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Abstract

Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCl) aim to establish an
alternative communication pathway for locked-in patients. In contrast to most visual BCl approaches which use event-
related potentials (ERP) of the electroencephalogram, auditory BCl systems are challenged with ERP responses, which are
less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more
complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling
interface, this study introduces a novel auditory paradigm: “CharStreamer”. The speller can be used with an instruction as
simple as “please attend to what you want to spell”. The stimuli of CharStreamer comprise 30 spoken sounds of letters and
actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-
step procedure. The mental mapping effort (sound stimuli to actions) is thus minimized. Usability is further accounted for by
an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time
of the target letter sound. Healthy, normal hearing users (n=10) of the CharStreamer paradigm displayed ERP responses
that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually
from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully
exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods
were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with
CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences.
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As the paradigm i1s following the concept of “what you see is what
you get”, only low workload is imposed onto the user to select a
symbol. If users are capable of directing their gaze to the desired
symbol and keep it there, the symbols of the entire alphabet are
reachable within one logical selection step. Thus, there is a one-to-
one mapping from stimuli to the intended action, which is very
intuitive.

Existing non-visual spelling paradigms are far from such simple
concepts. Their control only has a low degree of freedom and an
intrinsically lower communication bandwidth. Thus, the complex
options offered in most real-world situations (or a spelling task) can
not be controlled directly. For this reason, a user interface of BCI
communication software typically needs to restrict the number of
possible control actions at each step to a small, but feasible set. As
a result, the selection of a symbol requires the execution of a series
of control steps. Determining a suitable mapping from (few) BCI
control options to the (high) complexity of an application is a
critical design decision which has been approached in many
different ways [10-12].

The mapping introduces an extra level of vicariousness, which

Introduction

Communication is among the most basic and most urgent needs
of human beings. Thus assistive technology devices are applied in
case normal communication pathways are impaired. Among
them, brain-computer interfaces (BCIs) aim to establish commu-
nication channels which are independent of muscle movements.
BCI systems exploit brain signals like the non-invasive electroen-
cephalogram (EEG) using real-time data analysis methods in order
to decode user intentions and control commands. In addition to
prevailing BCI concepts, which make use of visual event-related
potentials (ERPs) and self-driven imagery tasks, recent studies
proposed tactile and auditory paradigms to broaden the applica-
bility of BCI (for further discussion, see [1-8]). However, such
paradigms which are independent of the visual pathway tend to be
more complex and less intuitive to use compared to their visual
counterparts. This becomes obvious, when comparing existing
auditory (or generally non-visual) BCI paradigms to the most
frequently used and probably the most successful visual BCI
paradigm, the MatrixSpeller [9]: to operate it, users do not require

instructions beyond the hint to mentally focus on the desired
symbol. All available symbols are present on the screen at all times.
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bears a number of difficulties in terms of usability. Firstly, sub-steps
to reach a goal (e.g. along trees, into the depth of menus etc.)
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Figure 1. The alphabet consisting of 30 characters and symbols was split into 3 consecutive groups (A). Each group of letters is
presented from a different direction. Spectrograms of six selected auditory stimuli are shown in B. The course of a trial is shown in C, depicting a
sequence of several consecutive iterations. Part D visualizes excerpts with ~2 seconds duration. To illustrate the mapping of the three groups to the
stereo headphone tracks, the corresponding waveforms for each condition are displayed in the background. Moreover, a magnification of plot C is

provided in the top-left corner of D.
doi:10.1371/journal.pone.0098322.9001

conflict with imperfect control signals as errors accumulate.
Secondly, a spelling tree either needs to be memorized or
presented constantly to the user. Thirdly, the user needs to cope
with a large cognitive distance between low-level control actions
(e.g. selecting the third class) and high-level goals (e.g. spelling
“M”). Obviously those three aspects can introduce a non-
neglectable extra workload for the BCI user. Although these kind
of mappings have been optimized in various ways for spelling
applications [13-15], the resulting interfaces are far more complex
than the logical one-step procedure of the visual MatrixSpeller and
in the RSVP paradigm [16]. In the latter paradigm, however, the
user needs to at least memorize the desired symbol during the full
duration of the selection step, which may comprise tens of seconds
of stimulus presentation. While healthy study participants in good
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condition may be able to use such “indirect” interfaces despite of
the enhanced workload requirements, it remains a problem and a
high entrance barrier for many patients [17,18]. But also for
healthy persons, it severely limits the usability of the application
[19].

