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Abstract

Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on
the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and
Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be
involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the
components of the secretory pathway in yeast and 14 plant genomes by using the ‘core-set’ of 240 factors as bait. We
identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-
I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a
significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in
the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the
proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been
inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed
the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this
process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana
and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of
the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well
as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
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Introduction

Vesicle transport ensures the exchange of macromolecules and

proteins between different compartments and the endomembrane

system. Membrane-bound vesicles mediate the transport of cargo

from a donor to a target compartment [1–3]. Different routes have

been identified (Fig. 1). The forward flow (anterograde) starts with

vesicle transport from endoplasmic reticulum (ER) to Golgi, from

which vesicles flow to various organelles and the plasma

membrane (PM; secretory pathway). In addition, vesicles are

transported from PM to vacuoles via endosomes (annotated as

endocytic pathway) and a retrieval mechanism known as

‘retrograde pathway’, which delivers escaped proteins or lipids

back to their residential compartments [4,5]. Moreover, reports

also suggest vesicle transport from ER to chloroplasts [6], ER to

peroxisomes [7,8] and mitochondria to peroxisomes [9]. However,

ER - chloroplast (PLAM; Plastid Associated Membranes) and ER -

mitochondria (MAMs; Mitochondrial Associated Membranes)

contact sites are also discussed to function in lipid/protein and

lipid exchange, respectively [10–12].

Each of the pathways involves a specific set of molecular

processes acting in a series of events [13,14]. The budding of the

vesicle entails (i) selection of cargo followed by (ii) recruitment of

the vesicle coat proteins and (iii) scission of the vesicle. The fusion

of vesicle commences with (iv) its trafficking to target membrane

along the cytoskeleton, (v) recognition of the vesicle at the target

compartment by ‘tethering factors’ and (vi) the fusion of vesicle

and the target membrane mediated by SNAREs ‘soluble NSF (N-

ethylmaleimide sensitive factor) attachment protein receptors’.

Besides the underlying commonality, distinctions exist in coat

proteins and their recruitment processes, as well as in the involved

regulatory GTPases, tethering factors, and the SNARE proteins.

Three major types of vesicles defined by their coat proteins are

discussed: COP-II (coat protein complex-II), COP-I and Clathrin

Coated Vesicles (CCVs; Fig. 1). COP-II vesicles mediate the flow

from ER to cis-Golgi while COP-I vesicles account for the counter

flow from Golgi to ER and intra-Golgi traffic [15]. CCVs are

involved in the subsequent endocytic traffic flow [16]. In addition,

retromer and ESCRT (endosomal sorting required for transport)

coat complexes are also known to play a crucial role in endosomal

trafficking pathways [17].
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Similar to the animal and fungal system, plants have all the

major components involved in vesicle-mediated transport

[13,18,19]. It was noted that plants possess a high number of

(co-)orthologues for the respective factors; coat proteins, Rab

GTPases, SNAREs, etc. [13]. It is also discussed that the plant

secretory system possesses certain distinctive features in compar-

ison to the yeast, namely the absence of the ER-Golgi intermediate

compartment (ERGIC), a drastically reduced mobility of Golgi

stacks [20], and an activity of the trans-Golgi network (TGN) as an

early endosome [13] to name a few.

At present, majority of the knowledge concerning vesicle

transport in plants has been conducted for the model plant A.

thaliana [13,14,18,19,21]. Thus, we used the available information

on vesicle transport factors from the model systems A. thaliana and

yeast to define orthologous groups from the proteomes of 14

different plant species. We discuss the results with a special focus

on agriculturally relevant crop plant Solanum lycopersicum (tomato),

which represents the model plant system for studying fleshy fruit

development, ripening and wound response [22–24]. However, we

did not inspect the time point of duplication in relation to

speciation, because definition of paralogues [25] was not in focus

of our analysis. Thus, we used the term orthologue for

representing genes of two different species derived from a single

common ancestor, while the term (co-)orthologue has been used to

designate the orthologous relationships due to lineage-specific

duplication [26]. The detection of (co-)orthologues was achieved

by the bi-directional BLAST-dependent orthologue search algo-

rithms OrthoMCL and PGAP. The experimentally proven and

bioinformatically predicted vesicular transport proteins of A.

thaliana and yeast corresponding to ‘core-set’ of 240 factors were

used as bait to detect putative proteins and group of

(co-)orthologues. The (co-)orthologues were discussed in some

detail for the model systems yeast, A. thaliana and S. lycopersicum

concerning domain architecture and intracellular localization,

while the tissue-specific expression analysis was performed for the

two plant species. Based on our results, we provide an overview

concerning conservation and diversification of orthologues to

factors involved in the vesicle transport systems in Viridiplantae.

Materials and Methods

Database composition and orthologue search
Literature search for proteins involved in vesicle transport was

performed for the two model systems S. cerevisiae and A. thaliana as

described [27]. Manual confirmation of the yeast and A. thaliana

proteins described to be involved in the vesicular transport was

performed by screening existing literature for each single protein

based on the SGD (http://www.yeastgenome.org/; Table S1 [28–

109]) and TAIR (http://www.arabidopsis.org/; Table S2

[21,110–206]) databases. The protein sequences were categorized

as bioinformatically predicted or experimentally proven. For all

identified factors in S. cerevisiae and A. thaliana the corresponding

protein sequences were extracted from http://www.yeastgenome.

org (S. cerevisiae - April 2012) and http://www.arabidopsis.org (A.

thaliana - TAIR10).

Orthologue identification is based on the strategy defined by

Paul et al. [27], which used two different orthologue search

algorithms for 14 plant genomes and yeast. These different

algorithms are based on different approaches. The combination of

OrthoMCL and PGAP were used in order to improve the

accuracy of detecting false positives and false negatives. In brief,

the PGAP (pan genome analysis pipeline) in which InParanoid

and MultiParanoid (—method MP) are implemented was used to

cluster sequences of S. cerevisiae, A. thaliana and S. lycopersicum

(ITAG2.3 http://solgenomics.net) in their respective orthologous

groups [207].

Orthologue identification in S. cerevisiae, A. thaliana, S. lycopersicum

and 12 other plant species was performed using OrthoMCL [208]

Figure 1. Vesicle transport pathways in plants. COP-II vesicles mediate cargo transport from ER to cis-Golgi, while COP-I traffics the cargo from
Golgi to ER and intra-Golgi as well. Clathrin-coated vesicles (CCVs) are involved in flow of cargo from the plasma membrane and trans-Golgi network
to endosomes and retromers and ESCRTs are required for endosomal trafficking pathways. Rab GTPases are involved in regulation of vesicle
formation, its uncoating and transport, while tethering factors and SNAREs facilitate the membrane fusion processes. Additionally, vesicle transport
has also been discussed between other compartments (shown in grey circles- not discussed in the manuscript). The number of identified factors for
COP-II, COP-I, CCVs, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs is shown. MIT: mitochondria, ER: endoplasmic reticulum, E:
endosome, P: peroxisome, NUC: nucleus, PLAM: Plastid Associated Membranes.
doi:10.1371/journal.pone.0097745.g001
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to identify orthologous groups for more than three species in a less

time-consuming clustering and also to compare the different

predictions. The plant genomes were extracted from (i) B. distachyon

(bradi1.2 with GAEVAL http://www.plantgdb.org), (ii) C. re-

inhardtii (JGI v4 with GAEVAL http://www.plantgdb.org), (iii) G.

max (Glyma1 http://www.plantgdb.org), (iv) L. japonicus (Lj1.0

http://www.plantgdb.org), (v) M. truncatula (Mt3.5v5 http://jcvi.

org), (vi) O. sativa (MSU Version 7.0 with GAEVAL http://www.

plantgdb.org), (vii) P. patens (Phypa1.6 http://phytozome.net), (viii)

P. trichocarpa (Ptr v2.0 with GAEVAL http://www.plantgdb.org),

(ix) S. tuberosum (PGSC v3.4 http://potatogenome.net), (x) S. bicolor

(JGI Sbi1 http://www.plantgdb.org), (xi) V. vinifera (Genescope

12X http://genoscope.cns.fr), and (xii) Z. mays (B73 RefGen v2

http://www.plantgdb.org). All genomes downloaded from

PlantGDB [209] have verified annotations of genes in relation to

alternative splicing and gene fusions/fissions by ‘gene annotation

evaluation algorithm’ (GAEVAL) [210]. OrthoMCL filtered away

nine poor-quality sequences by our evaluation process based on

the protein sequence length (,10 amino acids) and percent of stop

codons (marked by asterisks; .20%). The results derived from

both orthologue prediction algorithms (OrthoMCL, PGAP) were

used to check for consistency and automatically combined to

generate the list of the vesicle transport components in yeast, A.

thaliana and S. lycopersicum. For all other plant species we only rely

on the results of OrthoMCL.

