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Abstract

Most of our knowledge of dominance stems from studies of deleterious mutations. From these studies we know that most
deleterious mutations are recessive, and that this recessivity arises from a hyperbolic relationship between protein function
(i.e., protein concentration or activity) and fitness. Here we investigate whether this knowledge can be used to make
predictions about the dominance of beneficial and deleterious mutations in a single gene. We employed a model system –
the bacteriophage w6 – that allowed us to generate a collection of mutations in haploid conditions so that it was not biased
toward either dominant beneficial or recessive deleterious mutations. Screening for the ability to infect a bacterial host that
does not permit infection by the wildtype w6, we generated a collection of mutations in P3, a gene involved in attachment
to the host and in phage particle assembly. The resulting collection contained mutations with both deleterious and
beneficial effects on fitness. The deleterious mutations in our collection had additive effects on fitness and the beneficial
mutations were recessive. Neither of these observations were predicted from previous studies of dominance. This pattern is
not consistent with the hyperbolic (diminishing returns) relationship between protein function and fitness that is
characteristic of enzymatic genes, but could have resulted from a curve of increasing returns.
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Introduction

Nearly 150 years after Mendel first observed recessive traits in

pea plants [1], empirical studies have shown that most deleterious

mutations are recessive [2,3,4]. The most widely accepted theory

for why mutations should be recessive is the Physiological Theory

[5,6], which argues that dominance is a natural result of the

physiological mechanics of protein function. For mutations in

enzymatic genes, the dominance of the wildtype over most

deleterious mutations results, simply, from the hyperbolic

relationship between enzyme concentration and flux through a

metabolic pathway (see Figure 1). Empirical investigations of

mutational effects in enzymes have confirmed that enzyme

concentration is hyperbolically related to flux [5], and also to

fitness [7]. If we consider the Physiological Theory more generally,

the exceptions seem to prove the rule. In cases like Huntington’s

disease, where deleterious mutations are dominant, they typically

occur in non-enzymatic genes (reviewed in [4]).

While many studies have examined the dominance of delete-

rious mutations, the rarity of beneficial mutations makes it difficult

to perform analogous studies on them without inadvertently

selecting for dominant mutations (Haldane’s sieve; [8,9]). In light

of these limitations, it is worth considering whether studies of

deleterious mutations can inform our knowledge of beneficial

mutations. In the specific example described above, if the

recessivity of most deleterious mutations is explained by the

hyperbolic (diminishing returns) relationship between protein

concentration and function that characterizes enzymatic genes,

does that mean that most beneficial mutations are also governed

by that hyperbolic relationship, causing their effects to be

dominant (see Figure 1)? More generally, if the dominance effects

of deleterious mutations in a particular gene were known –

whether recessive, additive, or dominant – could that knowledge

be used to predict the dominance effects of beneficial mutations in

the same gene?

In this study, we examine the dominance and selection

coefficients of a collection of spontaneous mutations in the

bacteriophage w6. Our collection differs from those of earlier

studies in several important ways – the mutations occur primarily

in a single gene, span a wide range of fitness effects, and include an

unbiased sample of deleterious and beneficial mutations. Thus, we

are able to test whether deleterious mutations in this gene are

recessive, and beneficial mutations are dominant, as would be

predicted by a hyperbolic relationship between protein function

and fitness (Figures 1A and 1C).

Materials and Methods

Ancestor Strain, Culture Conditions and Archiving
In this study we used two laboratory strains of the double-

stranded RNA bacteriophage w6, both descended from the

original isolate [10]. The first strain, w6mindich, was reconstructed

from cloned genome segments [11]. The bacteria and plasmids

used to construct this strain were supplied by Leonard Mindich

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e97717

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0097717&domain=pdf


(Public Health Research Institute of New Jersey Medical School).

The second strain, w637F-41, was obtained from Lin Chao

(University of California, San Diego). w637F-41 has served as the

ancestor for previous evolution experiments [12,13,14,15] and was

used here because it generates a wide array of host range

mutations during the 5 generations that elapse during formation of

single plaques [15]. w637F-41 has a higher fitness than w6mindich,

probably because of differences in laboratory passage. We

employed two host bacteria, the standard laboratory host

Pseudomonas syringae pathovar phaseolicola strain HB10Y, obtained

from the American Type Culture Collection (ATCC no. 21781),

and a novel host Pseudomonas syringae pathovar glycinea strain R4a,

obtained from Jeff Dangl (University of North Carolina).

