% SDS;

1% Triton X-100; 500 mM NaCl), washing buffer III (1 mM

EDTA; 10 mM Tris-HCl, pH 8.0; 1% Nonidet P-40; 1%

Deoxycholate; 0.25 mM LiCl) and TE (1 mM EDTA, 10 mM

Tris-HCl, pH 8.0). After elution, cross-linking was reversed by an

overnight incubation at 65uC, samples were incubated with

proteinase K and DNA was extracted with phenol-chloroform and

EtOH precipitation. Samples were analyzed by qPCR and their

enrichment over input was calculated by the 22DCt method after

correcting for the IgG negative controls. All experiments were

performed in 2–4 biological replicates. Statistical analysis was

performed by Student’s t-test. Primer sequences used for ChIP-

qPCR are available upon request.

Library preparation for next-generation sequencing
experiments

For RNA-sequencing, total RNA was extracted from T47D

cells using the Trizol reagent (Life Technologies) and was treated

with Turbo DNase I (Ambion) for 30 min at 37uC. poly(A)+ RNA

was isolated using oligo(dT)-conjugated magnetic beads (FastTrack

MAG mRNA Isolation Kit, Life Technologies). Library prepara-

tion was performed with the ScriptSeq kit (Epicentre) according to

the manufacturer’s instructions. Briefly, poly(A)+ RNA was

fragmented at 90uC for 6 min and was, subsequently, subjected

to cDNA synthesis. cDNA was tagged at the 3’ end, purified using

the Agencourt AMPure XP system (BeckmanCoulter), and it was

then converted to double-strand cDNA. This product was PCR-

amplified for 11 cycles; during this step completion of the addition

of the Illumina adaptor sequences and incorporation of an index

(ScriptSeq Index PCR Primers, Epicentre) was performed. The

PCR product was treated with Exo I for 15 min at 37uC and was

purified as described above.

For ChIP-sequencing, DNA was immunoprecipitated from ,20

million cells, grown and treated as described above, and then it

was purified and sonicated to ,400 bp fragments using the

Bioruptor (Diagenode). Fragmented DNA was used for library

construction using the NEBNext ChIP-seq sample Prep Master

Mix Set 1 (New England Biolabs) and following the manufactur-

er’s instructions. Briefly, this product underwent end repair, dA-

tailing and adaptor ligation using the Illumina specific adaptors.

In-between enzymatic steps the samples were purified using

Agencourt AMPure XP system (BeckmanCoulter). The libraries

were PCR-amplified for 11–14 cycles using Phusion HotStart

DNA polymerase.

One ml of each library was run on the Bioanalyzer to assess

library quantity and quality. Libraries were run on Illumina HiSeq

2000 using 50-bp paired-end sequencing and following standard

protocols.

Next-generation sequencing data analysis and
differentially expressed gene (DEG) testing

50-bp paired-end sequencing was performed for PR-immuno-

precipitated DNA from R5020-treated cells, for genomic input

DNA and for mRNA isolated from progestin- and vehicle- treated

cells. The FASTQC package (http://www.bioinformatics.

babraham.ac.uk /projects/fastqc/) was used to assess quality of

reads. When necessary, Trimmomatic v.0.3 [26] was used to trim

reads by applying the parameters LEADING:3 TRAILING:3

SLIDINGWINDOW:4:15 MINLEN:36.

For ChIP-seq data analysis, reads were mapped to the human

genome (hg19) using Bowtie v.1.1.2 (default parameters, hg19)

[27]. SAM tools [28] were used to select for high quality, uniquely

mapped, paired-end reads leading to 14,148,482 total reads.

MACS [29] was used for peak calling with default parameters (fold
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enrichment $10 and p-value#10-5) using an equal number of

reads from input DNA as a control. For RNA-seq data analysis,

after quality filtering, reads were aligned to the UCSC hg19

reference genome using TopHat2 allowing up to two mismatches

and discarding reads mapping at multiple locations [30]. This led

to the generation of 76,118,132 and 73,174,398 unique paired-end

reads for EtOH- and R5020- treated cells respectively. Transcript

abundance was quantified using Cufflinks 1.2.1. [31] and the

iGenomes Ensembl GTF annotation file as a reference. The

normalized expression level of each transcript was measured by

FPKM (Fragments Per Kilobase of transcript per Million mapped

reads). A threshold of 10 mapped reads was used to define

detection at the gene level.

For subsequent analyses we considered the information both at

the gene and transcript level. Differentially expressed genes and

transcripts were called using Cuffdiff 2 that utilizes Student’s t-test

to determine if two datasets are different from each other [32]. By

default, Cuffdiff 2 generates the lowest p-value to be 561025.