Domain analysis
Protein family scan from Pfam (Version 26.0) [211] was

performed to predict functional domains of the protein sequences

comprising different vesicle components. Moreover, order and

similarity of domains of the (co-)orthologues in a respective

orthologous group was analyzed automatically by customized

Python scripts (www.python.org). The name of the Pfam domain is

indicated when discussed and the description of the individual

domains is available in the Pfam database (http://pfam.sanger.ac.

uk/). The comparison of domains of (co-)orthologues within one

orthologous group was done in relation to the detected domains

and their order of occurrence. Based on this, we distinguished

three classes; the first class (Class I) means the similar domains and

their identical order of occurrence. Class II means that additional

parts or at least some of the domains occur in both orthologues

referring to their partial similarity in domain architecture, whereas

class III means that both orthologues share no similarity in their

domain architecture. For comparison of domains in the respective

orthologous groups, we used bait as starting point for our analysis,

which is classified concerning their reliability to be involved in

vesicular transport based on experimentally proven or bioinfor-

matically predicted proteins of yeast and A. thaliana. The major

bait of each orthologous group is marked with an asterisk (*) and

the minor baits are marked with plus (+).

Localization prediction
Localization analysis for (co-)orthologues of the identified factors

was performed with a high certainty approach for A. thaliana, while

a low certainty procedure was undertaken for other plant species

and yeast, because for the latter only predictors that allowed

massive sequence analysis were used.

High certainty approach. The prediction was based on

publically available experimental data; Green Fluorescent Protein

(GFP) based localization studies and mass spectrometry (MS) data.

Further, experimental information for chloroplast and mitochon-

dria localized (co-)orthologues (Table S3, Table S4) as well as for

the other compartments was extracted from SUBA3 [212], FTFLP

[213] and PPDB [214]. This information was used to build a

consensus on the majority basis. All (co-)orthologues without

experimentally confirmed localization were assigned to a partic-

ular compartment using 20 different localization predictors

provided by SUBA3 [212], which represents the consensual

localization via bare majority. Additionally, we utilized the

annotation provided by TAIR as well as in the literature based

on experimental studies for individual protein with respect to their

localization to verify the localization data of the high throughput

analyses via mass spectrometry or GFP fluorescence.

Low certainty approach. For other plant species, experi-

mental evidences for intracellular localization are largely absent.

Thus, we selected YLoc, WoLF PSORT, TargetP, Predotar,

MitoPred and ChloroP from SUBA3 localization predictor

bundle, which enable the automation of the localization approach

by submitting $2 sequences at once. The predictor YLoc [215]

and WoLF PSORT [216] distinguish between 11 different

compartments (extracellular, nucleus, Golgi, ER, mitochondrion,

plastid, plasma membrane, peroxisome, vacuole, cytosol and

cytoskeleton), while TargetP [217] and Predotar [218] are highly

accepted to distinguish between chloroplast, mitochondria and

secretory pathway localization. In addition to the multi-compart-

ment localization predictor, we use MitoPred [219] as mitochon-

drial specific and ChloroP [220] as chloroplast specific localization

predictor to strengthen the results, because both predictors are

specifically trained to detect proteins with the respective signals.

The localization results of YLoc and WoLF PSORT for vacuole,

ER, Golgi, plasma membrane are merged and represented as

endomembranes.

Cluster analysis of expression data
We downloaded microarray expression data from nine different

tissues for A. thaliana (Table S5); (i) flower (4 samples, GSE32193);

(ii) fruit (3 samples, GSE28446); (iii) ovules (2 samples, GSE27281);

(iv) mature pollen (4 samples, GSE17343); (v) root (2 samples,

GSE21504); (vi) anther (3 samples, GSE18225); (vii) seedlings and

whole plant (23 samples, GSE5629); (viii) shoot and stem (41

samples, GSE5633); and (ix) leaf (59 samples, GSE5630) while for

S. lycopersicum seven different tissues (Table S5) were considered

(GSE19326, (i) cotyledons: 2 samples; (ii) hypocotyledons: 2

samples; (iii) 3-weeks old leaves: 3 samples; (iv) 5-weeks old leaves:

3 samples; (v) roots: 3 samples and GSE22300, (vi) fruit: 3 samples;

(vii) flower: 1 sample). The raw CEL data of the samples of both

organisms were normalized using the APT (Affymetrix Power

Tools) software package [221] with RMA (Robust Multichip

Average) [222]. Further, to avoid overweighting of certain tissues

with multiple samples we considered mean expression level from a

maximal number of four samples for each tissue by performing

hierarchical clustering. The RMA normalized expression data

from a maximum of four samples per tissue of both organisms

were used to build the average, which was used to cluster

independently by using a k-means clustering algorithm (Pycluster

1.50). The number of clusters (k) for the k-means clustering was

limited to 10, which was determined by performing the clustering

for 1 to 50 clusters and then plotting the distance to the optimal

solution (Fig. S1) (iii) the available Affymetrix IDs for the vesicle

transport proteins from the GeneChips of A. thaliana (GPL198 alias

ATH1-121501) and S. lycopersicum (GPL4741) were identified and

used for clustering the genes encoding vesicle transport proteins

(iv) for detecting the expression for different tissues more easily the

median of the samples concerning the tissues and clusters was

determined.
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Results

Bioinformatic detection of orthologues to factors
involved in vesicle transport

We performed literature search for factors involved in vesicle

transport pathways and extracted 212 factors corresponding to

different pathways in A. thaliana [14,21,147,177] and 45 factors in

S. cerevisiae [223,224]. From the initial set of 257 factors, we

realized an overlap of 17 factors identified for both species thus

yielding 240 different factors used as ‘core-set’. The ‘core-set’

contains 8 factors for the COP-II, 16 for COP-I, 18 for Clathrin

Coated Vesicles (CCV), 20 for Retromers and ESCRTs, 68 for

Rab GTPases, 45 for Tethering factors and 65 for SNAREs (Fig. 1,

Table 1–7, Table S6–S19). The ‘core-set’ was further analyzed to

discriminate between experimentally proven or bioinformatically

predicted protein sequences (Table S1 [28–109], Table S2

[21,110–206]). The same holds true for the (co-)orthologues

identified for yeast and A. thaliana described below, for which

existing literature was screened using SGD (http://www.

yeastgenome.org/; Table S1 [28–109]) and TAIR (http://www.

arabidopsis.org/; Table S2 [21,110–206]).

The ‘core-set’ of factors was used to detect the likely orthologous

groups in the 14 analyzed plant genomes and S. cerevisiae via

‘OrthoMCL’ (Fig. 2, Table S6–S12). The proteome sequences of

the species are subjected to an all-against-all BLASTP to find

reciprocal best similarity pairs between species (putative ortholo-

gues) and reciprocal best similarity pairs within species (putative

co-orthologues). Both pairs are used to define species normalized

similarity matrices, which are then used to classify orthologous

groups via Markov clustering. Consequently, we identified 4021

different (co-)orthologues corresponding to 14 plant genomes via

OrthoMCL search. For most of the plant genomes the number of

(co-)orthologues ranges between 200 and 300, whereas yeast and

Chlamydomonas reinhardtii contains nearly 120 (co-)orthologues and

Glycine max nearly 500 (Fig. 2).

In general, 150 of the initial set of 240 vesicle transport factors

are conserved in algae (C. reinhardtii), moss (P. patens), monocots and

dicots, whereas eight tethering factors (RUD3, IMH1, VPS3,

DSL1, SEC39, VPS51, TRS85, TRS65) could only be identified

in yeast. For the majority of the analyzed factors at least one (co-

)orthologue is observed in most of the analyzed plants. Moreover,

multiple (co-)orthologues have been found in the analyzed plant

species for most of the vesicle transport factors (Table S6–S12). In

turn, orthologues to 29 factors are only absent in C. reinhardtii,

while orthologues to 15 factors seem to be only present in

monocots and dicots. Interestingly, orthologues to 31 factors seem

to be specific for A. thaliana or dicots in general (Table S19).

In addition, ‘PGAP’ with implemented InParanoid and Multi-

Paranoid-like algorithms (see Materials and Methods) was

employed to complement the OrthoMCL analysis in case of S.

cerevisiae, A. thaliana and S. lycopersicum (Table S13–S19). We

combine the results of both algorithms to reduce the number of

false negatives. The algorithm uses the pairwise similarity scores

between two species based on an all-against-all BLASTP. The

constructed orthologous groups consist of two seed orthologues

identified by a reciprocal best-hit search between two organisms.

Further, more sequences are added to the orthologous group on

basis of their similarity to the corresponding seed orthologue. The

pairwise orthologous groups of more than two species are merged

concerning their overlap.

Both BLAST-dependent orthologue search algorithms perform

an all-versus-all BLAST of the protein sequences to detect pairs,

which is more sensitive and reliable than a unidirectional BLAST

search. Further, the orthologue search was used to detect groups of

orthologous genes from different plant species, which allowed the

detection of so called (co-)orthologues due to lineage-specific

duplications [26]. Consequently, we identified 129 different (co-)

orthologues for S. cerevisiae corresponding to 171 factors of the

‘core-set’ of 240 factors, because some of the (co-)orthologues of

different vesicular transport factors fall in the same orthologous

groups. The 340 and 307 different (co-)orthologues for A. thaliana

and S. lycopersicum could be assigned to 231 and 223 factors,

respectively. The genes not related to the vesicle transport are

discussed in the following sections.

Domain analyses of identified orthologues to vesicle
factors

Orthologues typically perform equivalent functions (Koonin,

2005), but they are not necessarily involved in the same cellular

process. However, if in addition to the inferred orthology the same

domain architecture and same protein localization is observed, the

likelihood that the identified protein performs the function in a

similar cellular process as the bait is very high (e.g. [225]). Thus,

we inspected the domain architecture of the proteins from S.

cerevisiae, A. thaliana and S. lycopersicum as an additional hint for an

involvement of the identified (co-)orthologues in vesicle transport

(Table S21–S27).