This observation motivates a novel auditory BCI approach
which is introduced in the presented study. The “CharStreamer”
paradigm was designed in order to eliminate the above-mentioned
mapping problems. Aiming for a simple-to-use auditory paradigm,
the CharStreamer strives to realize two main goals:

1. Every symbol can be selected within a single step.

2. Every symbol is represented by the sound of itself, not by an
artificial substitute.
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Moreover, a third aspect of complexity was challenged.
Typically, BCI paradigms which evaluate evoked potentials in
the EEG follow the principles of the oddball paradigm with
random sequences of target and non-target stimuli. Motivated by
the goal to further increase usability and to reduce mental
workload, the CharStreamer presents stimuli in a sequential order.
Due to this design decision, a user is not required to be alert
constantly, as it is exactly known when the desired symbol will be
presented. While removing the randomness may lead to atypical
and slightly less discriminative EEG features, it also introduces
additional temporal structure to the ERP responses [20], which
can be exploited by an adapted data analysis procedure.
Therefore, novel principles for data processing and classification
are introduced.

Methods

2.1 Paradigm Design

The CharStreamer paradigm was designed such that it is very easy
to understand and usable in an intuitive manner. The whole
alphabet, i.e. 26 characters plus 4 command items was split into
three groups, groups, g with L, M, R representing left, middle, and
right respectively. The letters which were contained in one group
were read out by the same voice and from the same direction (left,
middle and right side). The exact division is shown in Figure 1 A.
Stimuli from all three groups were alternately presented, such that
every third stimulus belonged to the same group, originating from
the same voice and direction. It should however be noted that the
number of characters in the groups differed (9,10,11 characters in
groupr, ar ). Stimuli were presented in group-wise iterations, while
each stimulus was presented exactly once in one iteration (see
Figure 1 C). The length of one iteration varied between 9 and 11
stimuli for the three groups. Each stimulus had a duration of 200—
250 ms. Although stimuli from all three groups were presented in
parallel, two characters never had the exact same onset. Due to the
regular temporal distribution of stimuli into the three groups, the
perceived stimulus onset asynchrony (SOA4,,) was three times as fast
as the group-wise SOA (5S0A,,,), see Figure 1 C. The paradigm
was tested in three experimental conditions (condition A-C, see
Figure 1 C) with varying parametrization:

® Condition A is a slow oddball condition (SOAgq,, =750 ms,
S04, =250 ms, pseudo-random stimulus order).

® Condition B is a fast oddball condition (SOAgq,, =250 ms,
$04,,=83.3 ms, pseudo-random stimulus order).

® Condition C is a fast sequential condition (SOA,,, =250 ms,
S04, =83.3 ms, fix stimulus order): the stimulation order was
not random but instead following the fix order of the alphabet.
Thus, the user always knew exactly when the target letter
would appear.

Due to the split of the alphabet into three parts with unequal
number of letters, there was no fix neighborhood of letters across
groups (see Figure 1 C). For example, when I is the target letter

and O and Y are the following stimuli after the first occurrence of

F, then N and W will follow after the second occurrence of F.

Exemplary audio files for each condition are also published, see
Audio S1-3. While condition A and B can be regarded as control
conditions, condition C is finally named the “CharStreamer
paradigm”, as it is the most advanced and most user-friendly
setup.
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2.2 Auditory Stimuli

The selection and optimization of stimuli for BCI paradigms
based on evoked potentials is a crucial aspect. For visual
paradigms, the effects of stimulus properties have been described
by various authors [21-24]. The impact of stimulus properties has
also been studied in the field of auditory BCI [25-27]. Moreover,
polyphonic music has been recently explored as a novel
stimulation approach for BCIs [28]. The authors underline the
importance to carefully select and optimize stimuli. The optimi-
zation criteria are partially contradictory, as stimuli should have
natural characteristics while being highly distinguishable, highly
standardized and not be too arousing.