Genes and transcripts showing an FPKM equal or higher than one

at least under one condition (progestin- or vehicle- treated) were

retained for further analysis. A threshold of 1.5 was applied on the

fold change. Given that the RNA-Seq DEG algorithms generally

result in much higher adjusted p-values (0.03,0.12) than their

microarray counterparts (,0.01) [33], and based on the fact that

several previously identified PR-regulated genes were listed in our

data with p-values up to 0.38, we decided to test higher p-values as

cut-offs for the identification of PR-regulated genes. Extensive

validation of our data by RT-qPCR led us to finally use a p-value

cut-off of 0.15. Using higher p-values led to an increase in the

number of false positives. For differentially expressed transcripts

the p-value cut-off was #0.05. Further manipulation of the data

was done with in-house scripts. All datasets have been deposited to

GEO (accession number GSE51428).

Gene Ontology analysis
For functional enrichment analysis of the differentially ex-

pressed genes (DEGs) the module FatiGO [34] of the Babelomics

bioinformatics suite [35] and the DAVID functional annotation

tools [36] were used. Both algorithms use Fischer’s exact test to

check for significant over-representation of Gene Ontology (GO)

annotations, but differ to the gene reference background they use.

FatiGO compares DEGs with respect to the whole human

genome, while DAVID is more conservative and uses genes

associated with terms in the corresponding annotation categories

as the reference background.

Results and Discussion

Characterization of the RNA-sequencing data
In order to determine the PR-regulated transcriptome in the

breast cancer milieu, mRNA was isolated from T47D cells and

was subsequently subjected to 50-bp paired-end sequencing.

Reads were aligned against the UCSC hg19 reference genome

using TopHat 2 [30] and transcript assembly of the aligned reads

was performed using Cufflinks [31] and the Refseq database for

reference gene annotation (see Materials and Methods).

To evaluate our data, we performed an initial analysis on the

gene level. The global profiles of gene expression between the two

samples were highly correlated with the Pearson correlation

coefficient being 0.97 (Figure 1A). Among the top 100 most

highly expressed genes (data not shown), we identified the

expected housekeeping ones (e.g. GAPDH, PPIA and TUBA1B)

and several genes associated with the healthy (e.g. PRLR), or the

neoplastic mammary tissue (e.g. PIP, KRT19 and MUC1)

[37,38,39]. Also included in this list there were members of the

heat shock protein 90 family (HSP90-AA1, -AB1 and -B1), known

molecular chaperones of SHRs [40], and several proto-oncogenes,

such as AGR2 [41], RAC1 [42] and GNAS [43]. Notably, we also

found very highly expressed the guanine nucleotide binding

protein (G protein), beta polypeptide 2-like 1 (GNB2L), calnexin

(CANX), calreticulin (CALR) and beta-2 microglobulin (B2M); these

are all genes associated with the breast cancer phenotype and they

were among the most highly expressed in all breast tumors assayed

by RNA-sequencing in a recent study [44].

In overall, the above findings validate our RNA-sequencing

data including the transcript assembly and the calculation of

transcript abundance as FPKM values.

Identification and validation of differentially expressed
genes

Gene expression microarray experiments are commonly per-

formed after 6–24 hr of progestin treatment and inevitably identify

not only primary but also secondary PR targets. The greatly

enhanced sensitivity and accuracy delivered by deep-sequencing

allowed us to use a shorter treatment period (3 hr) to enrich the

differentially regulated genes we identify for primary PR targets.

The transcriptomes of the progestin- and vehicle- treated cells

were compared using Cuffdiff 2 [32], a differentially expressed

genes algorithm. In total, we identified 1287 DEGs and a detailed

list of them is provided in Table S1. The log2(fold change) of the

ratio of EtOH-treated to R5020-treated is given. We set two

stringency thresholds to classify all DEGs (see Materials and

Methods). The high stringency group included 711 genes and the

low stringency group included 576 genes (Figure 1B). The

majority of the PR targets were up-regulated after progestin

treatment (896 genes), while 391 were down-regulated

(Figure 1C).

To validate our RNA-seq experiments and data analysis, the

expression levels of several DEGs from both stringency groups

were assayed by RT-qPCR and a side-by-side comparison of these

results with the RNA-seq data is shown in Figure 2. All genes

examined were found to be progestin-regulated in agreement with

the RNA-seq data. In Figure 2A, we present the results from the

high stringency genes. We examined a larger number of genes

from the low stringency group (Figure 2B) to ensure that we did

not include false positives in our analysis. We observed from our

RNA-seq data analysis that most genes in the low stringency group

were downregulated (Figure 1C), thus we selected to examine an

equal number of induced and repressed genes from this group

(Figure 2B). For two of these genes, ABCC3 and PYCARD, the

degree of downregulation was not accurately measured by RNA-

seq, but in overall, changes in expression levels detected by the two

techniques were very similar for most genes tested providing

additional support for the accuracy of the RNA-seq data.