For the analysis of the domain architecture, we used bait on the

basis of its reliability for being involved in vesicular transport as

per existing literature (Table S1 [28–109], Table S2 [21,110–

206]). Thus, (co-)orthologues with an experimental proven

evidence is preferentially used as major bait, while bioinformati-

cally predicted protein sequences are only used as major bait (*) in

the case where no experimental evidence is available for the

orthologue in the respective group (Tables 1–7). In case, when .1

bait have been identified, we used the sequence of the yeast

proteins as major bait (*) and the (co-)orthologues of A. thaliana as

minor bait (+).

Further, for analyzes of the domain architecture of the

orthologues in different orthologous groups, three classes have

been defined (see Materials and Methods). Starting from the major

bait (*) the domain architecture of all other (co-)orthologues within

one group were compared to the major bait and classified

accordingly. For the orthologous groups containing (co-)ortholo-

gues from yeast, A. thaliana and tomato, we observed the same

domain architecture (class I) for ,79% (416/527) of the (co-)

orthologues, which indicates a very high conservation of this

process (Tables 1–7). Overall, analyzes of domain architecture of

detected 776 (co-)orthologues in the three species (A. thaliana, S.

lycopersicum, S. cerevisiae) lead to the assignment of 629 (co-)

orthologues to class I and 127 (co-)orthologues to class II using

the respective major bait for the domain annotation (Tables 1–7).

Different domain architectures within the same orthologous

groups can be interpreted as gain, loss or swap of functionality of

some genes [226]. Further, there are different orthologous groups

detected for the same vesicular transport factor, which might be

the result of whole genome duplication (WGD) in plants. For some

proteins we even find orthologues with entirely different domain

structure (class III), like for Sec17, VPS54, SYP61, TYN11 and

TYN12 orthologues (Figs. 3a, S2). The (co-)orthologues of the

Sec17 protein in yeast, A. thaliana and S. lycopersicum display

different domain architecture from each other.

In some cases, we observed the presence of additional domains

in identified orthologues when compared to the bait (class II), e.g.

for COG4 or Sec26p (Fig. 3b). COG4 orthologues in all three

species contain the COG4 domain (PF08318), while additional

domains exist in the N-terminal region of the A. thaliana orthologue

(At4g01400) and in the C-terminal region of tomato orthologue
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(Solyc07g056010; Fig. 3b; Table S11, Table S18, Table S26).

These additional domains might provide additional regulatory

features but do not argue against an involvement of these

orthologues in vesicle transport. The same situation is found for

the orthologues of Sec26p (Fig. 3b; Table S7, Table S14, Table

S22). While the yeast protein contains only an Adaptin N domain

(PF01602), the two proteins found to be orthologue in A. thaliana

and tomato contain an additional Coatamer beta C domain

(PF07718) at the C-terminus. Again, this additional domain

supports a function in vesicle transport rather than contradicting

an involvement in this process.

Finally, in some cases a domain is absent in the identified

orthologue (class II) as seen for the Sec16 proteins (Fig. 3c, Table

S6, Table S13, Table S21). The yeast Sec16 (YPL085W) contains

three domains annotated as Sec16_N (PF12935), Sec16

(PF12932), and Sec16_C (PF12931), while Sec16_N is not present

in the (co-)orthologues found in A. thaliana and in S. lycopersicum.

However, Sec16_N appears not to be essential for the function

[227] and thus, the one (co-)orthologue in A. thaliana (At5g47490)

and the found two in S. lycopersicum (Solyc08g007340, So-

lyc08g007360) which possess ‘Sec16’ and ‘Sec16_C’ domains

(Fig. 3c) might indeed be involved in vesicle transport. The second

A. thaliana (co-)orthologue (At5g47480) contains only the ‘Sec16’

domain and thus might be involved in a process distinct from

COP-II vesicle transport because the Sec16_C domain is essential

for the association of yeast Sec16 to Sec23 [227]. Thus, in case of

the absence of domains a manual inspection was needed to judge

the involvement of each of the orthologues in vesicle transport.

However, in some cases, we find at least two of the above

described cases, e.g. SFT11 (Fig. S2, Table S21–S27).

In light of the predicted vesicle transport system in chloroplasts

[141,177], we analyzed the localization of the identified (co-

)orthologues in plants by using publically available experimental

data (GFP and mass spectrometry data; see Materials and

Methods) from SUBA3 [212], FTFLP [213] and PPDB [214]

for A. thaliana. Moreover, we also looked for the annotation

provided by TAIR as well as the evidence in literature concerning

localization of specific proteins (Table S3). For (co-)orthologues

without experimental confirmed localization, we used a consensus

of 20 different localization predictors provided by SUBA3 to

assign the presumable localization (see Material and Methods). In

parallel, we predicted the localization for the detected (co-

)orthologues found in other plant species. However, we limited

the number of tools used to 6 programs, which allowed fully

automated prediction (Table S4). Consequently, the previous

localization studies concerning vesicle transport factors are

compared with our approach for chloroplasts (Table 8) and

mitochondria (Table 9). Specific factors and characteristics are

presented in respective sections below.

COP-II-coated vesicles
COP-II vesicles deliver cargo from the site of synthesis at the

ER to cis-Golgi [16]. Primarily, Sec16 defines the site of assembly

of COP-II units [84,228]. With the exception of C.reinhardtii (0), we

found 2–5 (co-)orthologues for Sec16 in all the plants analyzed as

discussed above (Table S6, Table S13; A. thaliana: 2; S. lycopersicum:

2).

After assembly site definition, the small G-protein of the Ras

superfamily Sar1 is activated by the ER-localized guanine

exchange factors (GEF) Sec12 and Sed4 [229,230]. We observed

1–8 (co-)orthologues for Sar1 (6/5 in A. thaliana/S. lycopersicum),

with one (co-)orthologue (At5g18570) localized in chloroplast as

experimentally confirmed (Table 8) [140]. For the GEF factors we

observed 2–4 (co-)orthologues in plants (3/1 in A. thaliana/S.
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lycopersicum; Table S6, Table S13), but it needs to be mentioned

that the orthologues found have a Sec12-like domain architecture

(Table1).

The activated Sar1 exposes an N-terminal amphipathic a-helix

facilitating its insertion into the membrane and leading to

deformation of the ER membrane [231,232]. Subsequently,

Sar1 interacts with the GTPase-activating protein Sec23 to recruit

the Sec23–Sec24 heterodimer to form the pre-budding complex

[233] in which Sec24 recruits the cargo [234,235]. In the analyzed

plants, we identified up to eight (co-)orthologues for Sec23 (6/4 in

A. thaliana/S. lycopersicum) and for Sec24 (4/4 in A. thaliana/S.

lycopersicum; Table S6, Table S13). Interestingly, At4g01810

(Sec23), At3g44340 and At4g32640 (Sec24) are described as

putatively chloroplast-localized (Table 8) [141,177]. By our

approach we confirmed the assignment of one Sec23 (co-)

orthologue (At4g01810) as plastid-localized, but both Sec24 (co-)

orthologues (At3g44340, At4g32640) were assigned to the plasma

membrane and cytosol based on experimental evidence (Suba-MS;

Table 8, Table S3) [236,237]. However, one (co-)orthologue of

Sec24 in both, A. thaliana and tomato (At2g27460 and

Solyc11g068500) does not carry the ‘Gelsolin domain

(PF00626)’, which is reflected by their smaller protein lengths

(Table S13). Further, based on the structural context it is not

entirely clear whether this domain is indeed essential for Sec24

function [233].

After formation of the pre-budding complex, an outer coat is

formed by Sec13 and Sec31 [43,238] to shape the membrane for

bud formation [239]. We identified 3–10 and 2–9 (co-)orthologues

for Sec13 and Sec31 in plants, respectively. Previously, two of the

Sec13 (At2g43770, At3g49660) have been assigned as chloroplast

proteins [141,177], while we predict an additional chloroplast-

localized protein (At1g68690; Table 8). However, contradicting to

the previously described chloroplast localization for At2g43770,

we predict cytosolic localization (Table 8). Furthermore,

At3g49660 as well as At4g02730 have been described as

components of the H3K4 methyltransferase complexes localized

in the nucleus [149]. Similarly, one of the (co-)orthologue of Sec13

in yeast (YBR175W) is assigned to perform function in histone

methylation [80]. Thus, the orthologue cluster of Sec13 contains

proteins involved in two distinct cellular processes.

The Sec31 (co-)orthologues in A. thaliana At5g38560 and

At2g45000 have been assigned as chloroplast proteins, and we

predict a chloroplast localization for the Sec31 (co-)orthologue

At1g68690 as well (Table 8) [141,177]. However, At5g38560 and

At2g45000 have been experimental via literature localized to

plasma membrane (Suba-MS, TAIR) and nucleus (Suba-GFP,

TAIR), respectively (Table 8, Table S3). In line, At5g38560 has

been assigned as putative proline-rich extensin-like receptor kinase

8 [111], while At2g45000 was assigned as nuclear pore protein 62

(AtNUP62) [121]. In addition, only At1g18830, At3g63460 and

Solyc01g088020 show a similar domain architectures as the yeast

bait (Fig. S2, Table 1, Table S21).

