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Abstract

Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the
existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty
in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that
performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and
palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG
filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second,
RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the
projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based
on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we
rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error
Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach.
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Introduction

Biometrics identification is a personal identification technology

that takes full advantage of inherent physiological or behavioral

characteristics of humans compared with traditional authentica-

tion, such as passwords or encrypted codes. It exhibits greater

security and reliability because biometric features are difficult to

duplicate and forge. Moreover, the unique, portable and inherent

properties of biometric features have attracted significant attention

from many researchers in recent years. Among the possibilities,

veins show more distinctive features and merits compared with

other biometric features, such as fingerprints, iris and face, as

described below.

N Live body identification: vein patterns can only be identified

on a live body;

N Anti-interference: veins are an internal feature of the vessel

structure under the skin and are thus more tolerant to

breakage, pollution and scarring;

N Simple acceptability and anti-counterfeit: because the image

acquisition does not require contact during registering and

authentication, it induces no health issues and reduces the risk

of replication.

Due to the convenience of image acquisition, several vein

features in the hand have been well studied, such as finger veins,

hand veins and hand-dorsal veins. In particular, the palm veins

have gained more attention from researchers due to their more

abundant texture information and easy acquisition. Recently,

studies of palm veins have focused on feature extraction methods

that acquire the salient features more efficiently. The related

approaches can be broadly categorized into three groups as

follows.

N Geometry-based methods: these methods typically use vascular

structure information. Curve-like or line-like features in the

vascular structure are generally extracted using spatial

methods, such as multi-scale Gaussian matched filtering and

scale production [1], maximum curvature points [2], principle

curvature [3], mean curvature [4], repeated line tracking [5],

EDGF [6], Gabor filter [7–10] and vectorgrams of maximal

intra-neighbor difference [11]. The vascular radius, length and

degree and minutiae coordinates are also extracted. Finally,

these features are matched by using the matched pixel ratio

[4], the Phase-Only-Correlation [9,12] or based on some

distance measures, for example, the Hamming distance

[1,8,10] or the Hausdorff distance [13,14]. However, the

presence of thin and blurred lines in the vein image renders

accurate extraction and binarization more difficult and may

influence the final matching result. In addition, these methods

are not invariant to rotation, scaling, or translation of the vein

images.

N Statistical-based methods: these methods typically use various

statistical data from vein images, such as the image invariant

moment [15,16], the LBP [17] and its variant, for example, the

local derivative pattern (LDP) [18,19], local ternary pattern
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(LTP) [20], partition local binary pattern (PLBP) [21] and local

line binary pattern [22]. These statistical methods can depict a

gray histogram distribution of the vein image, but they lose

positional information on the vein texture. Thus, block-based

strategies are adopted to compensate. However, the use of

block-based strategies makes these methods sensitive to

changes in translation, rotation and scale, which renders this

method unsuitable for contact-free vein recognition.

N Local-invariant-feature-based methods: these methods extract

stable local invariant features for matching. Compared with

the aforementioned methods, these methods are invariant to

rotation,scale and translation, which makes them appropriate

for contact-free vein recognition. Pierre et al. [23] used SIFT

[24] for feature extraction and matching after preprocessing

and binarization on vein images. However, because the

binarization will result in the loss of useful feature information,

some researchers [25–27] have directly extracted SIFT and

SURF [28] features from the vein image after noise removal

and illumination normalization, thereby improving the correct

matching rate. Pan and Kang [29] analyzed and compared the

performance of three local invariant feature descriptors on the

NIR sub-database of the PolyU multispectral palmprint

Database [30] and demonstrated that all descriptors showed

good performance on contact vein recognition. The SURF

algorithm showed the best synthetic performance while ASIFT

[31] showed the highest accuracy, which are consistent with

theoretical analyses.