We also compared our dataset with several other previously

published datasets of PR-regulated genes generated by microarray

expression experiments in T47D cells [10,11,12,13,14,15]. We

found that both stringency groups contained previously reported

PR-regulated genes (350 out of the 1287) (Table S1).

The above data, taken together, further confirm the validity of

our RNA-seq data and analysis and lead to the identification of

hundreds of new PR targets.

Early progestin-induced gene expression changes in
breast cancer cells

To gain some insight into the biological significance of our data,

we performed gene ontology analysis for all DEGs using the tools

PR-Regulated Transcriptome in Breast Cancer Cells
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FatiGO [34] and DAVID [36]; both algorithms yielded similar

results. GO analysis was organized around the three basic

"principles" of biological process, molecular function and cellular

component (Figure 3).

Key biological processes associated with breast cancer initiation

and progression, such as regulation of transcription, apoptosis and

cell proliferation, were found to be highly enriched among PR

targets (Figure 3A). The DEGs involved in regulation of cell

death are listed in File S1, table A. Interestingly, they include an,

approximately, equal number of genes that promote or suppress

apoptosis (Figure S1) in accordance with the dual role of PR in

cell proliferation [45]. Right after progestin treatment T47D cells

go through a proliferative phase followed by a second phase of

growth inhibition [45]. Our data show that early transcriptional

responses are not restricted to cell proliferative genes, but also

include induction of genes with apoptotic effects. This suggests that

the PR initiates simultaneously a proliferative and an anti-

proliferative program and the decision which one will prevail,

probably, depends upon the specific cell context. These findings fit

with the hypothesis by Lange et al that progesterone acts as a

priming agent that induces cellular changes that permit other

factors to influence the ultimate proliferative or differentiative state

of the cells [46].

The most numerous target group (258 out of 1200 genes

analyzed by DAVID) is comprised of genes playing a role in

regulation of transcription (File S1, table B). It includes members

of principal families of transcription factors, such as the GATA,

FOX and E2F families that control a wide spectrum of biological

functions. Deregulation of the expression of these factors has a

crucial role in the development and progression of cancer

[47,48,49]. Another example is the family of the Krüppel-like

factors (KLF) with most of its members being under progestin

regulation in T47D cells (Table S1). Our data confirm previous

findings that several KLFs are PR targets (see Table S1) and they

add to this list KLFs 3, 6, and 7 (Table S1 and Figure 2B).

Recent studies have documented KLF family members in the

control of cell proliferation, differentiation, and apoptosis in

steroid-responsive mammary and uterine endometrial cells [50];

some of them have been implicated in breast cancer progression

[50]. It is reasonable to assume that cross-talk between KLF and

PR signaling may partly mediate the receptor’s effects on these

processes. Deregulation of PR signaling may lead to aberrant

Figure 1. Identification of PR-regulated genes by RNA-sequencing. (A) Scatter plot of global gene expression in the EtOH- and R5020-
treated T47D cells. In total, 10,997 and 10,930 genes (FPKM.1) are expressed respectively. The high Pearson correlation coefficient (r = 0.966)
indicates similar expression profiles between the two samples as expected. (B) Volcano plot (p-value vs. fold change of expression) for all differentially
expressed genes (DEGs) between vehicle- and progestin- treated cells. To determine DEGs, a threshold of 1.5-fold change was set and p-value cut-offs
were 0.05 and 0.15 for the high (dark blue) and low (light blue) stringency groups respectively. (C) A total of 711 up-regulated and 576 down-
regulated genes were identified and classified to two stringency groups, as described above.
doi:10.1371/journal.pone.0098404.g001

Figure 2. Differentially expressed genes detected by RNA-seq are validated by RT-qPCR. T47D cells were treated for 3 hr with R5020 or
EtOH. RNA was extracted and used for RT-qPCR using specific primers for the genes shown. Expression levels were normalized to GAPDH. A side-by-
side comparison of the RT-qPCR results with the RNA-seq data is shown. (A) Expression levels of high stringency genes as measured by RT-qPCR and
RNA-seq. FOXA1 was the only selected down-regulated gene and its expression pattern was confirmed. (B) Expression levels of low stringency genes
as measured by RT-qPCR and RNA-seq. Five downregulated (ABCC3, GLIS2, HEXIM2, KLF3 and PYCARD) and five upregulated genes were selected and
confirmed by RT-qPCR. Error bars represent the SEM.
doi:10.1371/journal.pone.0098404.g002
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expression of KLFs and loss of control over these critical events in

breast cancer.