In case of S. lycopersicum, 3 out of 5 Sec13 and all Sec31 (co-)

orthologues are predicted as plastid-localized proteins (Table 8,

Table S3), however, in the light of the discrepancy between

prediction and experimental evidence for A. thaliana Sec31

proteins, the prediction for S. lycopersicum Sec31 has to be taken

with care.

Finally, the newly configured COP-II vesicle is detached from

the ER uncoated by the activity of Sec23 [239] and moves towards

the target membrane. For this factor we identified 6 (co-)

orthologues in A. thaliana and 5 in tomato, all with identical

domain structure suggesting that this process involves a multitude

of factors in plants (Table 1, Table S21).
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COP-I-coated vesicles
COP-I vesicles mediate the bidirectional transport within the

Golgi network (percolating model) [240,241] and from Golgi

apparatus back to the ER [242]. The formation of COP-I vesicles

is initiated by the small GTPase of the Ras superfamily Arf1 which

in GDP-bound state is adhered to p24 receptors, a group of type-I

transmembrane proteins [243]. With the exception of ARF1D,

which is only found in A. thaliana, we detected orthologues for all

Arf1 or Arf-like proteins in all plant species analyzed (Table S7,

Table S14) [155]. Further, two ARF1A proteins in A. thaliana

(At5g14670, At3g62290) are predicted to be mitochondrial-

localized (Table 9, Table S3, Table S4), but this prediction is

not yet supported by experimental evidence. Similarly, the yeast

(YDL137W, YDL192W) and S. lycopersicum (Solyc05g005190,

Solyc01g008000) (co-)orthologues were also predicted to be

mitochondrial-localized as per our analysis (Table S3).

The GEF factors involved in COP-I vesicle transport contains a

Sec7 domain and mediate the exchange of Arf1-GDP to Arf1-

GTP leading to the exposure of its myristoylated N-terminal

amphipathic helix for membrane-anchoring [244,245]. Subse-

quently to its activation, en bloc recruitment of ‘coatomer unit’ takes

place [243]. The ‘coatomer unit’ is composed of two multi-subunit

complexes F-COP (cargo selective; b, c, d and f subunits) and B-

COP (cage forming; a, b9 and e subunits) [246]. All of these

coatomer proteins have been identified in plants (Table S7, Table

S14). After assembly, COP-I vesicle traverse to the recipient

compartment and the Arf1 GTPase-activating protein (ArfGAP)

catalyses the Arf1 hydrolysis facilitating the uncoating of the

vesicle [3].

In general, (co-)orthologues for all factors of COP-I vesicle have

been found in all analyzed plant genomes (Table S7, Table S14)

and for ,60% COP-I (co-)orthologues in A. thaliana, experimental

evidence (either GFP or mass spectrometry data) for localization

exists (Table S3). However, Z. mays, G. max, P. patens and S.

tuberosum encode higher number of (co-)orthologues for most of the

components than other analyzed plants (Table S7). Furthermore,

the plant F-COP b (Sec26) and F-COP d (RET2p) have distinct

domain architecture in comparison to the yeast proteins (Table 2).

For F-COP b (Sec26), the A. thaliana and S. lycopersicum proteins

possess an additional domain coatamer_beta_c (PF07718) domain

that is probably used to regulate the function of N-terminal

domain (Adaptin_N: PF01602; Table S22) [247]. In contrast, F-

COP d (RET2p) in A. thaliana and S. lycopersicum do not contain the

clat_adaptor_s (PF01217) domain found in the yeast protein

(Table 2, Table S22). One of the identified plant F-COP f (RET3;

At1g08520) was found in chloroplast [248] and has been described

as Mg-chelatase subunit D (CHLD) [194] and thus, is involved in a

different cellular process.

Interestingly, except Solyc03g121800, the (co-)orthologues of F-

COP f in S. lycopersicum have also been predicted as plastid-

localized (Table S3, Table S4). All identified plant (co-)orthologues

for GNOM-type GEF have a ‘Sec7_N’ domain (PF12783), which

is absent in the corresponding yeast proteins (YEL022W,

YJR031C; Table S22), however, this domain does not argue

against their involvement in vesicle transport.

Clathrin-coated vesicles
Clathrin-coated vesicles (CCVs) deliver cargo from PM and

TGN to endosomes [21]. The coatomer of CCVs consists of three

light chains bound to three heavy chains, which form a polyhedral

lattice [2,249]. Further, adapter protein (AP) complexes form

the ‘cargo-selective’ subunit of CCVs [2]. In general, four

Figure 2. Correlation of protein sequences and orthologue number. Shown are the number of orthologues for different vesicle transport
subfamilies of yeast, A. thaliana and 13 other plant species in accordance to their phylogenetic relationship. (Scer: S. cerevisae; Crei: C. reinhardtii; Ppat:
P. patens; Zmay: Z. mays; Sbic: S. bicolor; Bdis: B. distachyon; Osat: O. sativa; Stub: S. tuberosum; Slyc: S. lycopersicum; Vvin: V. vinifera; Atha: A. thaliana;
Ptri: P. trichocarpa; Ljap: L. japonicus; Mtru: M. truncatula; Gmax: G. max).
doi:10.1371/journal.pone.0097745.g002
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AP-complexes are known: AP-1 to -4. The AP-1 complex (c, b1,

m1 and s1) functions in vesicle formation at TGN and endosomal

compartments, while the AP-2 complex (a, b2, m2 and s2) is

involved in recruiting cargo proteins from the PM

[58,122,175,250]. The AP-3 (d, b3, m3, s3) and AP-4 complex

(e, b4, m4, s4) are presumed to play a functional role in TGN-

endosomal route and may be associated with clathrin [21].

The components of CCVs have been identified in plants and by

manual inspection (Table 3). We did not detect any assigned

function distinct from vesicle transport for the proteins in A.

thaliana and yeast. The factors are by large comparable in their

protein length and by the number of (co-)orthologues between A.

thaliana and S. lycopersicum (Table 3, Table S8, Table S15), but we

observed certain distinctions in the domain architecture of the

plant (co-)orthologues to the yeast factors. For example, one (co-)

orthologue of the AP1-m1 subunit (Solyc04g026830) lacks the

‘Clathrin adaptor complex small chain’ domain (PF01217), while

AP2-a subunit (Solyc11g066760) lacks the ‘Adaptin C-terminal’

domain (PF02883) and the ‘alpha adaptin AP29 domain (PF02296;

Table S23), both known to regulate clathrin-bud formation [251].

This poses a high uncertainty for the assignment of the three

detected (co-)orthologues as vesicle component.

In contrast, the b1/29 subunit of AP1 and 2 in plants possess an

additional ‘B2-adapt-app C’ (PF09066) and ‘Alpha_adaptin C2’

(PF02883) domain when compared to the yeast protein (Table

S23). However, the existence of the latter domain in other yeast

proteins YPR029C (U9-AP1) and YBL037W (a-AP2) might

compensate for the loss of this domain. Moreover, from the

localization analysis, we predicted mitochondrial-localized (co-)

orthologues for AP1, AP2 and AP3 factors in yeast, A. thaliana and

S. lycopersicum (Table S3, Table S4). In addition, one (co-)

orthologue of heavy chain in A. thaliana (At3g08530) was

experimentally (FTFLP, PPDB) and via literature (TAIR) localized

to plastid and plasma membrane (Table 8, Table S3).

Retromer and ESCRT complexes
The retromer coat complex possessing a cargo-recognition unit

(Vps26, Vps29a and Vps35) and sorting nexins (SNX) are known

to recycle the ‘receptor proteins’ back from endosomes [17]. On

the contrary, ESCRTs are involved in concentrating and sorting

ubiquitinated membrane proteins into invaginations of endosomal

membrane (intra-lumenal vesicles ILVs) thereby forming multi-

vesicle body (MVB/s) [252,253]. Later ILVs release the destined

proteins into the vacuole/lysosomes.

We identified orthologues to the described factors in all

analyzed plants (Table S9). Analyzing the (co)-orthologues to

SNX proteins we realized that all three yeast SNX proteins

contain the typical PX domain (PF00787), which is a structural

domain involved in phosphoinositide binding and thus in

membrane targeting [254], but one of the yeast (YJL036W) as

well as a tomato protein (Solyc09g010130) does not carry VPS5

domain (PF09325; Table 4, Table S24). The comparison between

(co-)orthologues identified in A. thaliana and S. lycopersicum

manifested that most of the factors have a similar architecture

with the exception of SNF7a (Table 4). The latter is exclusively

found in A. thaliana; as well as VPS2 and VPS31/Bro1, for which

the tomato sequences are significantly shorter than the sequences

in A. thaliana (Table S16, Table S24).

In general, we detected experimental evidence by SUBA3,

PPDB or FTFLP or the annotations provided by TAIR for the

localization of only 32% Retromer and ESCRT proteins in A.

thaliana (Table S3). We observed that majority of the identified

PIP3P-binding proteins in A. thaliana are localized to the cytosol

(FTFLP, Suba-MS, PPDB, TAIR) or endosomes (TAIR), wherein

the ‘cargo recognition components’ were detected as either

cytosolic (FTFLP, PPDB, TAIR) or Golgi localized proteins

(TAIR; Table S3). In turn, the majority of the S. lycopersicum (co-)

orthologues for retromer units were predicted to be cytosolically

localized (Table S3). Further, most of the ESCRT components in

Figure 3. Classification of (co-)orthologues with different
domain architecture. (Co-)orthologues of yeast, A.thaliana and
S.lycopersicum belonging to the same orthologous group but with
entirely different domain structure (class III) exemplified for Sec17 (A),
with additional domains when compared to the bait (class II)
exemplified for COG4 and Sec26p (B) and with less domains then the
bait Sec16 (C) are represented as bar diagram showing the
corresponding domain architectures.
doi:10.1371/journal.pone.0097745.g003
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Table 8. Chloroplast-localized vesicle transport factors.