Bacteriophage and their hosts were cultured and titered in

standard LC media (5 g yeast extract, 5 g NaCl, and 10 g Bacto-

tryptone per liter H2O) [13]. Phage were grown on plates by

overlaying a mixture of phage, 200 mL of an overnight culture of

bacteria, and 3.5 mL top agar (LC+0.7% agar) onto solid media

(LC+1.5% agar). Bacteriophage and bacteria were incubated for

growth at 25uC, and archived in 40% glycerol at 220uC and 2

80uC, respectively.

Host Range Mutants
We isolated host range mutants capable of growth on

Pseudomonas syringae pathovar glycinea, an alternative host that

w6mindich and w637F-41 cannot infect. The ancestor phage was

plated on the standard laboratory host P. phaseolicola to obtain

isolated plaques. Phage were harvested from randomly chosen

isolated plaques and plated on the alternative bacterial host P.

glycinea. After 24 hours of growth, a single mutant plaque was

frozen per plate. This procedure was repeated to obtain

independent mutants. Mutants were then plaque purified by

streaking each frozen plaque onto a lawn of the alternative host.

One purified plaque per plate was archived by freezing. Mutants

of w637F-41 were isolated in a previous study [15].

We examined host range mutants to identify those with both a

different growth rate than their ancestor on the standard

laboratory host P. phaseolicola and a unique mutation in the

attachment gene P3. Differences in growth rate relative to the

ancestral phage were identified by visually inspecting plaque sizes

on P. phaseolicola as in [12], and mutations were identified by

amplifying and sequencing the region encompassing nucleotides

1298–3873 of the medium genome segment. This region

encompasses the entire P3 and P13 genes and part of the P6

gene [16]. RNA isolation, amplification and sequencing were

performed using the protocol described by Ferris et al. [15]. That

study examined a larger analogous collection of host range

mutations and confirmed that the majority (.75%) possessed only

the single mutation identified in P3 and no additional second-site

mutations [15].

Burst Size Assays
Burst assays measured the number of offspring produced from

individual host cells infected by two bacteriophage (i.e. coinfected

cells). These assays were performed by incubating 36108

exponentially growing standard host cells (P. phaseolicola) with

4.56109 phage of a particular mutant genotype (a) and 4.56109

ancestral phage (A). Phage titers were calculated using a plaque

assay on the standard host. After 20 minutes of incubation, we

separated coinfected host cells from viruses that had not yet

Figure 1. The hyperbolic relationship between enzyme concentration ([E]) and fitness is predicted to determine the dominance of
mutations affecting enzyme concentration. When fitness of the wildtype is near the plateau of the hyperbolic curve, (A) mutations that
substantially reduce enzyme concentration are predicted to be recessive and (B) mutations that slightly reduce enzyme concentration have additive
effects. (C) When fitness of the wildtype is lower, it is possible to accumulate mutations that substantially increase enzyme concentration. These
mutations are predicted to be dominant over the wildtype allele. These predictions are for mutations that alter enzyme concentration, but can be
extended to include mutations that alter other components of protein function, namely protein activity.
doi:10.1371/journal.pone.0097717.g001

Figure 2. Plaque genotyping assay. Progeny from a single
coinfected cell were plated on a mixed lawn of the standard (P.
phaseolicola) and novel (P. glycinea) hosts. Mutant (a) progeny can
infect both hosts and result in clear plaques, while wildtype (A) progeny
only infect the standard host and result in turbid plaques. The
coinfection type can be identified as either AA (only turbid plaques;
left panel), Aa (both turbid and clear plaques; center panel) or aa (only
clear plaques; right panel).
doi:10.1371/journal.pone.0097717.g002
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infected a host by centrifuging the mixture for 5 minutes and

pouring off the supernatant. This washing procedure was repeated

3 times, resuspending the pelleted cells in 5 ml of LC after the first

two washes and in 1 ml of LC after the final wash. The mixture

was then diluted and 20 ml volumes were aliquoted into wells of at

least five 96-well plates so that on average, 1 out of 10 wells

Figure 3. The relationship between protein function and fitness alters the complementation of mutations affecting protein
function. Regions where mutations have recessive effects (0, h,0.5) are shown in gray and additive effects (h = 0.5) are shown as a dashed line. The
Physiological Theory predicts that (A) the hyperbolic relationship between protein function and fitness results in additive mutation effects only when
the wildtype fitness is near zero (B). At moderate (C) and high (D) wildtype fitnesses, deleterious and beneficial mutations are predicted to be
recessive and dominant, respectively. The sigmoidal fitness function predicted for proteins that display cooperative binding (E) causes a stronger
dependence of dominance coefficients on wildtype fitness. For instance, the sigmoidal relationship yields recessive beneficial mutations when
wildtype fitness is low (F), but dominant beneficial mutations when wildtype fitness is moderate (G) and high (H).
doi:10.1371/journal.pone.0097717.g003

Table 1. Mutation identity.