In accordance with the above analysis, we, also, find that the

most highly enriched molecular functions in the DEGs are related

to transcription factor activity (blue sectors in Figure 3B),

supporting the notion that the PR initiates a new transcriptional

program in the cell as a response to the external stimulus.

Other biological pathways that are overrepresented are related

to cell motility and angiogenesis (Figure 3A), which are key steps

in cancer cell growth and metastasis. Shortly after progestin

treatment the expression status of several genes involved in cell

motion (File S1, table C) is affected substantiating previous

reports of progestin-induced breast cancer cell migration and

invasion [51,52]. Moreover, a significant number of PR targets are

components of cell junctions (cell to cell and cell to extracellular

matrix) (Figure 3C) confirming that the receptor plays an

important role in regulating cell motion. Our data also offer

new insight into the role of PR in angiogenesis by identifying

dozens of target genes involved in this process (File S1, table D).

VEGFA, a potent angiogenic factor that stimulates breast cancer

cell growth in vitro and in vivo [53] and THBS1, an inhibitor of

angiogenesis that promotes tumor progression and metastasis [54],

had been reported before as PR-regulated genes [55,56,57,58].

We find that other well-known angiogenic factors, such as ACVR1

and EDN1 are, also, under progestin control (File S1, table D).

These data strongly suggest that PR-orchestrated networks are

involved in cell motility and vasculature development in breast

cancer cells. It is plausible that aberrant PR signaling in breast

tumors may be a contributing factor to tumor vascularization and

metastasis.

Notably, the same functional categories are also enriched when

examining the high stringency group alone, confirming the validity

of our differential gene analysis (data not shown).

Components of the small-GTPase signaling pathways are
direct PR targets

The GO analysis described above revealed that a significant

fraction of PR targets is involved in "small-GTPases mediated

signal transduction" (Figure 3A), most likely functioning as

"GTPase regulators" (Figure 3B). This was a novel finding that

raised our interest, since deregulation of small-GTPases signaling

may play a role in cancer progression [23]. The small GTPases are

small G-proteins that can bind and hydrolyze GTP, cycling in this

way between an inactive (GDP-bound) and an active (GTP-bound)

Figure 3. Gene ontology analysis for PR target genes. (A) Highly enriched biological processes were determined by using FatiGO. All GO
annotations related to the same biological process are shown in the same color. Grey bars represent other processes. (B) Highly enriched molecular
functions were determined by using FatiGO and the top fifteen are presented here. Results are clustered by function and the percentage of DEGs that
were associated with each GO annotation is shown. (C) Eight of the top ten most highly enriched GO annotations for cellular component (as
determined by FatiGO) fall into 3 broad categories: plasma membrane, cell junction and Golgi apparatus. Percentage of DEGs that were identified in
each category is shown.
doi:10.1371/journal.pone.0098404.g003
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state. Their activity is regulated by GTPase activating proteins

(GAPs) and guanine nucleotide exchange factors (GEFs). They are

localized to multiple membrane compartments including the

plasma membrane and the Golgi apparatus and this is, probably,

the reason behind the significant number of PR targets associated

with these cellular components (Figure 3C).

Functional annotation using FaTIGO [34] and DAVID [36]

and manual inspection of all DEGs identified 74 genes in total

involved in small-GTPases signal transduction. The vast majority

of them (59 of 74) are small-GTPases that belong to the Ras

superfamily or they are regulators of these enzymes (Table 1).

Several of these genes were experimentally validated by RT-qPCR

(Figure 4A). Three hours after progestin treatment all genes

assayed were significantly up-regulated, except RERG and VAV3

that were repressed in agreement with the RNA-seq data (Table
S1).

The above data demonstrate that several small-GTPases, GAPs

and GEFs are early (immediate) PR targets. Next, we asked

whether these genes were, also, direct PR targets, where the

receptor directly controlled their expression by binding to

regulatory sequences. To this end we performed ChIP experi-

ments with an antibody against the PR followed by paired-end

NGS to accurately map the receptor’s binding sites. In overall, we

identified 11,180 PR binding sites in treated T47D cells.

Validation of these data is shown in Figure S2. FKBP5 is a

well-known PR target and various PR binding sites have been

reported in a distant intron of the human locus and in the first

intron of the mouse one [25,59]. Our ChIP-seq experiments

identified a number of new PR binding sites several kilobases

upstream of the FKBP5 transcript variant 1 (NM_004117) (Figure
S2A), which is the PR-regulated transcript (File S2, table
A_DETs). These sites were all verified by ChIP-qPCR (Figure
S2B). We also assayed by ChIP-qPCR several other PR binding

sites associated with PR-regulated genes and they were all found to

be enriched for receptor binding (Figure S2C).