For our study, the spoken alphabet was recorded by three
speakers with naturally differing voices (2 male, 1 female), and two
of them with an obvious accent. The recording was processed such
that an individual auditory stimulus (with a maximum duration of
250 ms) was obtained for each letter. While compressing some
sounds in time became necessary, the natural characteristics of the
voice, the pitch and the individual intonation was preserved as far
as possible. The alphabet was recorded with German intonation
and pronunciation. In order to prevent confusions, the vowel color
of single letters was slightly altered, if there was another letter with
a similar sound in the same group. This applies to the letters (C, D,
E) of the first group and (M and V) of the second. Spectrograms of
six selected auditory stimuli are shown in Figure 1 B.

2.3 Study Design

Ten participants were enrolled for the study with a single session
of approx. 3-4 hours duration. Each participant had normal
hearing and no history of neurological disease. The study was
performed in accordance with the declaration of Helsinki. The
study was approved by the Ethics Committee of the Charité
University Hospital (number EA4/110/09) and all participants
gave written consent prior to the start of their session. The study
protocol consisted of a calibration phase and an online copy-
spelling phase. During recordings, participants were asked to sit
still and to avoid eye-movements while focusing a fixation cross. In
the calibration phase, the three conditions (A-C) were applied in a
block-randomized order. In each condition, 15 characters were
used for calibration and the subjects had the task to mentally focus
on the target letter. They were allowed to count the target
occurrences, but not explicitly asked to do so as the counting was
identified to be a distracting task in a pilot experiment. At the end
of each trial, participants reported with a visual analog scale, how
easy/hard it was to focus on the target letter.

With 14 iterations per trial, ~ 210 target stimuli and ~ 6100
non-target stimuli were collected for each condition and subject.

After the calibration phase, participants were asked for
subjective usability ratings on a visual-analog scale for the three
conditions. Furthermore they were asked, which of the conditions
they would prefer to use on a daily basis, if they had to rely on the
BCI system for communication.

In the second part of their session, participants performed an
online copy-spelling task. It was performed exclusively in stimulus
condition C. To decode target vs. non-target epochs, a classifier
was trained on the calibration data of condition C, following a
“standard” procedure for feature extraction and linear classifica-
tion (for details, see Sections 2.4-2.6). Participants were asked to
spell the sentence MIT GEDANKEN SCHREIBEN IN BERLIN,
(consisting of 32 characters incl. whitespace) without error
correction. In the online spelling, a dynamic stopping method
was applied (for details see [29], Hohne method ) such that within one
trial each letter was presented at least five times and maximally
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12-15 times. The varying number of maximal repetitions was
caused by different group sizes in groupy,, ,.

2.4 EEG Acquisition and Preprocessing

EEG signals were recorded with a Fastn’Easy Cap (EasyCap
GmbH) using 63 monopolar, wet Ag/AgCl electrodes placed at
symmetrical positions based on the extended international 10-20
system. Channels were referenced to the nose. Electrooculogram
(EOG) signals were recorded via bipolarly referenced electrodes
(vertical EOG: electrode Fp2 vs. an electrode directly below the
right eye; horizontal EOG: F9 vs. F10). Two 32-channel amplifiers
(Brain Products BrainAmp) processed the signals by an analog
bandpass filter between 0.1 Hz and 250 Hz before digitalization
(sampling rate 1 kHz). After applying the analog filter, the EEG
raw data were first high-pass filtered at 0.2 Hz, then low-pass
filtered at 25 Hz, both by a causal Chebyshev filter.

2.5 Artifact Correction

EEG signals are generally very prone to muscle and eye
artifacts. Correcting for these artifacts was of special interest for
this study, as a novel experimental paradigm is researched which
might induce unknown or unexpected neural components with
atypical temporal and spatial distribution. In this study, two
different types of methods for artifact correction were used: a
rejection method and a projection method.

To train the classifier which was applied during the original
online experiment, an artifact rejection method was applied: EEG
epochs violating a min—max threshold difference were rejected.
This simple rejection criterion has been described in more detail in
a previous study [25].

However, an offline analysis of the EEG data revealed that the
above-mentioned rejection method was insufficient for the current
study. Although being instructed differently, some users exhibited
(unconscious) eye-movements which were partly correlated to the
presentation of target stimuli. Thus, either too many target epochs
were rejected (using a conservative threshold) or amplitude
modulations originating from eye-movements were considered as
discriminative features by the classifier when using a more liberal
threshold. To circumvent both unfavorable options, an artifact
projection method [30] was applied during offline analysis. This
elaborate projection method automatically detects neuronal and
artifactual source components derived from independent compo-
nent analysis (ICA). Based on its result, artifactual components
were projected out and a cleaned EEG was obtained, which was
assumed to be free of eye-movement artifacts.