Host range mutant Nucleotide substitution in P3a Amino acid substitution in P3a Ancestor

HR2 – – w6mindich

HR3b A125G K42R w6mindich

HR4 A1211G E404G w6mindich

HR5 A1211C E404A w6mindich

HR6 A1709G D570G w6mindich

HR8 G1228A D410N w6mindich

HR9c T136C F46L w6mindich

HR10 G1708A D570N w6mindich

HR14c A1229G D410G w6mindich

HR15 T136A F46I w6mindich

HR16c T137C F46S w6mindich

HR19 A536G D179G w6mindich

HR23 – – w6mindich

HR25 T620C F207S w6mindich

G25 A23G E8G w637F-41

G27 C1016T P339H w637F-41

G28 A1661C D554A w637F-41

aSubstitutions are labeled relative to their position in P3.
bTwo additional host range mutants had the same substitution.
cOne additional host range mutant had the same substitution.
doi:10.1371/journal.pone.0097717.t001
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Table 2. Coinfection data.

Standardized fitness
Mean f (a)
from heterozygous coinfectionsa

Mutant Coinfection type
Observed number of
coinfected cells Mean 95% confidence interval

HR2 aa 8 0.51 (0.36, 0.73)

" Aa 32 0.84 (0.68, 1.04) NAb

" AA 25 1 (0.79, 1.26)

HR3 aa 11 1.2 (0.92, 1.59)

" Aa 44 0.94 (0.76, 1.15) 0.4560.08

" AA 27 1 (0.79, 1.26)

HR4 aa 17 0.43 (0.31, 0.60)

" Aa 49 0.71 (0.59, 0.86) 0.4360.04*

" AA 42 1 (0.87, 1.14)

HR5 aa 17 0.4 (0.27, 0.58)

" Aa 43 0.72 (0.56, 0.92) 0.4960.08

" AA 9 1 (0.67, 1.49)

HR6 aa 22 0.93 (0.73, 1.18)

" Aa 31 0.88 (0.73, 1.06) 0.4760.04

" AA 22 1 (0.74, 1.34)

HR8 aa 19 1.17 (0.88, 1.54)

" Aa 36 1.03 (0.82, 1.30) 0.4860.04

" AA 9 1 (0.62, 1.62)

HR9 aa 11 0.8 (0.58, 1.11)

" Aa 22 0.78 (0.60, 1.00) 0.4460.14

" AA 32 1 (0.83, 1.21)

HR10 aa 40 0.95 (0.79, 1.13)

" Aa 48 1.07 (0.91, 1.26) 0.4460.04*

" AA 38 1 (0.86, 1.17)

HR14 aa 28 1.37 (1.12, 1.68)

" Aa 53 1 (0.82, 1.23) 0.4660.07

" AA 54 1 (0.85, 1.18)

HR15 aa 28 0.66 (0.48, 0.89)

" Aa 38 1.03 (0.84, 1.26) 0.4660.04*

" AA 29 1 (0.84, 1.19)

HR16 aa 43 1.15 (0.90, 1.46)

" Aa 94 0.89 (0.77, 1.03) 0.5260.06

" AA 43 1 (0.83, 1.20)

HR19 aa 14 1.41 (1.04, 1.92)

" Aa 50 1.02 (0.86, 1.22) 0.4760.09

" AA 20 1 (0.78, 1.28)

HR23 aa 34 0.8 (0.64, 1.01)

" Aa 53 0.88 (0.70, 1.09) 0.5660.07

" AA 27 1 (0.75, 1.34)

HR25 aa 13 0.83 (0.64, 1.08)

" Aa 24 1.05 (0.85, 1.30) 0.5660.12

" AA 16 1 (0.75, 1.33)

G25 aa 22 0.39 (0.29, 0.51)

" Aa 44 0.69 (0.60, 0.79) 0.4960.05

" AA 17 1 (0.87, 1.15)

G27 aa 17 0.73 (0.53, 1.01)

" Aa 34 0.84 (0.68, 1.03) 0.4760.07
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contained an infected cell. The multiwell plates were then

incubated for three hours with shaking to allow bacteriophage to

lyse their hosts. Wells containing bacteriophage progeny were

identified by spotting 3 ml from each well onto a test plate of LC

solid media overlayed with top agar and the standard host. The

multiwell plate and test plate were then incubated overnight at

4uC and 25uC, respectively.