Reviews of prior research on palm-vein recognition suggest that

local invariant features are more appropriate for contact-free vein

recognition due to their invariant to changes in rotation, scale and

translation. However, many problems remain to be overcome

prior to practical application. (1) The extracted feature points are

relatively few: due to the blurred and low-contrast texture, the

feature points extracted from vein images are relatively few. (2)

Many mismatching points can arise: there are many similar

structures in vein images, which increases the difficulty of correct

matching. (3) Many studies [1,23,31–34] have extracted a region

of interest (ROI) prior to feature point extraction, which does not

take full advantage of the local-invariant-feature-based method

and causes unnecessary time consumption and the loss of useful

feature data. Some useful vein information exists in the finger

region and outside the palm region, which is typically excluded

from the ROI in traditional methods. To solve the above

problems, we have taken the entire palm region as the object of

interest and propose a new contact-free vein recognition strategy.

The flowchart of our proposed strategy is illustrated in Figure 1.

The key contributions from this paper can be summarized as

follows. (1) We propose a new hierarchical vein image enhance-

ment method: Difference of Gaussian-Histogram Equalization

(DoG-HE). This method effectively improves the clarity and

contrast of texture features in the contact-free vein image,

increasing the number of extracted invariant feature points. (2)

Our method not only takes full advantage of all the palm-vein

information, including finger regions and outside-palm regions,

but also increases the freedom of hand layout. Furthermore, the

recognition performance is improved by importing RootSIFT

[36], which is more robust to changes in scale, translation and

rotation. (3) We propose a hierarchical mismatching removal

algorithm that further improves the accuracy of feature matching.

This paper is organized as follows. Section 1 presents the details

on the preprocessing steps that enhance palm vein recognition

using the DoG-HE algorithm after segmenting the entire palm.

Section 2 describes the RootSIFT feature extraction and matching

approach for contact-free palm-vein identification. Section 3

introduces the proposed hierarchical mismatching removal algo-

rithm, and experimental results and analysis are presented in

Sections 4–9. Finally, we summarize this paper and conclude

future work in Conclusions.

Methods

1. Preprocessing
The palm-vein images employed in our research were acquired

under near-infrared (NIR) illumination; the images generally

appear darker with low contrast, and the illumination is not

uniform. If the local invariant features are extracted from these

images directly, it is difficult to obtain sufficient feature points.

Furthermore, the impurities in the background also influence

feature extraction, feature matching and the final recognition

result. To address these issues, we propose a new preprocessing

method that extracts the entire palm region and enhances the vein

texture.

Figure 1. Flowchart of the proposed algorithm.
doi:10.1371/journal.pone.0097548.g001

Figure 2. Feature matching before cropping the palm region
near the wrist.
doi:10.1371/journal.pone.0097548.g002
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1.1 Palm region extraction. For extraction of the palm

region, the fingertips and finger valleys are used as landmarks, as

in the majority of previous reports, to locate and extract the

maximum inscribed rectangular region of the palm, which is taken

as the ROI for feature extraction and matching. This approach

presents two issues. (1) Palm layout positions are restricted due to

the need to locate the fingertips and finger valleys. For example,

the fingers must be completely open and the fingers must not

touch the boundary to prevent unpredictable errors during the

extraction process. (2) Useful feature information can be lost by

taking partial rectangular regions of the palm as the ROI. To

address these issues, we have taken the entire palm region

including the five fingers but excluding the palm region near the

wrist for feature extraction and matching.

Figure 3. Image preprocessing. (a) Original images; (b) Cropping the palm region near the wrist; (c) DoG filtering; (d) Histogram equalization.
doi:10.1371/journal.pone.0097548.g003

Figure 4. Feature extraction before preprocessing (Left) and
after preprocessing (Right).
doi:10.1371/journal.pone.0097548.g004
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Global threshold methods, such as fixed threshold, mean

threshold and OTSU methods, have typically been adopted for

palm extraction because they are simple and fast [37]. Among

these methods, the OTSU can perform effective segmentation by

seeking the optimal threshold from the gray histogram and can

segment images with uneven illumination. Thus, we adopted this

method to segment the palm region for our research. Following

palm segmentation by OTSU, false textures appear near the wrist

that are similar to the vein texture and that result in side effects

when extracting and matching the local invariant feature points.