2.6 Feature Extraction and Classification

This paragraph describes the BCI data processing pipeline that
was applied for the online experiment. It should be noted that only
condition C was applied online. All target and non-target events
were analyzed with a “standard” ERP processing pipeline, which
is typically applied in the BBCI group for evoked potentials. This
pipeline is described in detail in [31]: EEG data were band-passed
filtered (0.2-25 Hz) and epoched between [—1000+1000 ms].
Artifacts were removed based on the artifact rejection method
described above. Compared to other ERP-paradigms in BCI, the
information contained in prestimulus EEG intervals could be
considered for classification, since the user knew the stimulus order
and class-discriminative EEG signals might be elicited before the
stimulus onset [20]. Three to five class-discriminative time
intervals were selected by a heuristic. The channel-wise mean
amplitudes in those intervals were used as features. A binary linear
discriminant analysis (LDA) classifier with shrinkage regularization
of the covariance matrix was trained using these features.
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2.7 Optimized Feature Extraction and Classification

The CharStreamer paradigm (condition C) exhibits an intrinsic
sequential structure. Figure 2 depicts this temporal structure and
the resulting classification problem for sequential data. Therefore,
the standard ERP classification procedure described above is likely
to be suboptimal — as illustrated in Figure 2D.

Thus, the BCI pipeline was optimized using a meta classifier as
depicted in Figure 2E. The meta classifier evaluates a sequence of
outputs from several sub-classifiers. This procedure is visualized in
Figure 3. Those sub-classifiers were designed in order to uncover
two characteristics that were specific for the CharStreamer
paradigm:

e Stimuli were presented in a sequential order with every 9th,
10th or 11th stimulus being a target. The user knew, when the
next target stimulus would be presented.

e Stimuli were presented from thee directions (left, middle or
right).

Each sub-classifier was calibrated with the exact same
automatized procedure. The main difference between these
classifiers arises from the selection of data points which were used
to calibrate the respective classifier. This selection resulted in
varying weights for feature extraction and classification. Given a
set of training data points (EEG recording, epoched from 1000 ms
before stimulus onset to 1000 ms after stimulus onset) and labels
(class 1 and class 2), a “standard” binary classification approach
was taken for each sub-classifier: (I) Class-discriminative time
intervals were selected by a heuristic. (II) The averaged EEG data
in those intervals were taken as features. (III) Classifier weights for
the LDA classifier were trained with covariance shrinkage
regularization [31].

The sub-classifiers are described below:

e global cls: the standard classification procedure was applied
globally. Thus all available target stimuli and all non-target
stimuli were used for calibration. This global classifier is
typically used for ERP-based BCI paradigms, since it exploits
high-level class-relevant information. The ratio between target
and non-target stimuli in our paradigm was 1/29.

® groupwise cls: the standard classification procedure was
applied individually for each of the three groups. This resulted
in three classifiers, which were trained and applied for disjoint
sets of stimuli. All target and non-target stimuli from the same
group (e.g. groupy, as shown in Fig. 3A) were used to calibrate
a group-wise classifier. Thus, the classifier extracted class-
relevant information (target vs. non-target) which is specific to
the group. The ratio between the number of data points in
class 1 and 2 was approximately 1/9.

® pretarget cls: the standard binary classification procedure
was applied to contrast the difference between a target stimulus
and its predecessor. While all available target stimuli (class 1)
were taken for calibration, only those non-targets that were
presented 250 ms before a target (non-targets from the same
direction which preceded targets) were considered as class 2.
The ratio between class 1 and 2 stimuli was 1/1.

® posttarget cls: the standard binary classification procedure
was applied to contrast the difference between targets and their
directly following non-targets. While all available targets (class
1) were taken for calibration, only those non-targets that were
presented 250 ms after the target (i.e. non- targets from the
same direction which followed a target) were considered as
class 2. The ratio between class 1 and 2 was 1/1.