The following day, the test plate was inspected to identify the

wells that contained progeny. We then capitalized on the ability of

our mutants to infect the alternative host P. glycinea to identify wells

that had contained homozygous mutant (aa), heterozygous (Aa) or

homozygous wildtype (AA) coinfections. We plated 10 ml (half the

total original volume) from each progeny-containing well onto a

mixed lawn of the standard (P. phaseolicola; 100 ml) and alternative

(P. glycinea; 200 ml) hosts. Mutant (a) progeny form clear plaques on

mixed lawns, whereas wildtype (A) progeny form turbid plaques

(Figure 2). We incubated these plates overnight at 25uC,

characterized the coinfection type as either AA (only turbid

plaques), Aa (both turbid and clear plaques), or aa (only clear

plaques), and counted the plaques that resulted. Burst size was

calculated as twice this total number of plaques. Burst sizes of less

than ten were removed from the dataset because the small number

of plaques examined from these bursts (,5) made it difficult to

accurately categorize the coinfection type. For example, a burst

size of eight would correspond to an experimental plate with four

plaques. If these progeny were produced by a heterozygous burst

that yielded equal numbers of mutant and wildtype offspring then

there would be a 0.13 probability of miscategorizing the

coinfection type due to sampling only clear or turbid plaques.

Degree to which Mutations are Complemented by the
Wildtype Allele

We define fitness as the number of progeny released from a

coinfected cell (i.e. burst size). All fitness estimates were standard-

ized by the mean fitness of homozygous wildtype coinfections

(WAA) in that assay. This controlled both for the effects of assay-to-

assay variation and for fitness differences between the two ancestor

genotypes.

We then examined the degree to which each mutation was

complemented (h) in heterozygous coinfections by comparing the

fitness effects of mutations in homozygous mutant coinfections (s)

to their effects in heterozygous coinfections (hs), where

s~
Waa

WAA

{1 ð1Þ

and

hs~
WAa

WAA

{1 ð2Þ

Statistical Analyses
Statistical analyses of these data were performed using R

statistical software (version 2.6.2). Raw fitness (i.e. burst size) data

were corrected for day effects by dividing each individual fitness

measure by the mean fitness of all AA coinfections measured on

the same day. After correcting for day effects we used the

Table 2. Cont.

Standardized fitness
Mean f (a)
from heterozygous coinfectionsa

Mutant Coinfection type
Observed number of
coinfected cells Mean 95% confidence interval

" AA 9 1 (0.54, 1.86)

G28 aa 10 0.56 (0.27, 1.13)

" Aa 36 0.88 (0.72, 1.07) 0.4260.06*

" AA 12 1 (0.78, 1.29)

a – Mean and SEM values calculated from the frequency of mutants produced by individual heterozygous coinfections; *indicate intervals that do not include 0.50.
b –Not available.
doi:10.1371/journal.pone.0097717.t002

Figure 4. Burst size measures for homozygous mutant (aa), heterozygous (Aa) and homozygous wildtype (AA) coinfections are
shown as columns of points and their means are show as lines. Two of the host range mutants (HR2 and HR23) did not have mutations in P3,
but differences in their mean homozygous effects suggest that they are different mutations.
doi:10.1371/journal.pone.0097717.g004
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individual log (relative mean fitness) values to obtain estimates and

standard errors of the quantities log (Waa=WAA) and log

(WAa=WAA). These quantities were then back transformed to

obtain means and standard errors of Waa=WAA and WAa=WAA

for use in eqs. (1) and (2) to estimate s and hs for plotting and

further analysis.

Predicted Dominance Relationships
We first ensured that we had a solid understanding of the

theoretically predicted dominance relationships by exploring how

the biochemical relationship between protein function and fitness

translates into the dominance relationship between the homozy-

gous effects (s) and heterozygous effects (hs) of mutations. We

examined two hypothetical relationships between protein function

and fitness – one hyperbolic and one sigmoidal – to calculate the

expected dominance of mutations affecting protein function. The

hyperbolic fitness function was based on the Michaelis-Menten

equation from enzyme kinetics

W~F=(Fzkm) ð3Þ

and states that fitness (W) is a function of protein function (F) and

the Michaelis constant (km). In Figure 3A we graph this equation

for km = 0.5. The sigmoidal fitness function was based on the Hill

equation that describes cooperative binding

W~
1

1z
km

F

� �a ð4Þ

In equation (4) fitness is also determined by the Hill coefficient a,

which describes cooperativity and determines the steepness of the

transition from low to high fitness. Hill coefficients governing virus

capsid assembly range from 2 in Sindbis virus [17] to 6 in SV40

[18]. In Figure 3E we graph this equation for an intermediate

value of a = 4 and km = 0.5.