In Figure 2, we present results for feature point extraction and

matching from two vein images segmented by OTSU before

cropping the palm region near the wrist. The figure shows many

mismatching points near the wrist. Thus, we cropped this region

using the following strategy. First, the centroid of the segmented

palm region is computed. Second, a region of greater distance

from the centroid is cropped. The valid palm region after cropping

the region near the wrist is illustrated in Figure 3(b).

1.2 Hierarchical enhancement.

1.2.1 Difference of Gaussian. The acquired palm-vein

images generally appear blurry and are of low contrast. Therefore,

image enhancement is essential before feature extraction. Inspired

by Lowe’s work [24], in which Gaussian pyramids were

constructed and Difference-of-Gaussian (DoG) filters were used

to locate key points, we used the DoG filter for vein-image

enhancement. The DoG filter is an image enhancement algorithm

that involves the subtraction of one blurred version of an original

image from another, less blurred version of the original. The two

blurred images are obtained by convolving the original grayscale

images with Gaussian kernels of two different standard deviations.

The DoG filter is defined in two dimensions as follows:

f (u,v,s)~
1

2ps2
exp ({

u2zv2

2s2
){

1

2pK2s2
exp ({

u2zv2

2K2s2
): ð1Þ

The majority of sharpening filters are achieved by enhancing

the high-frequency signal. However, because random noise is also

of high spatial frequency, it will be enhanced together with the

image. Blurring an image using a Gaussian kernel suppresses only

high-frequency spatial information. The process of subtracting one

image from another preserves spatial information that lies between

the ranges of frequencies preserved in the two blurred images.

Thus, the DoG filter is a band-pass filter that discards all but a few

spatial frequencies that are present in the original grayscale image.

When the DoG filter is utilized for image enhancement, the radius

ratio of the two different Gaussian kernels is typically 4 : 1 or 5 : 1.

A ratio of 4 : 1 is adopted for our research. Palm-vein images

processed by the DoG filter are illustrated in Figure 3(c), which

shows that the DoG filter enhances detail but that two further

problems still exist in the enhanced image (low contrast and blur),

which thus require further processing.

1.2.2 Histogram equalization. Histogram equalization is a

histogram correction method based on a transformation of the

cumulative distribution function, which is generally adopted to

increase global contrast, in particular where the distribution of

gray levels in the image is excessively concentrated to a narrow

interval. For example, in Figure 3(c), the distribution of gray levels

within the palm region is excessively concentrated and the contrast

is very low between the veins and the background, which makes

feature extraction more difficult. We thus used histogram

equalization to increase the contrast and to highlight the veins.

The processed image is shown in Figure 3(d). This figure shows

Figure 5. SIFT ((a), (b), (c)) and RootSIFT ((d), (e), (f)) are compared for their robustness against rotation and scale transformations.
doi:10.1371/journal.pone.0097548.g005
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that histogram equalization increases the contrast of the palm-vein

region and results in more vein-texture detail, which will enable

the extraction of more feature points. Figure 4 presents the

resulting differences in feature extraction before and after

processing by histogram equalization. Obviously, the number of

extracted feature points increases greatly when using our proposed

enhancement algorithm.

2. Feature extraction and matching
Several changes occur in scale, rotation, translation and

illumination in contact-free palm-vein images, in contrast to

palm-vein images acquired by a contact acquisition device. Thus,

the feature extraction method should be more stable and robust to

enable contact-free vein-image recognition. Recently, local-

invariant-feature-based methods have been adopted to deal with

these issues, for example, the RootSIFT [36] algorithm, a newly

proposed local invariant feature algorithm that is very robust to

changes in scale, rotation and viewing angle. We adopt the

RootSIFT algorithm here for feature extraction and matching in

contact-free palm-vein images. RootSIFT [36] and SIFT [24]

adopt the same strategy for feature detection and description and

include the following steps: (1) scale-space extrema detection; (2)

key-point localization; (3) orientation assignment; (4) generation of

key-point descriptors; and (5) the formation of several 128-

dimension descriptors to represent image features. However,

RootSIFT adopts the Hellinger kernel for similarity measurements

rather than the Euclidean distance, which brings dramatic

improvement in performance [36]. Next, we will analyze the

relationship between the Hellinger kernel and the Euclidean

distance.