June 2014 | Volume 9 | Issue 6 | €98322



random stimulation sequence
4

cls output @
cls output C
»

CharStreamer: A User-Friendly Auditory BCl Speller

sequential stimulation sequence

@
©

standard multiclass decision problem

standard multiclass decision problem

.
multiclass decision with sequential meta cls

Figure 2. Graphical illustration of the classification problem with sequential stimuli compared to randomly ordered stimuli. The
typical oddball scenario with the classification of random stimulation sequences is depicted in plot A and B. For sequential stimuli, it can be observed
that classifier outputs of non-targets before or after a target behave similar to target responses (plot C). This leads to systematic structural distortions
in the standard multi-class decision (D). Plot E depicts how a meta classifier can make explicit use of the sequential information and thereby improve

the multi-class decision.
doi:10.1371/journal.pone.0098322.g002

® spatial cls: the standard binary classification procedure was
applied to exploit whether the user is attending to the left,
middle or right. Thus, a binary classifier was trained for each
direction/group. To calibrate each of these classifiers (e.g. for
the attended left direction), all stimuli from groupy, (targets and
non-targets) were distributed into class 1 and 2. Those stimuli
that were presented while the user was attending to the
intended direction (e.g. left) were considered as class 1. All
other stimuli which were presented while the user was
attending to a different direction were considered as class 2.
The ratio between class 1 and 2 was approximately 1/2 for
each direction.

The meta classifier evaluated the outputs of the above
mentioned sub-classifiers. In order to reduce the number of noisy
features in the meta classifier, each sub-classifier had to fulfill a
minimum binary classification accuracy: only those sub-classifiers
featuring a binary classification accuracy of more than 65%
(assessed by cross-validation on the training data) were evaluated
by the meta classifier. However, the meta classifier was trained to
also uncover sequential effects (see Fig. 2). The meta classifier
response of the ¢ th stimulus depended on the sub-classifier outputs
of the stimulus sequence i—m to #m. Thus, m preceding and m
following stimuli were also considered. An example with m=9 is
shown in Figure 3. This design resulted in a meta classifier (called
“sequential classifier” in the following) which considered up to 5 x
(2 x m)+1) dimensions. As model selection, the hyperparameter m
e {0,1..9}, and the classification algorithm (LDA, sparse LDA
[32]) were chosen by 5-fold cross validation.

The calibration data were used to train the sequential classifier.
Moreover, the resulting binary classification accuracy was assessed
by nested cross validation. To assess the performance for the
online experiment, the EEG data from the Copy-Spelling task was
re-analyzed. Therefore, the artifact projection filter as well as the
sequential classifier were trained on the calibration data only. Note
that during the actual online experiment, a standard ERP classifier
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(see Section 2.6) was applied without the artifact projection
method.

Results

3.1 Usability Ratings

Figure 4A depicts the behavioral ratings for the three
experimental conditions, which was assessed after the calibration
phase of the experiment. Note that only six out of the ten subjects
are shown as the remaining four data sets were not saved due to
data loss. Despite the fast stimulation speed, participants clearly
rated condition C to be the preferred condition, being the least
tiring condition with a clear target stimulus. This finding was
supported by the average trial-wise behavioral rating (Figure 4B)
which indicate, how easy it was for the user to focus on the target
letter. The usability ratings thus show that condition C was the
preferable condition for most subjects.

3.2 Physiology

Figure 5 shows the ERPs for each condition A, B and C
averaged across all subjects. As it was expected for auditory
oddball paradigms, typical N200 and P300 responses were found
for conditions A and B. Due to the slower stimulation speed
(SOA), both components were more discriminative in condition A
than in condition B [33]. For the sequential condition C, neither
the classical N200 nor the P300 component was present in the
grand-average. Instead, a slower class-discriminative negativity
between —200 and +200 ms was observed in the grand average.
However, EEG responses of condition C showed a high variation
between subjects - with multiple components having their
individual temporal and spatial distributions. The ERPs of three
exemplary subjects are shown in Figure S1.

3.3 Offline Analysis of Calibration Data

All following analyses were performed after removing artifacts
caused by muscle activity and eye movements. Therefore, the
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artifact projection method as well as the artifact rejection method
were applied as described in Section 2.5.

