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Abstract

Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI) aim to establish an
alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-
related potentials (ERP) of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are
less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more
complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling
interface, this study introduces a novel auditory paradigm: ‘‘CharStreamer’’. The speller can be used with an instruction as
simple as ‘‘please attend to what you want to spell’’. The stimuli of CharStreamer comprise 30 spoken sounds of letters and
actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-
step procedure. The mental mapping effort (sound stimuli to actions) is thus minimized. Usability is further accounted for by
an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time
of the target letter sound. Healthy, normal hearing users (n = 10) of the CharStreamer paradigm displayed ERP responses
that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually
from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully
exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods
were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with
CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences.
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Introduction

Communication is among the most basic and most urgent needs

of human beings. Thus assistive technology devices are applied in

case normal communication pathways are impaired. Among

them, brain-computer interfaces (BCIs) aim to establish commu-

nication channels which are independent of muscle movements.

BCI systems exploit brain signals like the non-invasive electroen-

cephalogram (EEG) using real-time data analysis methods in order

to decode user intentions and control commands. In addition to

prevailing BCI concepts, which make use of visual event-related

potentials (ERPs) and self-driven imagery tasks, recent studies

proposed tactile and auditory paradigms to broaden the applica-

bility of BCI (for further discussion, see [1–8]). However, such

paradigms which are independent of the visual pathway tend to be

more complex and less intuitive to use compared to their visual

counterparts. This becomes obvious, when comparing existing

auditory (or generally non-visual) BCI paradigms to the most

frequently used and probably the most successful visual BCI

paradigm, the MatrixSpeller [9]: to operate it, users do not require

instructions beyond the hint to mentally focus on the desired

symbol. All available symbols are present on the screen at all times.

As the paradigm is following the concept of ‘‘what you see is what

you get’’, only low workload is imposed onto the user to select a

symbol. If users are capable of directing their gaze to the desired

symbol and keep it there, the symbols of the entire alphabet are

reachable within one logical selection step. Thus, there is a one-to-

one mapping from stimuli to the intended action, which is very

intuitive.

Existing non-visual spelling paradigms are far from such simple

concepts. Their control only has a low degree of freedom and an

intrinsically lower communication bandwidth. Thus, the complex

options offered in most real-world situations (or a spelling task) can

not be controlled directly. For this reason, a user interface of BCI

communication software typically needs to restrict the number of

possible control actions at each step to a small, but feasible set. As

a result, the selection of a symbol requires the execution of a series

of control steps. Determining a suitable mapping from (few) BCI

control options to the (high) complexity of an application is a

critical design decision which has been approached in many

different ways [10–12].

The mapping introduces an extra level of vicariousness, which

bears a number of difficulties in terms of usability. Firstly, sub-steps

to reach a goal (e.g. along trees, into the depth of menus etc.)
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conflict with imperfect control signals as errors accumulate.

Secondly, a spelling tree either needs to be memorized or

presented constantly to the user. Thirdly, the user needs to cope

with a large cognitive distance between low-level control actions

(e.g. selecting the third class) and high-level goals (e.g. spelling

‘‘M’’). Obviously those three aspects can introduce a non-

neglectable extra workload for the BCI user. Although these kind

of mappings have been optimized in various ways for spelling

applications [13–15], the resulting interfaces are far more complex

than the logical one-step procedure of the visual MatrixSpeller and

in the RSVP paradigm [16]. In the latter paradigm, however, the

user needs to at least memorize the desired symbol during the full

duration of the selection step, which may comprise tens of seconds

of stimulus presentation. While healthy study participants in good

condition may be able to use such ‘‘indirect’’ interfaces despite of

the enhanced workload requirements, it remains a problem and a

high entrance barrier for many patients [17,18]. But also for

healthy persons, it severely limits the usability of the application

[19].

This observation motivates a novel auditory BCI approach

which is introduced in the presented study. The ‘‘CharStreamer’’

paradigm was designed in order to eliminate the above-mentioned

mapping problems. Aiming for a simple-to-use auditory paradigm,

the CharStreamer strives to realize two main goals:

1. Every symbol can be selected within a single step.

2. Every symbol is represented by the sound of itself, not by an

artificial substitute.

Figure 1. The alphabet consisting of 30 characters and symbols was split into 3 consecutive groups (A). Each group of letters is
presented from a different direction. Spectrograms of six selected auditory stimuli are shown in B. The course of a trial is shown in C, depicting a
sequence of several consecutive iterations. Part D visualizes excerpts with ,2 seconds duration. To illustrate the mapping of the three groups to the
stereo headphone tracks, the corresponding waveforms for each condition are displayed in the background. Moreover, a magnification of plot C is
provided in the top-left corner of D.
doi:10.1371/journal.pone.0098322.g001
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Moreover, a third aspect of complexity was challenged.