The Hellinger kernel for two L1 normalized vectors, x and y

(i.e.,
Pn

i ~1 and xi§0), is defined as:

H(x,y)~
Xn

i~1

ffiffiffiffiffiffiffiffi
xiyi
p

: ð2Þ

To maintain invariant illumination, the feature descriptor has

been normalized to a Euclidean unit vector. Thus, the relationship

between the Euclidean distance and the kernel is defined as

follows:

dE(x,y)2~jjx{yjj22~jjxjj
2
2zjjyjj

2
2{2xT y~2{2Se(x,y), ð3Þ

where Se(x,y)~xT y. A similarity measure of the two feature

vectors, can be implemented by the following two algebraic

operations: (1) normalize the SIFT vector to L1 (it was originally

unitized to L2 norm); (2) find the square root of each element in

the normalized SIFT vector.

Se(
ffiffiffi
x
p

,
ffiffiffi
y
p

)~
ffiffiffi
x
p T ffiffiffi

y
p

~
Xn

i~1

ffiffiffiffiffiffiffiffi
xiyi
p

~H(x,y) ð4Þ

Se(
ffiffiffi
x
p

,
ffiffiffi
x
p

)~
ffiffiffi
x
p T ffiffiffi

x
p

~
Xn

i

xi~1 ð5Þ

Figure 6. Robustness of SIFT and RootSIFT against rotation and
scale transformations. (a) Robustness of SIFT and RootSIFT against
rotation transformation; (b) Robustness of SIFT and RootSIFT against
scale transformation.
doi:10.1371/journal.pone.0097548.g006

Table 1. Robustness of SIFT and RootSIFT against rotation and scale transformations.

Angle of Rotation Factor of Scale

Rotation or scale transformation 0 5 10 15 20 0.8 0.9 1 1.1 1.2

Matching key points in SIFT 148 142 135 118 124 126 152 148 120 90

Matching key points in RootSIFT 282 272 275 252 268 241 291 282 236 210

doi:10.1371/journal.pone.0097548.t001
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Figure 7. Matching results of the RootSIFT algorithm. (a) Intra-group matching; (b) Inter-group matching.
doi:10.1371/journal.pone.0097548.g007

Figure 8. Flow chart of LBP-based mismatching removal.
doi:10.1371/journal.pone.0097548.g008
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Therefore, by using the Hellinger kernel, the Euclidean distance

can be described as follows:

dE(
ffiffiffi
x
p

,
ffiffiffi
y
p

)2~2{2H(x,y): ð6Þ

Thus, the feature vectors’ Euclidean distance is mapped to the

Hellinger kernel. RootSIFT’s feature vectors are calculated by the

Hellinger kernel, and the match between two feature points is then

judged by the ratio of the closest and the second-closest distance of

feature points.

The recognition performance is improved by replacing the

Euclidean distance with the Hellinger kernel, which has been

demonstrated previously [36]. We also performed three matching

experiments to evaluate the performance of SIFT and RootSIFT

in contact-free vein recognition: (1) two different samples from the

Figure 9. Mismatching removal results. (a) Intra-group matching; (b) Inter-group matching.
doi:10.1371/journal.pone.0097548.g009

Figure 10. Samples in our database. (a) Far from the camera lens; (b) Close to the camera lens; (c) Tilts to the left; (d) Tilts to the right; (e) Tilts
forward; (f) Tilts backward.
doi:10.1371/journal.pone.0097548.g010
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same individual without transformation; (2) two different samples

from the same individual in which one sample was rotated prior to

matching; (3) two different samples from the same individual in

which one sample underwent scale transformation prior to

matching. As shown in Figure 5, we obtain more optimal

matching when using the RootSIFT method, which also

demonstrates that RootSIFT is more robust to rotation and scale

transformations than SIFT.

To further compare the differences between SIFT and

RootSIFT, we performed different angle rotations and different

scale transformations, and then performed feature extraction and

matching. The experimental results are shown in Table 1 and

Figure 6, which demonstrate that RootSIFT is more robust to

changes of scale and rotation than SIFT, and show the efficacy of

RootSIFT for the contact-free vein image recognition.