Family Name A. thaliana Id

Andersson
& Sandelius,
2004 [53]

Khan et al,
2013 [44]

A. thaliana protein
localization

Plants with plastid-
localized
orthologue

COP-II Sec13 At3g49660 Plastid Plastid Plastid* 8 of 14

Sec13 At2g43770 - Plastid Cyto* -

Sec31 At1g68690 - - Plastid* 12 of 14

Sec31 At5g38560 Plastid Plastid PMa -

Sec31 At2g45000 Plastid Plastid Nucleusb -

Sec23 At4g01810 Plastid Plastid Plastid* 8 of 14

Sec24 At3g44340 Plastid Plastid Cyto/PMc,a -

Sec24 At4g32640 Plastid Plastid Cyto/PMc,a -

Sar1-like At1g09180 - - Plastid/PMd 2 of 14

Sar1-like At5g18570 Plastid Plastid Plastide 11 of 14

COP-I F-COP At4g34450 - - Plastidf 7 of 14

F-COP At1g08520 - - Plastidg 12 of 14

Sec7-type At4g38200 - - Plastidf 11 of 14

Sec7-type At3g60860 - - Plastid* 11 of 14

CCVs Heavy chain At3g08530 - - Plastide 10 of 14

Light chain At2g40060 - - PM/Plastidh 2 of 14

AP4-b4 At5g11490 - - Plastid* 10 of 14

Rab GTPases RABA5e At1g05810 Plastid Plastid PM* -

RABB1c At4g35860 - Plastid Plastidf 2 of 14

RABE1b At4g20360 - - Plastidf 11 of 14

RABF1 At3g54840 - Plastid ERi -

ESCRTs Tetherin-g
factor

Vps5/SNX At5g59190 - - Plastid* 9 of 14

Vps23 At2g38830 - - Plastid/Mito* 2 of 14

COY1 At3g18480 - Plastid Golgij -

Exo70 At2g39380 - Plastid Plastid* 6 of 14

Exo70 At1g07725 - Plastid Plastid* 2 of 14

Exo70 At2g28650 - Plastid Plastid* 2 of 14

Exo70 At3g55150 - Plastid Cyto & Nucleusk -

Exo70 At5g59730 - Plastid Cyto & Nucleusk -

COG1 At5g16300 - Plastid Plastid/Nucleus* 5 of 14

COG2 At4g24840 - Plastid Vacuolel -

COG3 At1g73430 - Plastid Plastid* 8 of 14

COG4 At4g01400 - Plastid Cyto* -

COG5 At1g67930 - Plastid Plastid* 11 of 14

COG6 At1g31780 - Plastid Cytoc -

Bet5 At1g51160 - - Plastid & Nucelus* 9 of 14

SNAREs VTI12 At1g26680 - - Plastidf 2 of 14

VTI12 At4g31660 - - Plastid & Nucleus* 2 of 14

VTI12 At2g24700 - - Plastid* 2 of 14

VTI12 At4g31690 - - Plastidh 2 of 14

SYP21 At5g16830 - Plastid Cyto/Golgim -

SNAP33 At5g61210 - Plastid PMn -

VAMP726 At1g04760 - Plastid PMo -

VAMP714 At3g24890 - - Plastid/Mito* 1 of 14

* Predictions according to our analysis, Cyto- cytoplasm, Mito- mitochondria, PM- plasma membrane; italic indicates genes for which a chloroplast localization is highly
questionable; bold indicates genes for which a chloroplasts localization is very likely based on literature evidence and the prediction of chloroplast localized orthologues
in many plants; a Zhang and Peck 2011 [237]; b Tamura et al. 2010 [283]; c Ito et al. 2011 [236]; d Kleffmann et al. 2004 [284] and Mitra et al. 2009 [285]; e Olinarea et al.
2010 [286] and Garcia et al. 2010 [140]; f Zybailov et al. 2008 [287]; g Soldatova et al. 2005 [248]; h Froehlich et al. 2003 [288]; i Aker et al. 2006 [289]; j Latijnhouwers et al.
2007 [167]; k Chong et al. 2010 [139]; l Carter et al. 2004 [265]; m Hummel et al. 2012 [290]; n Meyer et al. 2009 [291]; o Uemura et al. 2004 [268].
doi:10.1371/journal.pone.0097745.t008
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A. thaliana were predicted to be localized to the nucleus, while a

few were confirmed via literature or experiments to be localized to

the cytosol (At3g12400; TAIR) or plasma membrane (Suba-MS,

TAIR) wherein the S. lycopersicum (co-)orthologues were predicted

as cytosolic, nuclear, mitochondrial and plastidial proteins (Table

S3). Again, in the light of the experimental evidence for the A.

thaliana proteins, the prediction for the S. lycopersicum proteins has

to be confirmed in future.

Rab GTPases
Rab GTPases emerge as universal regulators for multiple events

ranging from vesicle formation, uncoating and transport to

tethering process, and to the final vesicle fusion [255]. GTP

bound Rab proteins recruit effector-molecules (e.g. adaptors

tethering factors kinases phosphatases and motors) to facilitate

vesicle traffic [256,257]. These proteins have been used as a

markers for different compartments; RabB and RabD are known

to be localized at Golgi, RabE at ER and Golgi, RabG at vacuoles

and RabA to ‘recycling endosomes’ while other Rabs (RabC and

RabF) are expected to be localized at endocytic compartments

[21,255].

In line with their importance for the cargo recognition, we

identified Rab GTPases belonging to all groups (A to H) in all

plant species (Table S10, Table S17). In contrast to the above

described factors, we did not identify significant differences in the

domain architecture in any of the identified (co-)orthologues. In

addition, we did not detect any distinct function proposed for the

mentioned A. thaliana and yeast (co-)orthologues. While yeast

possesses one representative member for majority of the groups,

we detected multiple (co-)orthologues in plants (Table S10, Table

S17). Most of the classes (A to H) contain ‘Ras domain; PF00071’

typical for small GTPases with the exception of RabE1b, which

instead possess domains typical for GTP-binding elongation factor

family proteins and the small GTPases containing a ADP

Ribosylation Factor type GTPase domain (Table S25). Interest-

ingly, for 66% of the Arabidopsis Rab GTPases, experimental

evidence (GFP and mass spectrometry) for their localization is

available (Table S3). Moreover, most of the Rab proteins from

class A are experimentally known to be localized to trans-Golgi

network or endosomes [258,259], while 3 and 5 proteins from Rab

B and E, respectively, are experimentally known to be localized to

Golgi or pre-vacuolar compartment (Table S3) [258]. Remark-

ably, all the Rab proteins are highly conserved in their domain

architectures and belong to class I (Table 5).

The Sec1-Munc (SM)-family of proteins which are known to

form an association with Qa family of SNAREs [260] are present

in all plants as well (Table S10, Table S17) and in almost all cases

they contain a so-called ‘Sec domain’ (Sec1 family PF00995; Table

S25). This domain generally characterizes proteins involved in

vesicle transport processes like exocytosis [261].

Tethering factors
Tethering factors act upstream of SNAREs to facilitate

membrane recognition before fusion [223]. Two types of tethering

factors are discussed: homodimeric-tethering factors with elongat-

ed coiled-coil regions [262] and multi-subunit tethering complexes

(MTCs) [263]. Coiled-coil tethers are long rod-like structures

possessing heptad repeats [264]. In yeast, four coiled-coil tethers

have been described: Uso1 (p115), COY1 (CASP), RUD3/GRP1

(GMAP210) and Imh1 (Golgin-245) [34,42,52,67,223]. In plants,

we only found orthologues to the homodimeric-tethering factors

Uso1 and COY1 (Table S11, Table S18). The two plant (co-)

orthologues of Uso1 (At3g27530, Solyc08g081410) are only half

the size of their yeast counterpart (YDL058W) but contain the

Table 9. Mitochondrial-localized vesicle transport factors

Family Name A. thaliana Id
Heazlewood et al.
2004 [133]

A. thaliana protein
localization

Plants with mitochondrial-
localized (co-)orthologue

COP-II Sec31 At3g63460 Mito Nucleus/Mito* 1 of 14

COP-I B-COP (b) At3g15980 Mito Cyto/Mito* 9 of 14

Sec7-type At4g35380 Mito Mito* 2 of 14

ARF1A At5g14670 Mito Mito* 13 of 14

ARF1A At3g62290 Mito Cyto/Mito* 13 of 14

CCVs s3 At3g50860 Mito Cyto/Mito* 11 of 14

U2 At1g47830 Mito Mito* 11 of 14

m1 At1g60780 Mito Mito* 6 of 14

s1 At2g17380 Mito Mito* 13 of 14

c At1g23900 Mito Mito* 10 of 14

c At1g60070 Mito Mito* 10 of 14

Rab GTPases RABG3a At4g09720 Mito Mito* 10 of 14

SLY1 At2g17980 Mito Mito* 7 of 14

RABH1b At2g44610 Mito Mito/Cyto/Golgia 4 of 14

RABH1d At2g22290 Mito Mito b 1 of 14

Tethering factors Exo70 At3g09530 Mito Mito* 6 of 14

Exo70 At2g28640 Mito Mito* 1 of 14

COG6 At1g31780 Mito Mito* 11 of 14

* Predictions according to our analysis, Cyto- cytoplasm, Mito- mitochondria, PM- plasma membrane; bold indicates genes for which a mitochondrial localization is most
likely based on Heazlewood et al. [132] and the prediction of mitochondrial localized orthologues in many plants but without further literature evidence; a Johansen et
al. 2009 [292]; b Heazlewood et al. 2004 [293].
doi:10.1371/journal.pone.0097745.t009
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characteristic domains ‘Uso1_p115_head’ and ‘Uso1_p115_C’

(PF04869 and PF04871; Table 6, Table S26), and thus, might

indeed be involved in vesicle transport. Interestingly, the COY1

orthologue in A. thaliana (At3g18480) is putatively described to be

chloroplast-localized [177], but experimental evidence for its

localization to Golgi exists (Suba-MS, FFTLP, PPDB; Table 8,

Table S3) [160].