Typically, BCI paradigms which evaluate evoked potentials in

the EEG follow the principles of the oddball paradigm with

random sequences of target and non-target stimuli. Motivated by

the goal to further increase usability and to reduce mental

workload, the CharStreamer presents stimuli in a sequential order.

Due to this design decision, a user is not required to be alert

constantly, as it is exactly known when the desired symbol will be

presented. While removing the randomness may lead to atypical

and slightly less discriminative EEG features, it also introduces

additional temporal structure to the ERP responses [20], which

can be exploited by an adapted data analysis procedure.

Therefore, novel principles for data processing and classification

are introduced.

Methods

2.1 Paradigm Design
The CharStreamer paradigm was designed such that it is very easy

to understand and usable in an intuitive manner. The whole

alphabet, i.e. 26 characters plus 4 command items was split into

three groups, groupL,M,R with L, M, R representing left, middle, and

right respectively. The letters which were contained in one group

were read out by the same voice and from the same direction (left,

middle and right side). The exact division is shown in Figure 1 A.

Stimuli from all three groups were alternately presented, such that

every third stimulus belonged to the same group, originating from

the same voice and direction. It should however be noted that the

number of characters in the groups differed (9,10,11 characters in

groupL,M,R). Stimuli were presented in group-wise iterations, while

each stimulus was presented exactly once in one iteration (see

Figure 1 C). The length of one iteration varied between 9 and 11

stimuli for the three groups. Each stimulus had a duration of 200–

250 ms. Although stimuli from all three groups were presented in

parallel, two characters never had the exact same onset. Due to the

regular temporal distribution of stimuli into the three groups, the

perceived stimulus onset asynchrony (SOAall) was three times as fast

as the group-wise SOA (SOAgroup), see Figure 1 C. The paradigm

was tested in three experimental conditions (condition A–C, see

Figure 1 C) with varying parametrization:

N Condition A is a slow oddball condition (SOAgroup = 750 ms,

SOAall = 250 ms, pseudo-random stimulus order).

N Condition B is a fast oddball condition (SOAgroup = 250 ms,

SOAall = 83.3 ms, pseudo-random stimulus order).

N Condition C is a fast sequential condition (SOAgroup = 250 ms,

SOAall = 83.3 ms, fix stimulus order): the stimulation order was

not random but instead following the fix order of the alphabet.

Thus, the user always knew exactly when the target letter

would appear.

Due to the split of the alphabet into three parts with unequal

number of letters, there was no fix neighborhood of letters across

groups (see Figure 1 C). For example, when F is the target letter

and O and Y are the following stimuli after the first occurrence of

F, then N and W will follow after the second occurrence of F.

Exemplary audio files for each condition are also published, see

Audio S1–3. While condition A and B can be regarded as control

conditions, condition C is finally named the ‘‘CharStreamer

paradigm’’, as it is the most advanced and most user-friendly

setup.

2.2 Auditory Stimuli
The selection and optimization of stimuli for BCI paradigms

based on evoked potentials is a crucial aspect. For visual

paradigms, the effects of stimulus properties have been described

by various authors [21–24]. The impact of stimulus properties has

also been studied in the field of auditory BCI [25–27]. Moreover,

polyphonic music has been recently explored as a novel

stimulation approach for BCIs [28]. The authors underline the

importance to carefully select and optimize stimuli. The optimi-

zation criteria are partially contradictory, as stimuli should have

natural characteristics while being highly distinguishable, highly

standardized and not be too arousing.

For our study, the spoken alphabet was recorded by three

speakers with naturally differing voices (2 male, 1 female), and two

of them with an obvious accent. The recording was processed such

that an individual auditory stimulus (with a maximum duration of

250 ms) was obtained for each letter. While compressing some

sounds in time became necessary, the natural characteristics of the

voice, the pitch and the individual intonation was preserved as far

as possible. The alphabet was recorded with German intonation

and pronunciation. In order to prevent confusions, the vowel color

of single letters was slightly altered, if there was another letter with

a similar sound in the same group. This applies to the letters (C, D,

E ) of the first group and (M and N ) of the second. Spectrograms of

six selected auditory stimuli are shown in Figure 1 B.