The hyperbolic (eq. 3) and sigmoidal (eq. 4) fitness functions

were evaluated at three wildtype fitnesses (WAA = 0.02, WAA = 0.5,

and WAA = 0.9) to determine the resulting relationships between

the heterozygous (hs) and homozygous (s) effects of mutations that

alter protein function. We assumed that protein function is

additive and used equations (3) and (4) to identify the wildtype

protein function that yields a particular wildtype fitness

(WAA = 0.02, 0.5, or 0.9) and then examined the degree to which

mutations that alter protein function are masked during coinfec-

tion.

For example, if WAA = 0.5, km = 0.5 and the relationship

between protein function and fitness is hyperbolic, then equation

(3) can be rearranged and solved for F ( = 0.125 in this example). If

a mutation renders this protein nonfunctional, then the heterozy-

gote will have half the protein function of a homozygous wildtype

(F = 0.063 in this example) and the homozygous mutant will have

no protein function (F = 0). We then used these values to solve

equation (3) and calculate fitness of the heterozygote, WAa, and the

homozygous mutant, Waa. Finally, we inferred hs and s from the

three fitness values (WAA, WAa and Waa). This procedure was

repeated for mutations (both deleterious and beneficial) that cause

fitness of the homozygous mutant to range from 0 to 1.

The resulting relationship between hs and s is shown for three

wildtype fitness values WAA = 0.02, 0.5, and 0.9 for both the

hyperbolic fitness function (Figure 3 B–D) and the sigmoidal fitness

function (Figure 3 F–H).

Results

Generating a Collection of Mutations
Our goal was to test the predictions that arise from a hyperbolic

fitness function (Figure 3A–D) by examining the dominance of

mutations that occur within an individual gene and continuously

span a wide range of homozygous fitness effects, from strongly

deleterious to strongly beneficial. Simply obtaining such a

collection of mutations is challenging in most organisms. To

overcome this challenge, we capitalized on the observation that in

the bacteriophage w6, a phenotypic screen for mutations that

expand host range yields a large collection of different mutations,

mostly in the host attachment gene P3 [15,19]. We conducted this

mutation screen using two phage genotypes, one of intermediate

and one of high fitness in lab culture, to ensure that the resulting

collection contained mutations with a wide range of effects from

very deleterious to very beneficial.

To obtain a collection of mutations in a single gene, we mixed a

‘wildtype’ lab strain (w6mindich) with a host that it is incapable of

infecting and isolated 25 mutants capable of growth on this

alternative host. We then returned the mutant phage to the

standard host and examined the plaques that formed. Plaque size

has been shown to be an exceptionally good indicator of the

log(number of viruses) within a plaque [12]. 19 of our 25 mutants

had plaque sizes that differed from the wildtype phage.

We sequenced the attachment gene P3 in these 19 mutants to

identify the mutations responsible for host range expansion.

Previous studies have shown that most host range mutations in w6

occur in the P3 gene [15,20]. Similarly, 17 of the 19 w6mindich

mutants had mutations in P3, and 12 of them were unique (Table

1). We concluded that the two mutants lacking a mutation in P3

are genetically different because they have significantly different

effects on homozygous fitness (see below).

Figure 5. Fitness effects of mutations in heterozygous (hs) and
homozygous (s) coinfections. Data are means 6 standard errors of
the mean. Regions where mutations have recessive effects (0, h,0.5)
are shown in gray and additive effects (h = 0.5) are shown as a dotted
line. The solid line is the reduced major-axis regression line and falls
primarily in the recessive region. Mutations are represented as circles if
they were accumulated in the w6mindich background and as triangles if
they were accumulated in w637-F41. Removal of the two mutants that
did not have mutations in P3 (white-filled circles) barely affected the
major-axis regression (dashed line). Effects of P3 mutations that were
obtained and measured in an alternative, higher fitness genetic
background are shown with dark gray circles.
doi:10.1371/journal.pone.0097717.g005
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We added to this collection three host range mutants from a

previous experiment [15] with known deleterious mutations of

large effect. These additional mutants were obtained in an

identical manner, but were derived from a different ancestor,

w637F-41. They are designated with a ‘‘G’’ before the mutant

number (Table 1).

Homozygous and Heterozygous Effects of Mutations
A second experimental hurdle that arises in investigations of

dominance is that dominance coefficients (h) are hard to measure.