3. Hierarchical mismatching removal algorithm
The above analyses and comparisons demonstrate the improved

performance of the RootSIFT algorithm in contact-free palm-vein

recognition. However, several mismatching key points for similar

textures in different palm-vein images remain. Figure 7 illustrates

such a scenario, where the green lines denote correct matching

and the blue lines denote mismatching. When compared with

intra-group matching as shown in Figure 7(a), there are relatively

more mismatching points in the inter-group matching as

illustrated in Figure 7(b), which will greatly impact the final

recognition performance. To address this problem, some reports

[38,39] have adopted RANSAC [40] to eliminate mismatching.

However, RANSAC requires several set parameters and cannot

interpret non-rigid transformations, which is often the case in

contact-free palm images. Therefore, we propose a new hierar-

chical mismatching removal algorithm to address this issue

including first-layer neighbor-based mismatching removal and

second-layer LBP-based mismatching removal.

3.1 Neighbor-based mismatching removal. As shown in

Figure 7, the relative distances between the mismatched pairs

marked with blue lines are always large; thus, a neighbor-based

mismatching removal method is initially adopted to eliminate

mismatching points, as described below. (1) Locate the centroids

C1 and C2 of the two valid palm regions in two images; (2)

Compute the relative coordinates P1’ and P2’ according to

location of the matched key points P1 and P2 related to C1 and

C2, respectively; (3) Compute the Euclidean distance D12 between

P1’ and P2’; (4) Judge whether P1 and P2 are a mismatching pair

according to relationship between D12 and pre-set threshold, since

the Euclidean distance is proportional to the mismatching

probability of the two points.

3.2 LBP-based mismatching removal. Following neigh-

bor-based mismatching removal, some mismatching points still

remain; thus, the LBP histogram method was adopted to further

eliminate mismatching. LBP is a texture descriptor based on gray-

level comparisons between neighboring points and a centered

point, as originally proposed by Ojala [41] in 1994. The original

LBP considers a 3|3 neighborhood of 8 pixels around a center

pixel Zp, p~1,:::,8, which are binarized with respect to the center

pixel; the result is considered a binary number:

LBPP:R(Ic)~
XP

p~1

s(Zp{Zc)2p{1, ð7Þ

where s(u)~1 if u§0, otherwise s(u)~0. Each binary number is

considered a type of micro-pattern. The LBP histogram shows

statistical information on these micro-patterns. There are many

micro-patterns in the original LBP histogram, but the uniform

pattern is used widely for practical applications. The ‘‘uniform’’

LBP is based on the patterns having, at most, two spatial

transitions (biswise 0=1 changes). Each pattern in the uniform LBP

denotes a particular pattern, such as a line, plane or edge. Because

the palm veins are presented as an irregular texture, the LBP was

adopted to remove additional mismatching points in our study.

The implementation process is described in Figure 8, which

includes the following steps. (1) Extract two rectangular regions of

fixed size that are centered at two matched points; (2) Compute

the two LBP histograms for the two rectangular regions; (3)

Compute the distance between the two LBP histograms using the

following equation:

H(p,q)~
X

i

min (pi,qi), ð8Þ

where p and q are the LBP histograms of the two rectangular

regions to be compared and i represents the i{th bin; (4) Judge

whether the two matched points are mismatched based on pre-set

thresholds.

Figure 11. EER curves for different approaches.
doi:10.1371/journal.pone.0097548.g011

Table 2. Comparative experiments for two different databases.

Databases Database size SIFT MLBP WLD Our approach

CASIA palm-vein database 100|6 2.207% 4.954% 14.2% 0.996%

Our database 105|6 7.056% 9.8% 18.4% 3.112%

doi:10.1371/journal.pone.0097548.t002
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The results of the mismatching removal for intra-group and

inter-group matching are illustrated in Figure 9(a) and Figure 9(b),

respectively, where the red lines denote mismatching removal

using on the LBP-based method and the blue lines denote

mismatching removal using the neighborhood-based method. As

shown in the figures, the proposed hierarchical mismatching

removal method eliminates the vast majority of mismatched

points. Finally, the number of remaining matching points in the

two images is taken as the basis for judging similarity: a higher

number of matching points indicates a higher level of similarity

between two vein images.