2.3 Study Design
Ten participants were enrolled for the study with a single session

of approx. 3–4 hours duration. Each participant had normal

hearing and no history of neurological disease. The study was

performed in accordance with the declaration of Helsinki. The

study was approved by the Ethics Committee of the Charité

University Hospital (number EA4/110/09) and all participants

gave written consent prior to the start of their session. The study

protocol consisted of a calibration phase and an online copy-

spelling phase. During recordings, participants were asked to sit

still and to avoid eye-movements while focusing a fixation cross. In

the calibration phase, the three conditions (A–C) were applied in a

block-randomized order. In each condition, 15 characters were

used for calibration and the subjects had the task to mentally focus

on the target letter. They were allowed to count the target

occurrences, but not explicitly asked to do so as the counting was

identified to be a distracting task in a pilot experiment. At the end

of each trial, participants reported with a visual analog scale, how

easy/hard it was to focus on the target letter.

With 14 iterations per trial, , 210 target stimuli and , 6100

non-target stimuli were collected for each condition and subject.

After the calibration phase, participants were asked for

subjective usability ratings on a visual-analog scale for the three

conditions. Furthermore they were asked, which of the conditions

they would prefer to use on a daily basis, if they had to rely on the

BCI system for communication.

In the second part of their session, participants performed an

online copy-spelling task. It was performed exclusively in stimulus

condition C. To decode target vs. non-target epochs, a classifier

was trained on the calibration data of condition C, following a

‘‘standard’’ procedure for feature extraction and linear classifica-

tion (for details, see Sections 2.4–2.6). Participants were asked to

spell the sentence MIT GEDANKEN SCHREIBEN IN BERLIN,

(consisting of 32 characters incl. whitespace) without error

correction. In the online spelling, a dynamic stopping method

was applied (for details see [29], Höhne method ) such that within one

trial each letter was presented at least five times and maximally
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12–15 times. The varying number of maximal repetitions was

caused by different group sizes in groupl,m,r.

2.4 EEG Acquisition and Preprocessing
EEG signals were recorded with a Fast’n’Easy Cap (EasyCap

GmbH) using 63 monopolar, wet Ag/AgCl electrodes placed at

symmetrical positions based on the extended international 10–20

system. Channels were referenced to the nose. Electrooculogram

(EOG) signals were recorded via bipolarly referenced electrodes

(vertical EOG: electrode Fp2 vs. an electrode directly below the

right eye; horizontal EOG: F9 vs. F10). Two 32-channel amplifiers

(Brain Products BrainAmp) processed the signals by an analog

bandpass filter between 0.1 Hz and 250 Hz before digitalization

(sampling rate 1 kHz). After applying the analog filter, the EEG

raw data were first high-pass filtered at 0.2 Hz, then low-pass

filtered at 25 Hz, both by a causal Chebyshev filter.

2.5 Artifact Correction
EEG signals are generally very prone to muscle and eye

artifacts. Correcting for these artifacts was of special interest for

this study, as a novel experimental paradigm is researched which

might induce unknown or unexpected neural components with

atypical temporal and spatial distribution. In this study, two

different types of methods for artifact correction were used: a

rejection method and a projection method.

To train the classifier which was applied during the original

online experiment, an artifact rejection method was applied: EEG

epochs violating a min–max threshold difference were rejected.

This simple rejection criterion has been described in more detail in

a previous study [25].

However, an offline analysis of the EEG data revealed that the

above-mentioned rejection method was insufficient for the current

study. Although being instructed differently, some users exhibited

(unconscious) eye-movements which were partly correlated to the

presentation of target stimuli. Thus, either too many target epochs

were rejected (using a conservative threshold) or amplitude

modulations originating from eye-movements were considered as

discriminative features by the classifier when using a more liberal

threshold. To circumvent both unfavorable options, an artifact

projection method [30] was applied during offline analysis. This

elaborate projection method automatically detects neuronal and

artifactual source components derived from independent compo-

nent analysis (ICA). Based on its result, artifactual components

were projected out and a cleaned EEG was obtained, which was

assumed to be free of eye-movement artifacts.

2.6 Feature Extraction and Classification
This paragraph describes the BCI data processing pipeline that

was applied for the online experiment. It should be noted that only

condition C was applied online. All target and non-target events

were analyzed with a ‘‘standard’’ ERP processing pipeline, which

is typically applied in the BBCI group for evoked potentials. This

pipeline is described in detail in [31]: EEG data were band-passed

filtered (0.2–25 Hz) and epoched between [21000+1000 ms].

Artifacts were removed based on the artifact rejection method

described above. Compared to other ERP-paradigms in BCI, the

information contained in prestimulus EEG intervals could be

considered for classification, since the user knew the stimulus order

and class-discriminative EEG signals might be elicited before the

stimulus onset [20]. Three to five class-discriminative time

intervals were selected by a heuristic. The channel-wise mean

amplitudes in those intervals were used as features. A binary linear

discriminant analysis (LDA) classifier with shrinkage regularization

of the covariance matrix was trained using these features.