In particular, obtaining independent estimates of selection (s) and

dominance (h) coefficients from measurements of the fitness of

three diploid genotypes (WAA, WAa, and Waa) poses a statistical

challenge. The difficulty becomes apparent just by writing down

the manner in which s and h are calculated from fitness measures:

s~Waa=WAA{1

h~(WAa=WAA{1)=s

As a result, slight underestimates of s can cause large overestimates

of h.

To overcome this problem, we follow the approach of

Szafraniec et al. [21] and compare the homozygous (s) and

heterozygous (hs) effects of mutations. One can gain intuition for

how the relationship between protein function and fitness

translates into the relationship between s and hs, by assuming a

particular relationship between protein function and fitness, and

examining the dominance patterns that result. We consider the

consequences of hyperbolic and sigmoidal fitness functions for the

dominance of mutations arising in wildtype (AA) individuals with

three different fitness values (Figure 3), and illustrate that

dominance effects depend critically on both the shape of the

fitness function and the fitness of the wildtype.

When the fitness function is hyperbolic (Figure 3A), as has been

observed for enzymes [5,7] deleterious mutations that reduce

protein function are recessive, falling in the gray region that

corresponds to 0,h,0.5 in Figures 2B–2D. In contrast, beneficial

mutations that increase protein function are dominant, falling in

the region that corresponds to h.0.5. In the hyperbolic case, the

quantitative relationship between hs and s depends on the fitness of

the wildtype. Both recessive and beneficial mutations become

more additive as wildtype fitness declines toward zero. When the

relationship is not hyperbolic, other patterns are possible. For

instance, if the relationship between protein function and fitness is

sigmoidal (Figure 3E), as may occur in cooperatively-binding

allosteric proteins, then beneficial and deleterious mutations can

be either dominant or recessive, and the qualitative relationship

between hs and s depends on the fitness of the wildtype (Figures

2F–2H).

Coinfecting Hosts
We examined whether mutations were complemented during

coinfections by comparing the effects of mutations when hosts

Figure 6. Deviations from additivity. Phage were divided into three bins based on their fitness effects in homozygous coinfections: deleterious
(s,20.3, n = 5), slightly deleterious (0.3,s,0, n = 6), or beneficial (s.0, n = 5). For mutations in each bin, boxplots show either the marginal effects of
mutations in homozygous coinfections (K s) or the fitness effects of mutations in heterozygous coinfections (hs). p-values resulted from paired
Welch’s t-tests that tested the additive expectation that these two quantities were equal (i.e. hs = K s). * Indicates the only statistically significant
comparison between homozygous and heterozygous effects of mutations (p = 0.0041).
doi:10.1371/journal.pone.0097717.g006
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were coinfected by two mutant bacteriophage (aa) and when hosts

were coinfected by a wildtype and a mutant phage (Aa).

Specifically, we measured the effects of mutations on burst size,

the number of progeny viruses released by an infected cell – a

major component of fitness in viruses. Coinfections were initiated

by mixing mutant (a) and wildtype (A) phage with host cells at a

high multiplicity of infection (MOI, the ratio of bacteriophage to

hosts). The high MOI ensured that all cells were coinfected very

rapidly. Furthermore, in w6, coinfection is limited to two phage

per cell [22,23] – making coinfection similar to diploidy. After

allowing sufficient time for phage to infect cells, this mixture was

divided into aliquots so that, on average, only one out of every 10

aliquots contained an infected cell. Infected cells were incubated

until lysis, and then each aliquot was plated onto a bacterial lawn

that allowed us to count the number of progeny released (i.e. the

burst size), and to determine whether the progeny phage were of a

single genotype, or whether they were a mixture of wildtype (A)

and mutant (a) phage.

We compared the coinfection type frequencies (AA, Aa and aa)

that emerged from each coinfection assay to the Hardy-Weinberg

expectation (Table S1) to ensure that cells were independently

infected by two phage. Frequencies are expected to deviate from

the Hardy-Weinberg expectation if cells were infected by single

phage (scored as excess of homozygotes) or by more than two

phage (scored as excess of heterozygotes). Data from 4 assays out

of 39 total showed a significant (p,0.05) deviation from the Hardy

Weinberg expectation, but this was not unexpected given the large

number of comparisons. Using the Bonferroni method to correct

for multiple comparisons, none of the assays remain significant at

p,0.001. In addition, the observed number of heterozygous

coinfections was sometimes greater and other times less than the

Hardy-Weinberg expectation, suggesting that there was no

systematic bias in the data and that most cells were infected by

two phage.