Binary accuracy. Figure 6A reveals, that condition A yields
to the highest average binary accuracy. The slower timing leads to
ERPs with larger amplitudes which can be classified more
accurately [33]. On average, the sequential condition C elicits
an equal classification accuracy compared to the oddball condition
B. However, there is a high variance across subjects: For subject 3,
condition B clearly outperforms condition C. Subjects 2 and 6
display the contrary behavior with condition C outperforming
condition B. Moreover, the meta classifier leads to an improved
classification performance compared to the standard classification
approach with subjects 1 and 2 featuring an extraordinary
improvement.

Multi-class accuracy. Due to the high number of classes (1-
out-of-30 decision), the pure multi-class accuracy (i.e. fraction of
correct decisions) might be a troublesome all-or-nothing metric. It
doesn’t reward the situation when the true target class is identified
as second-best (or third-best) class. The same holds for the ITR

PLOS ONE | www.plosone.org

calculation by Wolpaw’s formular [34] as this is also based on the
fraction of correct decisions. Therefore, also the rank of target class
was quantified for this study. Figure 6B provides additional
information in order to visualize the resulting multi-class accuracy.
For all possible rank positions r=1 to r=30 on the x-axis, the
graph accumulates, how often the true class was contained within
those first r ranks. Thus, the first entry on the x-axis (multiclass
rank =1) gives the “standard” multi-class performance, as it
resembles the fraction of trials with a correct class decision.
Accordingly, the average multi-class performance was 47% for the
meta classifier and 41% for the standard classifier (chance level is
1/30 = 3.3%). However, the behavior of the graphs in 6B for ranks
greater than 1 is very meaningful. It can be seen that on average,
77% (72% for the standard classifier) of the trials have a rank
better than or equal to 5.
Class-discriminative time intervals. Figure 7 depicts
discriminative time intervals for each subject and condition. It
can be observed that epochs of condition A contain more
discriminative features, as the estimated classification accuracy is
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generally higher than for the other conditions. This stands in line
with the results described in Figure 6a. Condition A moreover
exhibits discriminative time intervals primarily between 200 and
800 ms after stimulus onset, which corresponds to the N200 and
P300 component. Compared to condition A, data from condition
B has generally fewer discriminative features that are also shorter -

Condition A (channel Cz)

Condition B (channel Cz)

between 250 and 600 ms after stimulus onset. As the stimulation
speed is the only difference between the two conditions (condition
B exhibits a three times faster stimulation speed than condition A),
it can be argued that the SOA has a high impact on the
discrimination of evoked potentials [33]. For condition C,
discriminative EEG components are observed considerably earlier
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- even before the stimulus was presented. Moreover, the
components are not as temporally concise as one would expect
for an oddball experiment (condition B).

3.4 Online Spelling Accuracy

An online copy spelling with the sequential condition C was
performed with nine out of ten subjects. For subject 10, there were
technical problems which prevented the copy spelling run, such
that online data was not recorded. A thorough reanalysis of the
offline and online data revealed that the classifiers which were used

condition A condition B

during the online experiment of multiple subjects were severely
distorted and partially driven by involuntary eye movements.
Therefore, the results obtained during the online experiment are
not shown here.

However, both calibration data and online spelling data were
reanalyzed (in an offline investigation after the experiment) using
an ICA projection method (see Section 2.5) to filter out artifacts
related to eye movements. Therefore, all projection filters and
classification weights were trained solely on calibration data.
Online data was evaluated only once, in order to realistically
simulate an online experiment in technically plausible conditions.
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Figure 7. Comparison of class-discriminative information contained in the time structure of one epoch. For each subject and condition,
one row depicts the estimated sliding binary classification accuracy (SBCA) of a window of 60 ms width. It was estimated by cross-validation with a