2.7 Optimized Feature Extraction and Classification
The CharStreamer paradigm (condition C) exhibits an intrinsic

sequential structure. Figure 2 depicts this temporal structure and

the resulting classification problem for sequential data. Therefore,

the standard ERP classification procedure described above is likely

to be suboptimal – as illustrated in Figure 2D.

Thus, the BCI pipeline was optimized using a meta classifier as

depicted in Figure 2E. The meta classifier evaluates a sequence of

outputs from several sub-classifiers. This procedure is visualized in

Figure 3. Those sub-classifiers were designed in order to uncover

two characteristics that were specific for the CharStreamer

paradigm:

N Stimuli were presented in a sequential order with every 9th,

10th or 11th stimulus being a target. The user knew, when the

next target stimulus would be presented.

N Stimuli were presented from thee directions (left, middle or

right).

Each sub-classifier was calibrated with the exact same

automatized procedure. The main difference between these

classifiers arises from the selection of data points which were used

to calibrate the respective classifier. This selection resulted in

varying weights for feature extraction and classification. Given a

set of training data points (EEG recording, epoched from 1000 ms

before stimulus onset to 1000 ms after stimulus onset) and labels

(class 1 and class 2), a ‘‘standard’’ binary classification approach

was taken for each sub-classifier: (I) Class-discriminative time

intervals were selected by a heuristic. (II) The averaged EEG data

in those intervals were taken as features. (III) Classifier weights for

the LDA classifier were trained with covariance shrinkage

regularization [31].

The sub-classifiers are described below:

N global cls: the standard classification procedure was applied

globally. Thus all available target stimuli and all non-target

stimuli were used for calibration. This global classifier is

typically used for ERP-based BCI paradigms, since it exploits

high-level class-relevant information. The ratio between target

and non-target stimuli in our paradigm was 1/29.

N groupwise cls: the standard classification procedure was

applied individually for each of the three groups. This resulted

in three classifiers, which were trained and applied for disjoint

sets of stimuli. All target and non-target stimuli from the same

group (e.g. groupL, as shown in Fig. 3A) were used to calibrate

a group-wise classifier. Thus, the classifier extracted class-

relevant information (target vs. non-target) which is specific to

the group. The ratio between the number of data points in

class 1 and 2 was approximately 1/9.

N pretarget cls: the standard binary classification procedure

was applied to contrast the difference between a target stimulus

and its predecessor. While all available target stimuli (class 1)

were taken for calibration, only those non-targets that were

presented 250 ms before a target (non-targets from the same

direction which preceded targets) were considered as class 2.

The ratio between class 1 and 2 stimuli was 1/1.

N posttarget cls: the standard binary classification procedure

was applied to contrast the difference between targets and their

directly following non-targets. While all available targets (class

1) were taken for calibration, only those non-targets that were

presented 250 ms after the target (i.e. non- targets from the

same direction which followed a target) were considered as

class 2. The ratio between class 1 and 2 was 1/1.

CharStreamer: A User-Friendly Auditory BCI Speller
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N spatial cls: the standard binary classification procedure was

applied to exploit whether the user is attending to the left,

middle or right. Thus, a binary classifier was trained for each

direction/group. To calibrate each of these classifiers (e.g. for

the attended left direction), all stimuli from groupL (targets and

non-targets) were distributed into class 1 and 2. Those stimuli

that were presented while the user was attending to the

intended direction (e.g. left) were considered as class 1. All

other stimuli which were presented while the user was

attending to a different direction were considered as class 2.

The ratio between class 1 and 2 was approximately 1/2 for

each direction.

The meta classifier evaluated the outputs of the above

mentioned sub-classifiers. In order to reduce the number of noisy

features in the meta classifier, each sub-classifier had to fulfill a

minimum binary classification accuracy: only those sub-classifiers

featuring a binary classification accuracy of more than 65%

(assessed by cross-validation on the training data) were evaluated

by the meta classifier. However, the meta classifier was trained to

also uncover sequential effects (see Fig. 2). The meta classifier

response of the i th stimulus depended on the sub-classifier outputs

of the stimulus sequence i2m to i+m. Thus, m preceding and m

following stimuli were also considered. An example with m = 9 is

shown in Figure 3. This design resulted in a meta classifier (called

‘‘sequential classifier’’ in the following) which considered up to 56
((26m) +1) dimensions. As model selection, the hyperparameter m

M {0,1..9}, and the classification algorithm (LDA, sparse LDA

[32]) were chosen by 5-fold cross validation.

The calibration data were used to train the sequential classifier.