Examination of our ChIP-seq dataset indicated that the

majority of small GTPases, GAPs and GEFs (34 out of 59) were

indeed associated with a PR-binding site within 50 Kb from the

gene locus. Since the Rho GEFs are overrepresented among the

PR targets listed in Table 1, we selected three of them (NET1,

FGD4 and AKAP13) for further analysis. Our ChIP-seq data

revealed a PR binding site in an intron of the NET1 gene and in

distal intergenic regions ,50 Kb up-stream of the transcription

start sites of FGD4 and AKAP13 (Figure 4B). ChIP-qPCR

experiments confirmed that these sites were enriched for PR

binding after progestin treatment (Figure 4C). To further show

that receptor recruitment on these sites is not a random event, but

it has a functional role, we performed ChIPs for H3K4me, a mark

for promoters and enhancers [60]. We found that these sites were

enriched for this histone modification (Figure 4D) strongly

arguing in favor of their regulatory role.

Taken together the above data suggest that the PR can

modulate the expression of a large number of small-GTPases and

associated regulators. Several of them appear to be direct PR

targets as their mRNA levels are affected shortly after progestin

treatment and following PR binding in regulatory sites. Most PR

targets are Ras and Rho small-GTPases regulators (GAPs and

GEFs) (Table 1). The Ras family members are involved in control

of cell proliferation, while the Rho GTPases play an important

role in cytoskeleton organization [23], and as such they are

involved in cell adhesion, migration, proliferation, survival,

differentiation and malignant transformation [61]. We confirmed

that several Rho GEFs are under direct PR regulation

(Figures 4A and 4C). It is plausible that, in the breast cancer

milieu, the intensified progestin stimulus induces over-expression

of Rho GEFs leading to aberrant activation of the cognate small-

GTPases, which, in this way, mediate hormonal control over

important biological processes. In agreement with this hypothesis,

the most common cause of aberrant small-GTPase signaling in

cancer is the altered expression or activation of their regulators

[61].

Notably, it has been shown that non-genomic actions of the

ligand-activated PR lead to activation of the RhoA/Rho-

associated kinase (ROCK-2) cascade in T47D cells [52,62]. This

signaling pathway, ultimately, directs remodeling of the actin

cytoskeleton and formation of membrane ruffles required for cell

movement [52]; it, also, leads to rapid activation of the focal

adhesion (FA) kinase and increased formation of FA complexes,

which provide anchoring sites for cell attachment to the

extracellular matrix during cell movement and invasion [62].

During preparation of this manuscript a study came out that

described the PR-targetome during mammary gland branching

morphogenesis [63]. Interestingly enough, the authors, also,

identified components of "small-GTPases mediated signal trans-

duction" to be highly enriched among the target genes [63]. They

went on to show that progesterone activation of Rac (a Rho small-

GTPase) signaling is necessary to induce side-brunching [63].

These findings are in agreement with our own data highlighting

the small-GTPases signaling pathways as progestin-regulated

networks in healthy and malignant mammary cells.

PR dictates alternative promoter use decisions in breast
cancer cells

For the identification of differentially expressed transcripts

(DETs) after progestin stimulation, we used Cuffdiff 2 [32] as

described before. We set more stringent parameters for data

analysis on the transcript level ($1.5-fold change of expression and

p-value#0.05) leading to the identification of 1014 DETs (data not

shown). To ensure the validity of our findings, we limited further

analysis to the top 80 DETs (p-value#561025) (File S2, table
A_DETs). Thirty of them were generated by genes that had

multiple transcripts in the RefSeq database [64] and they are listed

in File S2, table B_annotated transcripts. Annotation of the

transcript variants (columns B and C in Suppl. file 3, sheet 2) was

done according to the RefSeq database. The protein isoforms they

encode are denoted as "canonical" according to the Uniprot

database (column D). Information from both the RefSeq and the

Uniprot databases was used in order to mark protein isoforms as

"distinct" (different than the canonical) or "not distinct" (same as

the canonical) (column D). Transcript variants generated by

alternative splicing or alternate promoter usage relative to the

canonical isoform are denoted as AS or AP respectively (column

D). There is an equal number (12) of PR-regulated transcript

variants that are generated either by AS or by AP, while 6 of them

use both mechanisms (column F). Interestingly, the PR-regulated

transcript variants of 26 out of the 29 genes (1 gene encodes for

non-coding RNAs) encode for distinct protein isoforms (columns D

and F), suggesting that progestin signaling may contribute

significantly to the proteomic diversity of the cell.