0.5 chance-level.
doi:10.1371/journal.pone.0098322.g007
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The resulting spelling accuracy of each subject is shown in
Figure 8. It was found that seven users were able to use the
CharStreamer paradigm with above-chance accuracy. Displaying
the strongest class discrimination in the offline data (see Figure 7),
subject 6 is also the best performing subject in the online spelling
with 24/32 (75%) correctly spelled characters. Having an average
of 1.5 multi-class selections per minute, subject 6 showed an
information transfer rate based on Wolpaw’s formula [34] of 4.3
bits/min, which is highly competitive for an auditory ERP
paradigm, see Figure 8E. One should however note that for the
ITR calculation, only the number of correct and incorrect multi-
class decisions are considered, disregarding any other information
in the rank of incorrect decisions. Subject 1 and 7 failed to obtain
online control. Exhibiting a very low binary classification accuracy
upon calibration data (see Fig. 6), a failure of online control was
expected for subject 7. For subject 1, a satisfying accuracy was
observed on the calibration data, which could however not be
transferred to online control. Spelling results shown in Figure 8A—
C are based on the sequential classifier. Investigating the top-3
ranked letters by two well performing subjects, Figure 8A reveals
that the sequential classifier has still the tendency to assign a high
rank to those non-targets which follow or precede the target
stimulus. However, from the 32 letters to spell, 11.1 (34.7%) were
correctly chosen on average across all subjects, while 4.7 (14.6%)
were second-ranked, see Figure 8B. Disregarding subjects 1 and 7
from the average, 13.5 letters (42.4%) were correctly spelled and
5.7 (17.8%) were second-ranked, which points out a considerable
spelling accuracy for such a user-friendly BCI paradigm. Figure 8D
depicts how the sequential classifier generally obtains either equal
accuracy or an improved accuracy compared to the standard
classifier on the online data. An equal behavior of both approaches
could rise from the fact that the sequential classifier might use a
parameterization (i.e. m =0, weights only on the global classifier)
such that it behaves equally to the standard classifier.

Discussion

In this study, a novel auditory ERP paradigm (called
“CharStreamer”) is introduced, which represents a significant
step towards more user-friendly brain-computer interfaces. The
CharStreamer enables enormous simplifications in terms of the
user interface and the workload for the user. It is shown that
complexity can be shifted from the user to the system, such that
the user is exposed to the simplest and most convenient BCI setup,
while the internal data processing pipeline is dealing with atypical
and maybe less discriminative EEG signals. The design of the
CharStreamer questions two foundations of successful ERP

paradigms:

® s a randomized stimulation order necessary to elicit class-
discriminative EEG components?

® Are the “classical” N200 and P300 components indispensable
to drive an ERP-based BCI system?

The CharStreamer paradigm is based on an alphabetical,
sequential auditory stimulation such that the user knows when the
target letter will be presented. The fast and sequential design of the
CharStreamer evoked neuronal components which are signifi-
cantly distinct from N200 and P300 components of oddball-based
auditory ERP paradigms. A central negativity before the onset of
the target stimulus was observed for most subjects. It can be
speculated that this EEG component may be related to an
increased alertness of the subject. Moreover, it may obey a similar
neurophysiological origin to the Bereitschafspotential [35], which
1s know to precede a (motor) execution.
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Comparing existing auditory BCI paradigms to visual para-
digms, another three limits of auditory paradigms are scrutinized:

® The number of classes for auditory BCI paradigms is
considerably lower than for visual paradigms. While the visual
MatrixSpeller [9] as well as the rapid serial visual presentation
(RSVP) speller [16] can deal with 30 classes or more, existing
auditory BCI paradigms were so far limited to nine classes
[36]. This limitation is mostly due to complexity, since
differentiating between short auditory stimuli is more compli-
cated and demanding than differentiating between visual
stimuli. The CharStreamer paradigm tries to overcome that
limitation by using 30 carefully recorded stimuli. Those stimuli
are simple to recognize and easy to distinguish, as they consist
of the spoken alphabet, recorded from several voices. As
already mentioned, the stimulus differentiation is moreover
simplified by presenting stimuli in an alphabetical order.

® Due to the reduced number of available classes, auditory ERP
spellers were so far incapable of presenting the entire alphabet
to the user. While several visual spellers allow a 1-step
approach with the letters themselves being stimuli, auditory
BCI spellers either implement a 2-step spelling system
[1,37,38] or they combine a I-step approach with application
intelligence [36]. The letter is thus represented in a highly
indirect and complicated manner. For example, in the
AMUSE paradigm, the letter “L” is spelled by selecting “the
second letter of the third group”, which is considerably more
complicated than focusing on the “L” being highlighted on the
screen. As this complex structure might be a major obstacle
when applying BCI paradigms with patients in need for a
communication solution, the CharStreamer is the first auditory
paradigm that enables direct relation between stimulus and
letter. Thus, following the principle “what you see/hear is
what you get”, the user only needs to focus on the presentation
of letter “L” in order to spell the letter “L”.