Moreover, the resulting binary classification accuracy was assessed

by nested cross validation. To assess the performance for the

online experiment, the EEG data from the Copy-Spelling task was

re-analyzed. Therefore, the artifact projection filter as well as the

sequential classifier were trained on the calibration data only. Note

that during the actual online experiment, a standard ERP classifier

(see Section 2.6) was applied without the artifact projection

method.

Results

3.1 Usability Ratings
Figure 4A depicts the behavioral ratings for the three

experimental conditions, which was assessed after the calibration

phase of the experiment. Note that only six out of the ten subjects

are shown as the remaining four data sets were not saved due to

data loss. Despite the fast stimulation speed, participants clearly

rated condition C to be the preferred condition, being the least

tiring condition with a clear target stimulus. This finding was

supported by the average trial-wise behavioral rating (Figure 4B)

which indicate, how easy it was for the user to focus on the target

letter. The usability ratings thus show that condition C was the

preferable condition for most subjects.

3.2 Physiology
Figure 5 shows the ERPs for each condition A, B and C

averaged across all subjects. As it was expected for auditory

oddball paradigms, typical N200 and P300 responses were found

for conditions A and B. Due to the slower stimulation speed

(SOA), both components were more discriminative in condition A

than in condition B [33]. For the sequential condition C, neither

the classical N200 nor the P300 component was present in the

grand-average. Instead, a slower class-discriminative negativity

between 2200 and +200 ms was observed in the grand average.

However, EEG responses of condition C showed a high variation

between subjects - with multiple components having their

individual temporal and spatial distributions. The ERPs of three

exemplary subjects are shown in Figure S1.

3.3 Offline Analysis of Calibration Data
All following analyses were performed after removing artifacts

caused by muscle activity and eye movements. Therefore, the

Figure 2. Graphical illustration of the classification problem with sequential stimuli compared to randomly ordered stimuli. The
typical oddball scenario with the classification of random stimulation sequences is depicted in plot A and B. For sequential stimuli, it can be observed
that classifier outputs of non-targets before or after a target behave similar to target responses (plot C). This leads to systematic structural distortions
in the standard multi-class decision (D). Plot E depicts how a meta classifier can make explicit use of the sequential information and thereby improve
the multi-class decision.
doi:10.1371/journal.pone.0098322.g002
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artifact projection method as well as the artifact rejection method

were applied as described in Section 2.5.

Binary accuracy. Figure 6A reveals, that condition A yields

to the highest average binary accuracy. The slower timing leads to

ERPs with larger amplitudes which can be classified more

accurately [33]. On average, the sequential condition C elicits

an equal classification accuracy compared to the oddball condition

B. However, there is a high variance across subjects: For subject 3,

condition B clearly outperforms condition C. Subjects 2 and 6

display the contrary behavior with condition C outperforming

condition B. Moreover, the meta classifier leads to an improved

classification performance compared to the standard classification

approach with subjects 1 and 2 featuring an extraordinary

improvement.

Multi-class accuracy. Due to the high number of classes (1-

out-of-30 decision), the pure multi-class accuracy (i.e. fraction of

correct decisions) might be a troublesome all-or-nothing metric. It

doesn’t reward the situation when the true target class is identified

as second-best (or third-best) class. The same holds for the ITR

calculation by Wolpaw’s formular [34] as this is also based on the

fraction of correct decisions. Therefore, also the rank of target class

was quantified for this study. Figure 6B provides additional

information in order to visualize the resulting multi-class accuracy.

For all possible rank positions r = 1 to r = 30 on the x-axis, the

graph accumulates, how often the true class was contained within

those first r ranks. Thus, the first entry on the x-axis (multiclass

rank = 1) gives the ‘‘standard’’ multi-class performance, as it

resembles the fraction of trials with a correct class decision.

Accordingly, the average multi-class performance was 47% for the

meta classifier and 41% for the standard classifier (chance level is

1/30 = 3.3%). However, the behavior of the graphs in 6B for ranks

greater than 1 is very meaningful. It can be seen that on average,

77% (72% for the standard classifier) of the trials have a rank

better than or equal to 5.