We also confirmed that our experimental design ensured that

phage simultaneously infected hosts. This is a concern primarily

because mutations in P3, the host attachment gene, are expected

to affect the rate of host attachment. In w6, the genome segments

of coinfecting phage are known to package randomly, without

bias, into progeny virions [24]. As a result, if cells were infected by

two phage simultaneously and those phage replicate at the same

rate, then each phage should contribute equally to the resulting

progeny. We calculated the frequency of mutant progeny, f (a),

produced from each heterozygous coinfection (Table 2). For

particular mutants, the average f (a) ranged from 0.42 to 0.56, with

4 mutants out of 16 showing a small but significant deviation from

0.5. The mean over all mutants, f (a) = 0.48, deviated from the 0.5

expectation but the deviation was small relative to the magnitude

of mutational effects (see below).

The burst sizes of homozygous mutant (aa), heterozygous (Aa)

and homozygous wildtype (AA) coinfections confirmed that there

were both deleterious and beneficial mutations in our collection.

The mean homozygous effects (s) of the mutants ranged from 2

0.61 to 0.41 and their mean heterozygous effects (hs) ranged from

20.31 to 0.07 (Table 2). The smaller range of fitness effects in

heterozygous coinfections suggests that the majority of mutations

are either additive or recessive.

To give a better sense of the nature of the data, the entire

collection of burst size measurements for three of the mutants is

shown in Figure 4. Among other things, these graphs illustrate that

burst sizes are highly variable. Such variation cannot be explained

by some aliquots containing more than one host cell. Aliquots

containing two cells would have a 75% chance of being scored as

heterozygous, thus substantially increasing the variance of

heterozygous coinfections. The fact that heterozygous and

homozygous coinfections have approximately equal variances in

our study suggests that the aliquots rarely contained multiple cells.

This variation means that we cannot be confident that we have

accurately estimated the fitness (and dominance) effects of any

individual mutation. We avoid this pitfall by inferring information

about dominance from the fitness effects of multiple mutations (see

below).

Two of the mutations (HR2 and HR23) were not in P3, but the

significant difference between their homozygous effects (Welch’s

t19.64 = 22.30, p = 0.03) strongly suggests that they are different

mutations.

Complementing Mutations during Coinfection
In order to examine whether most of our mutations are

recessive, we compared the mean effects of individual mutations in

homozygous coinfections (s) to their mean effects in heterozygous

coinfections (hs) (Figure 5). The most appropriate way to analyze

the relationship between s and hs is to use a reduced major-axis

regression, because both s and hs were measured with experimen-

tal error [25]. The best fit line, or reduced major-axis, is

statistically equivalent to the first principle-component axis. In

our dataset, the reduced major-axis falls almost entirely within the

recessive region of the graph (solid line in Figure 5; recessive

region shown in gray). The location of the reduced major-axis was

similar when we removed the two mutants that did not have

mutations in P3 (dashed line in Figure 5).

Although the reduced major-axis falls in the recessive region of

the graph for both deleterious and beneficial mutations, a

qualitative assessment of the individual data points by eye

suggested that this pattern might be driven primarily by the

beneficial mutations. We assessed this possibility by dividing the

data into three bins - deleterious (s,20.3), slightly deleterious (2

0.3,s,0), and beneficial (s.0) – and testing for a significant

deviation from additivity using a paired Welch’s t-test to compare

hs~WAa=WAA{1 to the additive expectation

s=2~(Waa=WAA{1)=2 for each mutation within each bin (Figure

6). Although the effects of deleterious and slightly deleterious

mutations were not statistically distinguishable from additivity (p.

0.05), the effects of beneficial mutations were significantly smaller

in heterozygous coinfections than the additive expectation

(p = 0.0041) – i.e. beneficial mutations are recessive.

Discussion

In this study, we measured the dominance coefficients of a

collection of mutations obtained by screening for effects on a single

phenotype (host range). The mutations occurred primarily in the

host attachment gene P3. We observe that on average, deleterious

mutations in P3 act additively whereas beneficial mutations in P3

are recessive. If these mutations alter the same component of P3

protein function, then their dominance should stem from a single

curve relating that component to fitness. The hyperbolic curve

that has often been used to explain the dominance patterns of

deleterious mutations is consistent with additive deleterious

mutations if the wildtype phage has a low fitness, but there is no

scenario in which a hyperbolic curve can produce recessive

beneficial mutations (See Figures 2A–2D).