Eight (ARID5, GREB1, KANK1, NET1, PFKB3, RCAN1, TIPARP

and TSC22D3) of these 30 genes had two or more transcript

variants expressed in vehicle-treated T47D cells (data not shown),

however, only one of these variants was differentially regulated

after progestin treatment (File S2, table A_DETs). To confirm

these results, we examined the 3 genes (NET1, KANK1 and

TSC22D3) whose transcript variants appeared to be expressed in,

approximately, similar levels in vehicle-treated T47D cells

(Table 2). We designed variant-specific primers and we
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performed a time-course RT-qPCR study; the results are shown in

Figure 5. For all three genes, transcript variants 1 (herein called

NET1.1, KANK1.1 and TSC22D3.1) retained a, relatively, stable

level of expression, while transcript variants 2 (herein called

NET1.2, KANK1.2 and TSC22D3.2) were strongly induced

shortly after progestin treatment (Figures 5A–C). This is in

absolute agreement with the RNA-seq data (Table 2). Given that

an older study had found that both NET1 transcripts were up-

regulated after progestin treatment [22], we used two different sets

of primers for the NET1 transcript variant 1 (NET1.1) and we

repeated the experiment in 3 biological replicates; both primer sets

gave identical results in all three experiments (Figure 5A).

We further investigated the mechanisms that mediated this

preferential transcript regulation. In all three genes, the alternative

transcripts were generated by alternative promoters. In the case of

KANK1 and NET1, our ChIP-seq experiments had revealed PR-

binding sites in the first intron of KANK1.2 (not shown) and in the

promoter of NET1.2 (Figure 4B); these sites were confirmed by

ChIP-qPCR experiments (Figures S2C and 4C respectively).

For the TSC22D3 gene we did not find any PR-binding sites within

a 50Kb distance. It is possible that our ChIP-seq experiments

failed to capture such a site. It is also possible that the PR

regulatory site is located in a greater distance or that the induction

of TSC22D3.2 is not a direct transcriptional effect of the receptor.

Since TSC22D3 is a known glucocorticoid-regulated gene with

well-characterized GREs [65], we designed primers encompassing

the GR-binding site and performed ChIP-qPCR for the PR. We

did not find any enrichment for PR-binding in this region (data

not shown). Subsequently, we performed polII ChIP-qPCR

experiments and we showed that polII recruitment on the

Table 1. Progestin-regulated small-GTPases, GAPs and GEFs.

Ras family

Small GTPases GAPs GEFs

LRRK2 RASA2 PLCE

RASL10B RASA3 RASGEF1A

RERG RASA4 RASGRP1

RRAS2 RASAL1 SOS1

SIPA1

Rho family

Small GTPases GAPs GEFs

RHOB ARHGAP17 AKAP13

RHOBTB2 ARHGAP23 ARHGEF2

RHOU ARHGAP26 ARHGEF26

RHOV ARHGAP32 ARHGEF37

RND1 ARHGAG40 FGD3

ARHGAP42 FGD4

SRGAP1 ITSN1

SRGAP2 NET1

SRGAP3 PLEKHG6

SRGAP2B SPATA13

STARD13 VAV3

Arf family

Small GTPases GAPs GEFs

ARF6 ASAP2 CYTH1

ARL4C IQSEC1

ARL4D PSD4

ARL5B

Rab family

Small GTPases GAPs

RAB12 TBC1D12

RAB33B TBC1D20

RAB4A TBC1D4

RAB9B

Rap family

Small GTPases GAPs GEFs

RAP2B RAP1GAP2 RAPGEF6

RAP2C

doi:10.1371/journal.pone.0098404.t001
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Figure 4. Components of small-GTPases signaling pathways are direct PR targets. (A) T47D cells, treated with R5020 or EtOH for 3 hrs,
were used for RNA extraction. RT-qPCR was performed using specific primers for two small GTPases (ARF6, RERG) and several GEFs (AKAP13, FGD4,
NET1, PSD4, VAV3) and GAPs (ASAP2, ARHGAP17, ARHGAP42, RAP1GAP2). Expression levels were normalized to GAPDH. Error bars indicate the SEM. (p-
value,0.005, single asterisk indicates p-value,0.5 and double asterisk p-value,0.05) (B) Visualization of the ChIP-seq data on the UCSC browser. PR
binding sites in an intron of the NET1 gene and in distal intragenic regions of FGD4 and AKAP13 are depicted by the black blocks. (C) ChIP-qPCR
experiments show increased PR binding in the three sites shown in (B) after 1 hr of progestin treatment (single asterisk indicates p-value,0.05,
double asterisk p-value,0.01 and triple asterisk p-value,0.001). The promoter of GAPDH is used as a negative control. (D) ChIP-qPCR experiments for
methylated H3K4. The PR binding sites shown in (B) are also enriched for this mark (p-value,0.05) of active enhancers and promoters. An intergenic
region is used as a negative control. Error bars represent SE.
doi:10.1371/journal.pone.0098404.g004

Table 2. Expression levels (in FPKM) of transcript variants according to the RNA-seq data.