Class-discriminative time intervals. Figure 7 depicts

discriminative time intervals for each subject and condition. It

can be observed that epochs of condition A contain more

discriminative features, as the estimated classification accuracy is

Figure 3. Design of the meta classifier which is optimized for sequential stimuli. Plots A and B illustrate the EEG epochs and the
stimulation sequence in condition C. Plot C shows the range of EEG epochs which were considered in order to compute the sequential classifier
output with m = 9. Plot D depicts the processing pipeline of stimulus epochs: each epoch was evaluated by up to five classifiers and the resulting
classifier outputs were considered as features of the sequential classifier. The sequential feature vector is evaluated by a meta classier which
computes a sequential classifier output for the epoch of interest (E).
doi:10.1371/journal.pone.0098322.g003
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generally higher than for the other conditions. This stands in line

with the results described in Figure 6a. Condition A moreover

exhibits discriminative time intervals primarily between 200 and

800 ms after stimulus onset, which corresponds to the N200 and

P300 component. Compared to condition A, data from condition

B has generally fewer discriminative features that are also shorter -

between 250 and 600 ms after stimulus onset. As the stimulation

speed is the only difference between the two conditions (condition

B exhibits a three times faster stimulation speed than condition A),

it can be argued that the SOA has a high impact on the

discrimination of evoked potentials [33]. For condition C,

discriminative EEG components are observed considerably earlier

Figure 4. Usability ratings for the three conditions. Plot A shows the global subjective ratings for each condition. The overall preference for
daily use is indicated for each participant by a tick mark. Arrows indicate, if larger or smaller ratings are better. Plot B depicts the average rating, of
how well the user could focus on the target letter during each trial in the calibration.
doi:10.1371/journal.pone.0098322.g004

Figure 5. Grand averaged ERPs for conditions A, B and C. It should be noted that the stimulation speed of condition A is slower than in
condition B and C.
doi:10.1371/journal.pone.0098322.g005
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- even before the stimulus was presented. Moreover, the

components are not as temporally concise as one would expect

for an oddball experiment (condition B).

3.4 Online Spelling Accuracy
An online copy spelling with the sequential condition C was

performed with nine out of ten subjects. For subject 10, there were

technical problems which prevented the copy spelling run, such

that online data was not recorded. A thorough reanalysis of the

offline and online data revealed that the classifiers which were used

during the online experiment of multiple subjects were severely

distorted and partially driven by involuntary eye movements.

Therefore, the results obtained during the online experiment are

not shown here.

However, both calibration data and online spelling data were

reanalyzed (in an offline investigation after the experiment) using

an ICA projection method (see Section 2.5) to filter out artifacts

related to eye movements. Therefore, all projection filters and

classification weights were trained solely on calibration data.

Online data was evaluated only once, in order to realistically

simulate an online experiment in technically plausible conditions.

Figure 6. Classification accuracy for the calibration data of three conditions. The binary classification accuracy, estimated with cross
validation is plotted for each condition and subject (A). The thick black line marks the mean. Plots B depicts the multi-class accuracy for the two
classification approaches (‘‘std’’ and ‘‘meta’’). This was estimated by cross-validation on calibration data, using entire trials as test sets. Precisely, the
point for rank = i quantifies the fraction of trials with a rank of the target class equal or lower than i. Thus, the mean multi-class performance (correct
decision – rank = 1) was 47% (41%) for the meta (std) classifier. One can observe that 77% (72%) of the trials have a multi-class rank better or equal
than 5. While perfect BCI control (each 30-class decision is correct) would result in a straight line with y = 1, the dashed line marks the multi-class
accuracy based on chance level.
doi:10.1371/journal.pone.0098322.g006

Figure 7. Comparison of class-discriminative information contained in the time structure of one epoch. For each subject and condition,
one row depicts the estimated sliding binary classification accuracy (SBCA) of a window of 60 ms width. It was estimated by cross-validation with a
0.5 chance-level.
doi:10.1371/journal.pone.0098322.g007
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The resulting spelling accuracy of each subject is shown in

Figure 8. It was found that seven users were able to use the

CharStreamer paradigm with above-chance accuracy. Displaying

the strongest class discrimination in the offline data (see Figure 7),

subject 6 is also the best performing subject in the online spelling

with 24/32 (75%) correctly spelled characters. Having an average

of 1.5 multi-class selections per minute, subject 6 showed an

information transfer rate based on Wolpaw’s formula [34] of 4.3

bits/min, which is highly competitive for an auditory ERP

paradigm, see Figure 8E. One should however note that for the

ITR calculation, only the number of correct and incorrect multi-

class decisions are considered, disregarding any other information

in the rank of incorrect decisions. Subject 1 and 7 failed to obtain

online control. Exhibiting a very low binary classification accuracy

upon calibration data (see Fig. 6), a failure of online control was

expected for subject 7. For subject 1, a satisfying accuracy was

observed on the calibration data, which could however not be

transferred to online control. Spelling results shown in Figure 8A–

C are based on the sequential classifier. Investigating the top-3

ranked letters by two well performing subjects, Figure 8A reveals

that the sequential classifier has still the tendency to assign a high

rank to those non-targets which follow or precede the target

stimulus. However, from the 32 letters to spell, 11.1 (34.7%) were

correctly chosen on average across all subjects, while 4.7 (14.6%)