Although the phage model system is experimentally tractable, it

makes an unconventional choice for examining dominance, which

typically only affects diploid organisms. Although phage are not

diploid organisms, when two phage coinfect a host cell it creates a

condition that is mechanistically analogous to diploidy, in that

offspring are produced from a common resource pool composed of

Complementing Mutations in w6
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proteins translated from two homologous alleles. It has long been

recognized that when two phage infect the same host cell, an allele

carried by one phage may complement, or mask, the phenotypic

effects of the homologous allele carried by the coinfecting phage

[26]; a phenomenon that is mechanistically analogous to

dominance. The potential for complementation exists for most

w6 phenotypes, but not all. Mutations that affect only attachment

to the host cannot be complemented [19] because the virus is

haploid during that part of the life cycle, whereas mutations that

affect intracellular functions from replication to phage assembly to

host lysis can be complemented [27]. Note that our collection of

mutations is in the host attachment protein P3, and that any

complementation we observe must result from the involvement of

P3 in parts of the life cycle (like phage assembly; [28]) that occur

downstream of attachment to the host.

Our observation of recessive beneficial mutations is unlikely to

have arisen from differences between coinfection and diploidy. In

particular, we confirmed that our experimental design ensured

that hosts were infected by exactly two phage, and that these two

phage infected the host almost simultaneously. As a result, there

should not have been differences in the timing of expression of the

two homologous alleles that made it look like the beneficial

mutations were not being expressed.

Although the nature of the evidence is often anecdotal, the

number of anecdotes that support the Physiological Theory, i.e. the

connection between dominance effects and specific protein

function, is growing (reviewed by [4,29] but see [30]). Our data

provide an additional anecdote. Our observation of additive

deleterious and recessive beneficial mutations within a single gene

is consistent with a curve of increasing returns (e.g. an exponential

curve) relating protein function to fitness. Although this pattern is

not characteristic of enzymes [5,7] the pattern must have an

underlying physiological basis. Studies of the quasi-catalytic

functions of non-enzymatic proteins have revealed that a variety

of relationships between protein concentration and flux are

possible [31,32,33]. Of particular interest are sigmoid patterns

(Figure 3E) which can emerge from stochastically expressed

developmental genes [34], autoregulatory expression networks

[31] or cooperative substrate binding [35]. Sigmoid curves should

generate different patterns of dominance depending on the fitness

of the wildtype and the effect size of a mutation (Figures 2F–2H),

and could yield the pattern of additive deleterious and recessive

beneficial mutations that we observed.

Our knowledge of the functional roles of the host attachment

gene P3 is consistent with a sigmoidal curve resulting from

cooperative binding. P3 is a multimeric structural protein that is

an integral part of the phage particle, and known to play at least

two functional roles: attachment to the host receptor and phage

assembly [28]. Our burst size assay did not capture parts of the

phage life cycle that occur outside the cell, so it would not have

been sensitive to differences in attachment to the host. Rather, it

should have captured only mutational effects on intracellular parts

of the phage life cycle, like phage assembly.

Mutations that affect assembly are known to have severe fitness

consequences in better-studied viruses like HIV [36,37,38,39,40],

and are expected to have similar effects in w6. Like P3, the HIV

capsid proteins assemble into a multimeric structure (reviewed by

[41]). Integrity of these multimeric structures requires that capsid

proteins interact in specific ways and mutations that alter these

interactions typically have large fitness effects [38]. These are the

fitness effects captured by our burst size assay.

Although the kinetics of P3’s role in phage assembly are not

known, other aspects of phage assembly in w6 are known to be

cooperative [42]. Future experiments could test the hypothesis that

emerges from our data – that dominance patterns in P3 are

governed by a sigmoidal curve – by redoing our experiment

starting with a higher fitness phage. If this hypothesis is correct, we

expect the data to converge on the hyperbolic prediction as fitness

increases (see Figure 3).

Although our data are not inconsistent with Wright’s idea that

the dominance of wildtype alleles over mutant alleles is due to the

underlying physiology of gene action [5,6], they confirm that the

physiological properties underlying dominance may be complex

and specific to the function being altered and the magnitude of the

fitness effect. It is notable that the strongest inconsistency in our

data from the hyperbolic expectation comes from the dominance

properties of beneficial mutations. Note that the inclusion of

beneficial mutations in our collection was possible only because we

initiated the study with a relatively low fitness wildtype

(unmutated) phage. Thus, our observation of recessive beneficial

mutations highlights two important weaknesses of most previous

studies. Most examined mutations with only a small subset of

selection coefficients - generally either lethal or slightly deleterious

mutations [2,43] and none have examined the impact of variation

in wildtype fitness. More work is needed to determine whether our

observations are unique to the gene and the system that we

examined, or whether dominance patterns often deviate from the

hyperbolic curves common to enzymes.

Supporting Information

Table S1 Hardy-Weinberg analyses of coinfection type frequen-

cies.
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