Official gene symbol GenBank accession ID R5020 (FPKM) EtOH (FPKM) log2(fold_change)

NET1

NET1 transcript variant 1 NM_001047160 10.0867 8.66451 20.219266

NET1 transcript variant 2 NM_005863 118.522 5.59903 24.40383

KANK1

KANK1 transcript variant 1 NM_153186 12.1742 1.73468 22.81108

KANK1 transcript variant 2 NM_015158 1.87683 2.07454 0.14449

TSC22D3

TSC22D3 transcript variant 1 NM_198057 2.64031 2.02448 20.383154

TSC22D3 transcript variant 2 NM_004089 38.2182 4.95535 22.9472

doi:10.1371/journal.pone.0098404.t002
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NET1.2, KANK1.2 and TSC22D3.2 promoters was increased in

response to progestin, but it was not, significantly, affected on the

promoters of the non-progestin regulated variants (Figure 5D).

Assumingly, PR recruits transcription co-factors that facilitate

polII loading onto the regulated promoters. Communication of the

PR complex with the non-regulated promoters may be prevented

through binding of the insulator factor CTCF, as it has been

suggested for the differential regulation of transcript variants by

the estrogen receptor [22].

These findings are of particular importance, since, oftentimes,

transcript variants of the same gene encode for different protein

isoforms with diverse functions. A striking example is provided by

the NET1 gene itself. NET1 is a RhoA specific GEF. RhoA is

aberrantly expressed in many human cancers, including breast

cancer, and its activation is essential for cancer cell migration and

Figure 5. PR regulation of specific transcript variants. T47D cells were treated for 0 to 12 hrs with R5020. RNA was extracted and used for RT-
qPCR using transcript-specific primers. Expression levels were normalized to GAPDH. (A) Time course experiments for the NET1 transcripts show
strong induction of the NET1.2 variant after progestin treatment, while the NET1.1 variant retains a stable expression pattern. To confirm the NET1.1
levels of expression, two different set of transcript-specific primers were used (in green and red) giving identical results. (B) Time course experiments
for the two KANK1 transcripts confirm upregulation of the KANK1.2 after progestin treatment. (C) Time course experiments for the two TSC22D3
transcript variants show that only the TSC22D3.2 variant is strongly upregulated after progestin treatment. (D) ChIP-qPCR experiments show
significant increase in polII binding on the promoters of NET1.2, KANK1.2 and TSC22D3.2 after 1 hr of progestin treatment (ethanol-treated control is
set to 1) (p-value,0.05). Error bars represent SE except in (A), where they represent the SEM.
doi:10.1371/journal.pone.0098404.g005
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invasion [66]. The two transcript variants generated by the NET1

gene (Figure 4 B), a long one known as NET1 (NET1.1,

NM_001047160) and a shorter one also known as NET1A

(NET1.2, NM_005863), encode for isoforms with potentially

different functions [22]. Studies have indicated that the NET1

isoform is important for cell proliferation [22], while the NET1A

controls cytoskeleton reorganization and cell motility [22,66,67].

Specifically, NET1A is required for FAK activation, focal

adhesion maturation and it is necessary for amoeboid extracellular

matrix invasion of breast cancer cells [66]. It is, therefore, possible

that NET1A plays an important role in metastatic breast cancer.

According to our data PR induces over-expression specifically of

the NET1A (NET1.2) variant. It is tempting to speculate that

increased levels of NET1A may lead to aberrant activation of

RhoA and mediate breast cancer metastasis.

The transcript variants generated by KANK1 and TSC22D3,

also, encode for distinct protein isoforms (File S2, table
B_annotated transcripts) with, potentially, different functions.

KANK1 was first identified as a candidate tumor suppressor gene

for renal cell carcinoma and it has several alternative promoters,

by which different types of transcripts are generated from the same

locus (reviewed in [68]). It encodes an ankyrin-repeat domain-

containing protein, which, negatively, regulates the formation of

actin stress fibers and cell migration through inhibition of RhoA,

while it may also have a growth inhibitory effect [68]. Two types of

KANK1 proteins have been reported with distinct tissue

distribution [69], but they have not been functionally character-

ized. TSC22D3 (also known as GILZ) is a well-studied glucocor-

ticoid-regulated gene in the immune system. Four different

isoforms have been identified and characterized; these are not

functionally redundant, but rather, they are involved in distinct

aspects of cellular physiology and modulate distinct signaling

pathways [70]. The PR-regulated variant (NM_004089) encodes

for isoform GILZ1 [70]. GILZ1 appears to be the most potent

isoform in stimulation of Na+ transport and repression of NF-kB.