were second-ranked, see Figure 8B. Disregarding subjects 1 and 7

from the average, 13.5 letters (42.4%) were correctly spelled and

5.7 (17.8%) were second-ranked, which points out a considerable

spelling accuracy for such a user-friendly BCI paradigm. Figure 8D

depicts how the sequential classifier generally obtains either equal

accuracy or an improved accuracy compared to the standard

classifier on the online data. An equal behavior of both approaches

could rise from the fact that the sequential classifier might use a

parameterization (i.e. m = 0, weights only on the global classifier)

such that it behaves equally to the standard classifier.

Discussion

In this study, a novel auditory ERP paradigm (called

‘‘CharStreamer’’) is introduced, which represents a significant

step towards more user-friendly brain-computer interfaces. The

CharStreamer enables enormous simplifications in terms of the

user interface and the workload for the user. It is shown that

complexity can be shifted from the user to the system, such that

the user is exposed to the simplest and most convenient BCI setup,

while the internal data processing pipeline is dealing with atypical

and maybe less discriminative EEG signals. The design of the

CharStreamer questions two foundations of successful ERP

paradigms:

N Is a randomized stimulation order necessary to elicit class-

discriminative EEG components?

N Are the ‘‘classical’’ N200 and P300 components indispensable

to drive an ERP-based BCI system?

The CharStreamer paradigm is based on an alphabetical,

sequential auditory stimulation such that the user knows when the

target letter will be presented. The fast and sequential design of the

CharStreamer evoked neuronal components which are signifi-

cantly distinct from N200 and P300 components of oddball-based

auditory ERP paradigms. A central negativity before the onset of

the target stimulus was observed for most subjects. It can be

speculated that this EEG component may be related to an

increased alertness of the subject. Moreover, it may obey a similar

neurophysiological origin to the Bereitschafspotential [35], which

is know to precede a (motor) execution.

Comparing existing auditory BCI paradigms to visual para-

digms, another three limits of auditory paradigms are scrutinized:

N The number of classes for auditory BCI paradigms is

considerably lower than for visual paradigms. While the visual

MatrixSpeller [9] as well as the rapid serial visual presentation

(RSVP) speller [16] can deal with 30 classes or more, existing

auditory BCI paradigms were so far limited to nine classes

[36]. This limitation is mostly due to complexity, since

differentiating between short auditory stimuli is more compli-

cated and demanding than differentiating between visual

stimuli. The CharStreamer paradigm tries to overcome that

limitation by using 30 carefully recorded stimuli. Those stimuli

are simple to recognize and easy to distinguish, as they consist

of the spoken alphabet, recorded from several voices. As

already mentioned, the stimulus differentiation is moreover

simplified by presenting stimuli in an alphabetical order.

N Due to the reduced number of available classes, auditory ERP

spellers were so far incapable of presenting the entire alphabet

to the user. While several visual spellers allow a 1-step

approach with the letters themselves being stimuli, auditory

BCI spellers either implement a 2-step spelling system

[1,37,38] or they combine a 1-step approach with application

intelligence [36]. The letter is thus represented in a highly

indirect and complicated manner. For example, in the

AMUSE paradigm, the letter ‘‘L’’ is spelled by selecting ‘‘the

second letter of the third group’’, which is considerably more

complicated than focusing on the ‘‘L’’ being highlighted on the

screen. As this complex structure might be a major obstacle

when applying BCI paradigms with patients in need for a

communication solution, the CharStreamer is the first auditory

paradigm that enables direct relation between stimulus and

letter. Thus, following the principle ‘‘what you see/hear is

what you get’’, the user only needs to focus on the presentation

of letter ‘‘L’’ in order to spell the letter ‘‘L’’.

N The stimulation speed of ERP paradigms is a crucial aspect

which directly effects neurophysiology and communication

rate (such as ITR) [33]: Although visual paradigms are usually

confronted with technical limits such as the frame rate of the

screen, Acqualagna and colleagues (2013) [16] showed that a

stimulus onset asynchrony (SOA) of 83,3 ms – corresponding

to ,12 stimuli per second – is possible. However, the fastest

auditory paradigm had a SOA of 130 ms [25] – corresponding

to ,7.7 stimuli per second.

The CharStreamer design shows that auditory paradigms are

not necessarily slower that visual paradigms. By arranging the

stimuli in 3 streams presented from different directions, an

overall SOA of 83.3 ms –,12 stimuli per second – was

enabled, while the user was still able to identify each stimulus.