Further, four major MTC complexes are discussed. (i) HOPS

(homotypic fusion & vacuole protein sorting/class-C vacuole

protein sorting (Vps), (ii) an extension of HOPS annotated as

CORVET (class C core vacuole/endosome tethering), (iii) the

complex associated with tethering containing helical rods

(CATCHR) constituting Exocyst, COG, DSL1, and GARP

complexes, and (iv) the transport protein particle complex,

TRAPP [224].

With the exception of Vps3, all HOPS and CORVET complex

components (Vps3, Vps8, Vps11, Vps16, Vps18, Vps33, Vps39

and Vps 41) are found in plants (Table 6). However, Vps39

(HOPS) and Vps8 (CORVET) are class II proteins, which differs

slightly in the domain architecture comparing plants and yeast (co-)

orthologues (Tabsle 6, Table S11), but are predicted to possess

similar localization to that of yeast protein.

The four CATCHR complexes are conserved to a different

extent. With the exception of Tip20 (At1g08400) [147], we could

not identify orthologues to components of the DSL1 complex

(Dsl1 and Sec39; Table S18, Table S26). However, we could not

detect (co-)orthologue of Tip20 in tomato, which is detected in

other plant species (Table S18). For COGs, (co-)orthologues for all

have been identified in both S. lycopersicum and A. thaliana (Table

S18), [159]. Interestingly, 6 COG orthologues in A. thaliana have

been putatively described to be chloroplast-localized [177], while

from our analysis we predicted 3 of 6 (co-)orthologues as plastid-

localized (COG1, 3 and 5; Table 8, Table S4), COG4 as

cytosolically localized, COG6 as mitochondrial and COG8 as

Golgi localized. However, one (COG2, At4g24840) is experimen-

tally confirmed (Suba-MS, TAIR) to have a vacuolar localization

(Table 8, Table S3) [265].

Additionally, we identified orthologues to the three GARP

components: Vps52 Vps53 and Vps54 but not to Vps51

(YKR020W; Table 6, Table S11). In contrast to the other

CATCHR families, we identified orthologues to all eight Exocyst

components (Sec3, 5, 6, 8, 10, 15, Exo70 and 84), which also show

the same domain architecture as the corresponding yeast protein,

except the Sec10 (Table 6, Table S18). For Exo70 we observed a

large number of (co-)orthologues in all plant genomes (Table S11,

Table S18), however, previous studies showed even larger set of

genes representing the Exo70s in A. thaliana (23 putative

homologues) [131], while we detected only 14 of 23 in the

orthologus group corresponding to yeast Exo70. Furthermore, 5 of

the 14 Exo70 (co-)orthologues in A. thaliana have been predicted as

chloroplast-localized [177], while we detected contradictory

localization based on experimental evidences (FTFLP, PPDB) for

two (co-)orthologues (At3g55150, At5g59730; Table 8) [139]. In

addition, we identified three more Exo70 (co-)orthologues

(At5g03540, At1g07000, At5g61010) with evidence via experi-

ments and literature to be localized to cytosol, nucleus or plasma

membrane (PPDB, FTFLP; Table S3) [139]. Remarkably, with

the exception of Trs85 (YDR108W) and Trs65 (YGR166W), other

components of TRAPP-I & TRAPP-II complex have been

detected in plants (Table 6, Table S18). From the manual

inspection, we did not detect any A. thaliana or yeast (co-)

orthologue to be involved in a process other than vesicle transport.

SNAREs
SNAREs act as a universal adapter facilitating the fusion of

vesicle and recipient compartment. SNARE proteins possess a

signature SNARE motif (60–70 amino acids) arranged in heptad

repeats which play a role in establishing hetero-oligomeric

interactions [19]. Based on the presence of conserved glutamine

(Q) or arginine (R) in the center of the SNARE domain, SNAREs

are classified into two groups: Q- and R- SNARES [266]. In

general, Q-SNAREs (Qa, Qb, Qc, Qb+Qc- SNAREs) are

localized on the target compartment whereas R-SNAREs reside

on the vesicle [19]. A SNARE complex is composed of four

intertwined a-helices; three distinct Q-SNAREs and one R-

SNARE [267]. The complex formation enforces a tight association

between the opposing membranes thereby initiating the ‘fusion’

event.

In accordance with their reported importance [267], we

identified orthologues for almost all SNARE types in both A.

thaliana and S. lycopersicum (Table S19), which are comparable on

the basis of protein length and their domain architecture (Table 7,

Table S27). Moreover, with few exceptions (Syp112, Pen1, VTI13,

SYP61, SYP72, SYP73, and Snap29), we could detect SNARE

orthologues in all other plant species as well (Table S12). Further,

the plant-specific SNAREs in A. thaliana, NPSN (novel plant-

specific SNARE) [19,119] At2g35190, At3g17440 and At1g48240

are experimentally confirmed to be plasma membrane localized

(Table S3) [268]. The two (co-)orthologues of NPSN in S.

lycopersicum, Solyc08g077550 and Solyc12g098950 were predicted

to be localized to cytosol, nuclei or Golgi. Furthermore, majority

of the Qa SNAREs in A. thaliana were experimentally identified in

the PM (Table S3) [268]. From the previous studies, SYP21

(At5g16830), SNAP33 (At5g61210), VAMP726 (At1g04760) are

putatively described as chloroplast-localized [177], while we

detected contradictory localizations compared to the existing

experimental evidences (SUBA3, FTFLP, PPDB; Table 8, Table

S3) [268].

The detected (co-)orthologues of VTI12, with the exception of

At2g24645, At2g24681 and At2g24696, have been described as

members of B3 superfamily of proteins and are referred as REM

proteins [133,181]. Only At4g31610 is experimentally character-

ized as AtREM1, while other (co-)orthologues are putatively

classified as REMs [133,181]. Moreover, At4g00260 has been

discussed as MEE45 as well, which plays role in embryo sac

development [156]. Thus, considering the existing literature and

analyzing the domain architecture (Table 7), at stage it is not clear

whether the detected (co-)orthologues of VTI12 have a role in

vesicle transport or not.

Co-regulated clusters of vesicle transport encoding
genes

Having identified (co-)orthologues for most of the components

involved in vesicle transport we aimed at identification of co-

regulated clusters of genes. To this end, we used publically

available expression data (Table S3, Materials and Methods). The

tissue expression data were extracted from the Gene Expression

Omnibus (GEO) [269] for 9 and 7 different tissues and

developmental stages of A. thaliana and S. lycopersicum, respectively

(Table S5). We performed k-means clustering for both organisms

independently. To avoid overweighting of a certain tissue due to a

higher number of samples we performed hierarchical clustering of

the data for respective tissue to select four representative samples

showing a median expression profile. The mean of the tissue

samples were further considered as basis for the k-means

clustering. The number of clusters (k) was limited to 10 because

of the decreased gradient in analyzing the distance to the optimal
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cluster solution (Fig. S1; Table S28, Table S29). The available

data allowed the analysis of 282 of the 340 genes (82%) from A.

thaliana (Fig. 4a; Table S28) and 149 of 307 S. lycopersicum genes

(48%, ,25% of which belongs to Rab GTPases) identified in here

as (co-)orthologues of factors involved in the vesicle transport

(Fig. 4b; Table S29).

In A. thaliana, we detected two clusters (annotated as Atha_9 and

Atha_10) of significantly higher expression in mature pollen with

respect to other tissues (Fig. 4a). Atha_9 mostly contains

orthologues to Rab GTPases and SNARE proteins (32/48) (Table

S28), while cluster Atha_10 consists of orthologues to SNARE

proteins (18/46), Sec31 (3) and ESCRT components (5; Table

S28).