® The stimulation speed of ERP paradigms is a crucial aspect
which directly effects neurophysiology and communication
rate (such as I'TR) [33]: Although visual paradigms are usually
confronted with technical limits such as the frame rate of the
screen, Acqualagna and colleagues (2013) [16] showed that a
stimulus onset asynchrony (SOA) of 83,3 ms — corresponding
to ~12 stimuli per second — is possible. However, the fastest
auditory paradigm had a SOA of 130 ms [25] — corresponding
to ~7.7 stimuli per second.
The CharStreamer design shows that auditory paradigms are
not necessarily slower that visual paradigms. By arranging the
stimuli in 3 streams presented from different directions, an
overall SOA of 83.3 ms —~12 stimuli per second — was
enabled, while the user was still able to identify each stimulus.
With such rapid sequences of stimuli, the CharStreamer
paradigm is extending the limits of stimulation speed. For
future studies, it might however be beneficial to use a slower
stimulation as this may further increase usability as well as
ERP amplitudes and classification accuracy.

All aspects mentioned above were considered to design the most
user-friendly and simple-to-use auditory ERP speller. While most
aspects have been individually implemented and discussed in other
studies, the CharStreamer paradigm unifies those aspects into one
BCI paradigm. Serial presentation of the whole alphabet was first
described in the visual RSVP speller [16,39]. Spatially distinct
stimuli for auditory ERP paradigms were proposed with the
auditory AMUSE paradigm [13] and later on implemented in
various other approaches [2,36,38]. Auditory streaming para-
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digms, where multiple concurrent streams are presented to the
user were suggested by Hill and Colleagues (2004) [40]. It was also
shown [41] that one can detect the users’ attended stream based
on the analysis of evoked potentials of single trials. In order to
reduce workload and to increase comfort level and BCI
performance of auditory BCI paradigms, it was suggested to
utilize natural stimuli instead of highly standardized artificial tones
[25,27,42]. The first ERP paradigm with non-random order of
stimulation was presented in [20].

Behavioral data showed that the chosen simplifications tremen-
dously improve the usability of the BCI paradigm. However, such
simplifications also raise the need for novel computational
methods in order to establish a functioning system: it was found
that the raw EEG data was contaminated with involuntary eye-
movement artifacts, which had to be projected out.

Therefore, an ICA-based artifact projection method was
applied in an offline analysis of both calibration and online
spelling data. It should be noted that this linear projection was
applied as a preprocessing step, prior to feature selection and
classification. The parameters of the projection were assessed
based on the calibration data only, which is essential in order to
obtain a technically plausible online system. Moreover, it was
observed that due to the sequential structure in the data, the
classifier had problems to differentiate neighboring stimuli, thus
confusing targets with their preceding or following non-targets.
Therefore, a meta classifier was developed in order to improve
classification accuracy for sequential ERP data. The concept of
applying an meta classifier in the BCI framework is far from novel,
as meta classifiers were already suggested for motor imagery
[43,44] or hybrid BCIs [45,46]. However, the presented data
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illustrates that one can apply a meta classifier on ERP data, in
order to account for intrinsic sequential effects in the data.

Restoring communication solutions for locked-in patients is the
ultimate goal of most BCI research. Due to several reasons,
paradigms which are simple to use and easy to understand are
favorable when applying BCI with patients. Firstly, complicated
interaction systems might be deterring and communication
barriers could impede mandatory explanation steps. Secondly,
patients might also be frustrated by the complexity of the BCI
before even starting to use it.

The Charstreamer paradigm finally demonstrates that it is
possible design such a user-friendly auditory BCI spelling system.
Elaborate artifact projection methods as well as innovative
classification approaches for sequential stimuli enable such a
novel paradigm, which features a comfortable and intuitive usage
as well as a competitive spelling speed.

Supporting Information

Figure S1 ERPs for all three conditions for subject 6, 8
and 10.
(TIFF)

Audio S1 This audiofile describes condition A in the
calibration phase. The user has the task to attend to the letter
K‘X?).

(MP3)

Audio S2 This audiofile describes condition B in the
calibration phase. The user has the task to attend to the letter
‘EE”.

(MP3)
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Audio 83 This audiofile describes the CharStreamer
paradigm (condition C) in the calibration phase. The user
has the task to attend to the letter “I”.

(MP3)
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