With such rapid sequences of stimuli, the CharStreamer

paradigm is extending the limits of stimulation speed. For

future studies, it might however be beneficial to use a slower

stimulation as this may further increase usability as well as

ERP amplitudes and classification accuracy.

All aspects mentioned above were considered to design the most

user-friendly and simple-to-use auditory ERP speller. While most

aspects have been individually implemented and discussed in other

studies, the CharStreamer paradigm unifies those aspects into one

BCI paradigm. Serial presentation of the whole alphabet was first

described in the visual RSVP speller [16,39]. Spatially distinct

stimuli for auditory ERP paradigms were proposed with the

auditory AMUSE paradigm [13] and later on implemented in

various other approaches [2,36,38]. Auditory streaming para-
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digms, where multiple concurrent streams are presented to the

user were suggested by Hill and Colleagues (2004) [40]. It was also

shown [41] that one can detect the users’ attended stream based

on the analysis of evoked potentials of single trials. In order to

reduce workload and to increase comfort level and BCI

performance of auditory BCI paradigms, it was suggested to

utilize natural stimuli instead of highly standardized artificial tones

[25,27,42]. The first ERP paradigm with non-random order of

stimulation was presented in [20].

Behavioral data showed that the chosen simplifications tremen-

dously improve the usability of the BCI paradigm. However, such

simplifications also raise the need for novel computational

methods in order to establish a functioning system: it was found

that the raw EEG data was contaminated with involuntary eye-

movement artifacts, which had to be projected out.

Therefore, an ICA-based artifact projection method was

applied in an offline analysis of both calibration and online

spelling data. It should be noted that this linear projection was

applied as a preprocessing step, prior to feature selection and

classification. The parameters of the projection were assessed

based on the calibration data only, which is essential in order to

obtain a technically plausible online system. Moreover, it was

observed that due to the sequential structure in the data, the

classifier had problems to differentiate neighboring stimuli, thus

confusing targets with their preceding or following non-targets.

Therefore, a meta classifier was developed in order to improve

classification accuracy for sequential ERP data. The concept of

applying an meta classifier in the BCI framework is far from novel,

as meta classifiers were already suggested for motor imagery

[43,44] or hybrid BCIs [45,46]. However, the presented data

illustrates that one can apply a meta classifier on ERP data, in

order to account for intrinsic sequential effects in the data.

Restoring communication solutions for locked-in patients is the

ultimate goal of most BCI research. Due to several reasons,

paradigms which are simple to use and easy to understand are

favorable when applying BCI with patients. Firstly, complicated

interaction systems might be deterring and communication

barriers could impede mandatory explanation steps. Secondly,

patients might also be frustrated by the complexity of the BCI

before even starting to use it.

The Charstreamer paradigm finally demonstrates that it is

possible design such a user-friendly auditory BCI spelling system.

Elaborate artifact projection methods as well as innovative

classification approaches for sequential stimuli enable such a

novel paradigm, which features a comfortable and intuitive usage

as well as a competitive spelling speed.

Supporting Information

Figure S1 ERPs for all three conditions for subject 6, 8
and 10.

(TIFF)

Audio S1 This audiofile describes condition A in the
calibration phase. The user has the task to attend to the letter

‘‘X’’.

(MP3)

Audio S2 This audiofile describes condition B in the
calibration phase. The user has the task to attend to the letter

‘‘E’’.

(MP3)

Figure 8. Online spelling accuracy. Plot A–C describe the spelling accuracy obtained by the sequential classifier. The target sentence and the
top-3 ranked characters of two users are shown in A. Histogram B depicts the rank of the target letter averaged across subjects. The individual rank-
histograms are shown in C. Plot D depicts the spelling accuracy (rank = 1) of the standard classifier and the sequential classifier for each subject and
the grand average (thick line). Plot E depicts the information transfer rate for each subject.
doi:10.1371/journal.pone.0098322.g008
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Audio S3 This audiofile describes the CharStreamer
paradigm (condition C) in the calibration phase. The user

has the task to attend to the letter ‘‘I’’.

(MP3)
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33. Höhne J, Tangermann M (2012) How stimulation speed affects event-related

potentials and BCI performance. In: Conf Proc IEEE Eng Med Biol Soc. IEEE,

volume 2012, 1802–1805.

34. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002)

Brain-computer interfaces for communication and control. Clinical neurophys-

iology: official journal of the Inter- national Federation of Clinical Neurophys-

iology 113: 767–791.

35. Kornhuber HH, Deecke L (1965) Hirnpotential̈anderungen bei Will-

kürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential

und reafferente Potentiale. Pflugers Archiv: European Journal of physiology 284:

1–17.
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