The genes of the clusters Atha_2, Atha_3 and Atha_7 exhibited

lower expression in mature pollen, and genes of cluster Atha_3

show reduced expression in siliques (Fig. 4a). The Atha_2 cluster is

composed of (co-)orthologues from COP-II (Sec23, Sec24 and

Sec13), clathrin units (b4-AP4, b3-AP3, b1/29-AP1), SNAREs

(Qa, R and Qc), Rab GTPases (C, D and E), tethering factors

(COG3, COY1, BET3 and BET5). Similarly, Atha_7 represents

(co-)orthologues of all COP-II units; Sec13 Sec31, Sec23, Sec24,

GEF and GTPase, and Atha_3 exhibits (co-)orthologues of cage

and cargo selective units of COP-I vesicle (Table S28).

Genes of the clusters Atha_5 and Atha_8 have enhanced

expression in roots or seedlings (in case of Atha_8). In turn, the

genes of cluster Atha_1 show the highest expression in siliques, the

genes of cluster Atha_4 in ovules and pollen, while the genes of

cluster Atha_6 do not show a preferential tissue expression

(Fig. 4a). Atha_1 represents (co-)orthologues for ESCRT I (VPS23

VPS37), ESCRT II (VPS36), and ESCRT III (VPS2 DID2)

factors, while cluster Atha_5 majorly consists of Rab GTPases and

SNARES (11/17; Table S28) in addition to Retromers, ESCRT

and clathrin units.

The A. thaliana (co-)orthologues to 25 factors are present in

different clusters according to their expression pattern. In addition,

for 15 factors at least one (co-)orthologue is classified in a distinct

cluster, while for four factors all (co-)orthologues were classified in

the same cluster (Table S28). Consistently, for S. lycopersicum we

found 15 factors with all (co-)orthologues in different clusters, 7

factors with at least one (co-)orthologues in a different cluster and

only for two factors a classification of all (co-)orthologues in the

same cluster (Table S29). Thus, the presence of (co-)orthologues in

different clusters strongly suggests possible distinct and overlapping

functions.

Comparing the clusters for A. thaliana (Fig. 4a, Table S28) with

S. lycopersicum (Fig. 4b, Table S29), we observed that genes in

cluster Slyc_2 and Slyc_3 show an enhanced expression in roots

similar as observed for A. thaliana co-expression clusters Atha_5

and Atha_8, but not as drastic. Similarly, the Slyc_9 cluster shows

an enhanced expression in cotyledon and hypocotyls comparable

to the enhanced expression in seedlings for Atha_8. For the

clusters Slyc_1, Slyc_6, Slyc_8 and Slyc_10 we do not find a

significant alteration of expression, which is comparable to

Atha_6. Furthermore, genes of Slyc_7 are higher expressed in

fruits, which is comparable to the expression behavior of Atha_1

i.e. expressed more in siliques. In contrast to the A. thaliana genes,

we found a specific set of genes, which is highly expressed in

flowers (Slyc_4) and another set, which has low expression in

cotyledon and hypocotyl (Slyc_5). Slyc_4 consists of (co-)rtholo-

gues of SNAREs (Sec18, NPSN, SYP21/22/23, GOS12, VAMP,

SNAP33) and Rab GTPases (D, E and F), while the Slyc_5 cluster

possess (co-)rthologues of SNAREs (Sec22, VAMP, Use11,

SFT11/12, MEMB11/12), Rab GTPases (A, B, C, D and G),

ESCRTs (Vps37, 2, 25, 22). Unfortunately, for S. lycopersicum a

large dataset for expression in pollen or ovules is not available.

While inspecting the overlap between the genes found in S.

lycopersicum and A. thaliana clusters with similar regulation we did

not find a large overlaps with respect to factors assigned with

specific pathways, which in part might be explained by the

different datasets analyzed. More likely, this might also suggest

that evolution has led to the co-regulation of distinct components

corresponding to different pathways.

Further, we analyzed the confirmed or predicted localization of

the proteins encoded by the genes of different clusters (Fig. 5).

Correlating the localization and expression for specific tissues, no

obvious pattern could be observed. Interestingly, A. thaliana and S.

lycopersicum differ in their amount of vesicle proteins localized to

specific compartments. For A. thaliana, a high amount of plasma

membrane localized proteins (represented as endomembrane;

Fig. 5) were observed, while in S. lycopersicum the localization to

plastids and the cytosol was dominating. The latter result might be

biased by the large amount of experimentally confirmed localiza-

tion of A. thaliana proteins and only the localization predictions for

the S. lycopersicum proteins.

Discussion

The complexity of the vesicle transport system in plants
We identified (co-)orthologues of components involved in vesicle

transport in 14 plant species and yeast (Fig. 2; Table S6–S12).

These (co-)orthologues were based on the ‘core-set’ of 240 factors

extracted from literature in yeast or A. thaliana (Fig. 1). In yeast,

(co-)orthologues for 171 factors were identified (Tables 1–7).

However, this is reflected by 129 (co-)orthologues only, as some of

the factors belong to the same orthologous group. In addition, with

the exception of one (co-)orthologue for Sec13, all (co-)orthologues

have been assigned to class I suggesting an involvement in vesicle

transport. For the 69 remaining factors described to be involved in

vesicle transport in A. thaliana, orthologues do not exist in yeast,

namely for Rab GTPases (29; Table 5, Table S17), SNAREs (26;

Table 7, Table S19), COP-I vesicles, CCVs (5 each; Table 2,

Table 3, Table S14, Table S15) and ESCRTs (4; Table 4, Table

S16).

In the 14 plant genomes a total of 4021 (co-)orthologous

sequences corresponding to the ‘core-set’ of factors are identified.

Only 8 tethering factors found in yeast are not observed in plants

(Table 6, Table S18); namely Rud3/Grp1 and Imh1 (coiled coils),

Vps3 (CORVET), Dsl1 and Sec39 (DSL1 complex), Vps51

(GARP complex), as well as Trs85 and Trs65 (TRAPP-I and II).

The highest number of genes per factor is present in G. max (481;

,2 genes/factor) and P. trichocarpa (341; .1 genes/factor). This

may be credited to recent whole genome duplications (WGD)

[270,271]. It might be speculated that the time that has passed

after WGD was not sufficient to deselect redundant factors of

duplicated regions. The lowest number of (co-)orthologues is

obtained for C. reinhardtii (118; ,1 genes/factor), which is

consistent with its small genome size. Moreover, the number of

(co-)orthologues is relatively constant in all monocots with the

exception of Z. mays. The latter reflects that Z. mays is the only

investigated monocot with recent whole genome duplication

[272]. In contrast, the analyzed dicots show a higher variation

in the number of identified (co-)orthologues of the vesicle transport

factors as several dicots had a recent whole genome dupli-/

triplications (Table S20).

Species specificities in the proteome of vesicle transport factor

exist as well. For example, no (co-)orthologue for Sec16 (COP-II,

Table S6) or the light chain of the triskelion and AP3 complex is

found in C. reinhardtii (CCVs; Table S8). Similarly, S. tuberosum and
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M. truncatula do not possess light chains of the triskelion (Table S8).

However, it cannot be excluded that the absence of factors might

result from incomplete gene annotation of the respective genomes

and should be taken with care. Generally, plants appear to show a

higher complexity with respect to the vesicle transport when

compared to yeast (Table S6–12, Table S20). This on the one

hand results from the existence of chloroplast as additional

organelle and on the other hand most likely reflects certain tissue

specificity in the expression pattern of individual genes.

With respect to the ‘core-set’ of 240 factors, 340 (co-

)orthologues in A. thaliana and 307 in S. lycopersicum are assigned

to orthologous groups (Tables 1–7, Table S13–S19), 275 A. thaliana

and 232 S. lycopersicum protein sequences are of class I, and thus

most likely involved in vesicle transport. The difference in the

number of (co-)orthologues is mainly accounted by Rab GTPase

(,4.5 times more in A. thaliana and tomato, Table S17) and

SNARES (3–4 times more in A. thaliana and tomato, Table S19).

Furthermore, 149 of the 212 factors described for A. thaliana have

been identified in all plants. Interestingly, 7 factors are specifically

found only in A. thaliana, namely ARF1D, RabA4b, Raba4e,

Rabc2b, RabG1, KEULLE and SYP24 (Table 1–7).

Tissue-specificity of vesicle factors in A. thaliana and S.
lycopersicum

Clustering of the available tissue specific expression studies

based on S. lycopersicum GeneChip (9,200 transcripts) containing

149 of the 307 different (co-)orthologues for vesicle transport

revealed a comparable behavior for most genes. In general, the

clusters showed a higher expression in roots, flowers and fruits

when compared to hypocotyl and cotyledon tissues and an

intermediate expression in leafs (Fig. 4b). Only two clusters show a

significantly different expression, namely low expression in fruits

(cluster Slyc_3), which is only represented by one RABH1

orthologue (Table S29), or high expression in hypocotyl and

cotyledon and low expression in roots (cluster Slyc_9). Again, this

cluster represents only 3 orthologues, one to RABE1a, one to

RABE1b and one to Arl8-like. Thus, our analysis only presents a

first indication, but for a final conclusion more experimental data

are required.