Few studies have addressed the role of GILZ in cancer. A recent

study showed that it was expressed in epithelial ovarian cancer,

where it increased tumor cell proliferation, activated AKT and

regulated p21 and cyclin D1 expression, events that are associated

with tumor progression [71].

Taken together, the above data strongly suggest that the PR can

dictate promoter use decisions leading to significant expression

changes of specific transcript variants. Future studies should aim to

characterize these variants, examine their potential clinical value

in hormone responsive breast tumors and, more importantly,

determine the functional properties of the isoforms they encode.

Conclusions

The era of next-generation sequencing has immensely advanced

our understanding in nuclear hormone receptor signaling [72].

Several studies were particularly aimed to the estrogen receptor

and they offered significant new insights into the complex

regulatory gene networks controlled by the receptor in breast

cancer cells [73]. However, this powerful technique has not been

as extensively used in the study of the PR. A few recent papers

have performed genome-wide mapping of PR binding sites in

breast cancer cells [74,75,76] confirming that the receptor binds

more frequently in intra- and inter- genic regions than in the

promoters of target genes in agreement with earlier observations

[25,59]. To complement these studies and shed more light into the

progestin-regulated gene networks in breast cancer cells, we

employed 50bp paired-end sequencing to identify early responsive

transcripts. Genes that display expression changes at early time

points are more likely to be primary PR targets; however, these

changes are usually of small magnitude and are often missed by

microarray studies. Our experimental approach provided the

necessary depth to detect such changes. We identified 1287 DEGs

and we extensively validated new targets by RT-qPCR. Our data

offer a new insight into the multifaceted role of PR in breast cancer

biology and point to new routes future research can take. For

example, we find that the PR alters the expression levels of key

transcription factors and, in this manner, it may be affecting

important transcriptional networks that govern cell fate. It remains

to be seen whether these changes accommodate the needs of the

cancer cell and corroborate the role of PR in promoting

tumorigenesis. Of particular importance is the finding that the

PR regulates a plethora of genes that participate in small-GTPase

signaling cascades. Integration of the transcriptome and PR-

cistrome profiling of hormonally treated cells strongly suggests that

several small-GTPases regulators are direct PR targets. It is likely

that progestin modulation of their expression levels leads to

deregulation of the respective small-GTPases and the processes

they control and eventually contributes to mammary tumorigen-

esis. Finally, our data reveal that the PR regulates the expression of

specific transcript variants, and it, most likely, contributes to a

more complex proteomic profile of the breast cancer cell. Future

studies will show whether these specific PR-regulated transcripts

may have clinical utility in prognosis and/or the development of

targeted therapies.

Supporting Information

Figure S1 PR-regulated genes involved in cell death/
apoptosis. GO annotation and literature search led to the

functional categorization of genes involved in cell death as pro-

apoptotic or anti-apoptotic. A few genes were denoted as both pro-

and anti- apoptotic and were counted in both groups.

(TIF)

Figure S2 ChIP-sequencing experiments for the PR
identify receptor binding sites in T47D cells. (A) Cells

treated with R5020 for 1 hr were used for ChIP experiments with

an antibody against the PR. Immunoprecipitated DNA was used

in sequencing experiments and representative data are shown

here. Four PR binding sites (depicted by black blocks) were found

in distal enhancer elements of FKBP5 transcript variant 1

(NM_004117), which is the PR-regulated transcript. (B) ChIP-

qPCR experiments for the PR were performed in progestin- and

vehicle- treated cells. The primers used amplified part of some of

the PR binding sites (depicted by red arrows and labeled a-e)

identified in the FKBP5 locus by ChIP-seq. Error bars indicate the

SEM. (single asterisk indicates p-value,0.05, double asterisk p-

value,0.005 and triple asterisk p-value,0.005). (C) As in (B), but

primers used amplified part of the PR binding sites associated with

the genes shown. A known PR binding site in the promoter of

CDKN1A is used as a positive control and the promoter of

GAPDH as a negative one (p-value,0.001, single asterisk

indicates p-value,0.05, double asterisk p-value,0.01 and triple

asterisk p-value,0.005).

(TIF)

Table S1 Differentially expressed genes in T47D cells
after 3 hours of progestin treatment. The log2(fold change)

of the ratio of EtOH-treated to R5020-treated is given. Genes

identified by previous gene expression microarrays studies are

accompanied by reference numbers.

(XLSX)
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File S1 Gene Ontology analysis of progestin-regulated
genes.
(XLSX)

File S2 Differentially expressed transcripts (DETs) in
T47D cells after 3 hours of progestin treatment. The top

80 DETs (p-value#5610-5) are listed in table A_DETs. Thirty of

them are generated by genes that have multiple transcripts in the

RefSeq database [64] and they are listed in table B_annotated

transcripts.

(XLSX)
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