In contrast, the publically available expression data for A.

thaliana genes is sufficient to justify conclusions (Fig. 4a). Remark-

ably, (co-)orthologues for all components of COP-II vesicle are

represented in cluster Atha_7, which display a high expression in

all tissues except of pollen (Fig. 4a, Table S28). This might suggest

that a pollen-specific COP-II composition exists, which is

supported by the clustering of one Sec16, one Sec13, one Sar1-

like and one Sec31 (class II) orthologue in Atha_9/Atha_10, which

represent cluster with high expression exclusively in pollen. In

turn, cluster Atha_9/Atha_10 contains genes coding for ortholo-

gues of all inspected complexes except of CCV-transport factors

(Fig. 4a, Table S28). This suggests that the pollen specificity of

vesicle transport is rather defined by specific expression of RAB

Figure 4. Expression analysis of A. thaliana and S. lycopersicum genes. Shown are the average RMA normalized expression patterns of
different tissues for 10 clusters of vesicle transport factors in (A) A. thaliana and (B) S. lycopersicum. The y-axis shows the average RMA normalized
expression of a maximum of 4 samples per tissue. The 10 clusters (Atha_1 to Atha_10) and (Slyc_1 to Slyc_10) were obtained by k-means clustering
and split into four graphs in accordance to their expression profile in different tissues. (Leaf 3W: 3 weeks old leaf; Leaf 5W: 5 weeks old leaf).
doi:10.1371/journal.pone.0097745.g004
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and SNARE genes, of which about 35% of all found (co-)

orthologous genes are present in cluster Atha_9/Atha_10.

Atha_5 is the only other cluster which unifies a set of genes with

a tissue specific expression, namely with highest expression in roots

(Fig. 4a, Table S28). The analysis documents that no orthologues

to COP-I, COP-II and CCV factors (with the exception of m1-

AP1) is specifically expressed in roots, while most of the genes

found in this cluster are RAB orthologues. Thus, while pollen

specific-expressed orthologues exist for many components, roots

do not represent a tissue with a large specific set of vesicle

transport factors.

Vesicle transport systems in both chloroplasts and
mitochondria?

Based on bioinformatics approaches, a vesicle transport system

has been discussed to be present inside the chloroplasts [141,177].

This analysis was extended here by utilizing experimental

evidences, a multitude of prediction server and localization

prediction for orthologues from all plants analyzed (Fig. 6, Table

S4). Thus, while 26 factors in A. thaliana were previously proposed

to be involved in chloroplast-localized vesicle transport system

[141,177], we predict chloroplast localization for 15 proteins in

plants, namely four COP-II (Sec13, Sec31, Sec23 and Sar1-like),

three for COP-I (F-COP and Sec7-type), two CCVs (Heavy chain

Figure 5. Predicted intracellular localization of factors in different clusters. Shown are stacked bar charts of the factors categorized on the
basis of consensus localization analysis. Vesicle transport factors of A. thaliana (A) and S. lycopersicum (B) are clustered concerning their tissue-specific
expression and distributed to their predicted localization. The localization of A. thaliana depends on the high certainty approach. For S. lycopersicum,
the localization was determined by the low certainty approach (see Materials and Methods).
doi:10.1371/journal.pone.0097745.g005
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and AP4-b4), one RAB GTPase (RABE1) and vive tethering factor

components (Vps5, Exo70, COG1, COG3 and COG5; Table 8).

From this result it is tempting to speculate that the chloroplast

vesicle transport system is similar the COP-II system for transport

from ER to Golgi. Nevertheless, the presented large-scale analysis

supports the previous proposal of a chloroplast intrinsic vesicle

transport system [141,177]. However, for most of the factors the

chloroplast localization has to be experimentally confirmed,

particularly for the central components of the vesicles; the cage

and cargo-selective units.

Unexpectedly, we also realized (co-)orthologues for which a

mitochondrial localization is predicted or even experimentally

confirmed (Table 9). However, in contrast to the chloroplast

inventory which is dominated by COP-II components and

tethering factors, most of the proteins predicted to be mitochon-

drial localized are (co-)orthologues for CCVs components (Fig. 6,

Figure 6. Putative chloroplast or mitochondrial localized vesicle transport factors. Shown are the likely (co-)orthologues of A. thaliana
(top) and the most likely factors based on the analysis of all 14 plant genomes (present in more then 7 plant genomes, bottom) which are predicted
to be chloroplast (A) or mitochondrial (B) localized. The (co-)orthologues are assigned concerning the seven different vesicle transport factor families.
The size of the symbol on the left size indicates the importance of the factor family.
doi:10.1371/journal.pone.0097745.g006
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Table S3, Table S4). Approaching the MitoMiner database [273],

we observed experimental evidence based on GFP tagging or mass

spectrometry for mitochondrial localization in yeast for some (co-

)orthologues of Rab GTPases, tethering factors and CCV

component as well. Nevertheless, the mitochondrial localization

of these factors has not been discussed till date. If one considers

that (i) a third of yeast mitochondrial proteome shows dual

localization and (ii) that proteins with dual localization have a

weaker mitochondrial targeting signal [274], it is possible that at

least some of these proteins are indeed mitochondrial-localized.

At stage, a mitochondrial vesicle transport system has not been

described. However, at a theoretical level, vesicle-like structures

have been proposed to be involved in cristae formation [275]. The

‘Cristae fission–fusion’ model suggests that transiently formed

vesicles are implicated in the propagation of the cristae

membranes, through budding off from pre-existing cristae and

fusion with the inner membrane at different site [275]. Consistent

with this idea, Mulkidjanian et al. [276] suggested that the

intracellular vesicles of purple bacteria like Rhodobacter capsulatus (e.

g. Borghese et al. [277]) discussed as close relative to the ancestral

endosymbiont leading to mitochondria [278] are the evolutionary

precursor of cristae. In line, mitochondrion internal vesicle-like

structures have been reported in mitochondria of patients with

defective gene functions which cause pathological conditions, or

during reconstruction of the matrix compartment after extensive

osmotic swelling [279,280] as well as in degenerating mitochon-

dria in vascular bundle in petals of open Dendrobium cv. Lucky

Duan flowers [281]. Therefore, one can speculate that some of the

components identified in this study as mitochondrial-localized

factors are involved in the formation of cristae as the induction of

membrane curvature is comparable to vesicle formation [282].

Nevertheless, the exact need for mitochondrial-localized vesicle

transport factor remains elusive and is subject to verification.

Supporting Information

Figure S1 Determination of number of clusters (k) for k-means

clustering. Shown are the distances of the clustering from the

optimal solution (dividing each factor to a single cluster) using

enumerated amount of clusters. The k-means clustering is

performed for A. thaliana (black dot) and S. lycopersicum (white dot)

using 1 to 50 clusters. The red dashed line marks the number of

clusters used for the clustering in this study where the logarithmic

distance to the optimal solution has a decreased slope.

(TIF)

Figure S2 Domain architecture of different classes. Shown are

the domain architecture of (co-)orthologues within one ortholo-

gous group for the factors (a) Ret3p, (b) Sec26p, (c) Sec31, (D)

SFT11 in yeast, A. thaliana and S. lycopersicum.

(TIF)

Table S1 Literature reference for all the yeast (co-)orthologues

for the vesicular transport factors from the SGD.

(XLSX)

Table S2 Literature reference for all the Arabidopsis

(co-)orthologues for the vesicular transport factors from the TAIR.

(XLS)

Table S3 Localization analysis for yeast, Arabidopsis, and

tomato (co-orthologues) for COP-II components. For yeast and

tomato, Yloc, WoLF PSORT, MitoPred, ChloroP, Target P,

Predotar predictors were used and the consensus was built. The

score given (for e.g. 1 of 2 or 2 of 3) refers to the prediction given

by ‘X’ of the ‘Y’ predictors. In contrast, for Arabidopsis publically

available experimental data; GFP (green fluorescent protein)

localization/mass spectrometry (SUBA3, FTFLP, PPDB) were

utilised. We also looked into the annotation given by TAIR

database with a provided reference (PMID). Further, if no

experimental evidence existed, we used the consensus of 20

different predictors to assign the probable localizations (as in

SUBA3) and the score is presented respectively (for e.g. 11/19 or

5/14 etc.). Highlighted cells signify experimental evidence for the

particular (co-)orthologue.PM: plasma membrane, VACU: vacu-

ole, PLAS: plastid, MITO: mitochondria, NUCL: nucleus;

CYTO: cyoplasm, GOLG: golgi, ER: endoplasmic reticulum,

PERO: peroxisome, EX-CE: extra-cellular, CY-SK: cytoskeleton.

The experimentally proven localisations are highlighted.

(XLSX)

Table S4 Localization analysis of chloroplast or mitochondrial

localized (co-)orthologues in other analysed plant species in

context of chloroplast or mitochondrial-localized A. thaliana (co-)

orthologues. The highlighted cells shows that the respective factor

has 7 or .7 of the 14 plant species possessing the similar

localization. Except A. thaliana, Yloc, WoLF PSORT, MitoPred,

ChloroP, Target P, Predotar predictors were used to build a

consensus for all other plant species.

(XLSX)

Table S5 GEO IDs considered for downloading microarray

data for both A. thaliana and S. lycopersicum for clustering analysis.

(XLSX)

Table S6 The orthologues of COP-II components identified via

OrthoMCL in all the species discussed.

(XLSX)

Table S7 The orthologues of COP-I components identified via

OrthoMCL in all the species discussed.

(XLSX)

Table S8 The orthologues of Clathrin coated vesicles compo-

nents identified via OrthoMCL in all the species discussed.

(XLSX)

Table S9 The orthologues of retromer and ESCRT components

identified via OrthoMCL in all the species discussed.

(XLSX)

Table S10 The orthologues of Rab GTPases components

identified via OrthoMCL in all the species discussed.
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