Results and Discussion

1. Ethics Statements
This study had been approved by the Institutional Review

Board (IRB) of School of Automation Science and Engineering,

South China University of Technology, Guangzhou, Guangdong,

China. The CASIA multi-spectral palmprint image database V1.0

[42] was used in this paper to verify the performance of our

method. This database is publicly available for palmprint

recognition research, and the consent was not needed. The

multi-spectral palmprint images and the experimental results are

reported in this paper without any commercial purpose. The

contact-free palm-vein database was built in our own lab to

maintain sufficient variations in posture for performance verifica-

tion. The 105 participants gave written consent and all the

experiments for this study are without any commercial purpose.

All data was anonymized at collection and authors had no access

to identifying information other than these images and their

reference numbers.

2. Databases
To reliably evaluate the effectiveness of the proposed approach,

four experiments were conducted using contact-free palm-vein

databases. To the best of our knowledge, there is only one public

contact-free palm-vein database that is a sub-database of the

CASIA Multi-spectral Palmprint Image Database V1.0, so it was

adopted as one database to evaluate the proposed approach in our

study. All images in the database were acquired in two data

acquisition sessions separated by a time interval of more than one

month, and at each time, three samples were acquired from each

user at six different wavelengths (460 nm, 630 nm, 700 nm, 850
nm, 940 nm and white light). However, in the CASIA database,

the majority of hand postures of each individual did not vary as

much as would be expected in actual scenarios. To resolve this

issue, we built a new contact-free palm-vein database, SCUT

palm-vein Image Database,to maintain sufficient variations in

posture from each person. In our database, 1260 sample images

were acquired from the left and right hands of 105 subjects. Six

samples from each hand represent six different hand postures:

scale variations occur in the first and second samples, as shown in

Figure 10(a) and Figure 10(b), tilts to the left or right occur in the

third and fourth samples, as shown in Figure 10(c) and

Figure 10(d), and tilts forward or backward occur in the fifth

and sixth samples, as shown in Figure 10(e) and Figure 10(f).

Several measurements were used to evaluate the performance of

our proposed approach, including the false rejection ratio (FRR)

and the false acceptance ratio (FAR). The FRR is the probability

of falsely declaring an authorized user as an imposter, whereas the

FAR is the probability of falsely declaring an imposter as an

authorized user. The receiver operating characteristic (ROC)

curve between the FRR and the FAR reflects the overall

performance of an algorithm. The equal error rate (EER) is the

point at which the FRR equals the FAR; the smaller the EER, the

better the performance of the algorithm.

3. Palm-vein verification
The aim of the experiment was to evaluate the performance of

our proposed algorithm in recognizing contact-free palm-vein

images. Thus, we chose palm-vein images collected at 940 nm

NIR illumination for evaluation and compared our approach with

SIFT [23], multi-scale LBP [33] and WLD [43]. To ensure

consistency, the same hierarchical enhancement method was

employed for each case, and the entire palm region was used for

the SIFT and RootSIFT recognition, whereas the center

rectangular region of the palm was used for MLBP and WLD

because these methods are ill-suited for entire palm-region

recognition. As shown in Figure 11, palm-vein verification using

our proposed approach showed significantly improved perfor-

mance over the other approaches when using contact-free palm-

vein images.

Moreover, we tested our proposed approach using the

aforementioned palm-vein database to evaluate its robustness

against translation, rotation and scale variance. The results are

shown in Table 2. The EER is 0.996% for the CASIA database

and 3.112% for our database, which demonstrates that our

proposed approach is much more robust to translation, rotation

and scale variance than other approaches and that it is suitable for

contact-free palm-vein identification.

Table 3. The time consumption for different methods (s).

Process SIFT MLBP WLD Our approach

Feature extraction 0.996285 0.115082 0.540108 0.990973

Feature matching 0.289805 0.001874 0.000624 0.268397

doi:10.1371/journal.pone.0097548.t003

Table 4. Verification results from the CASIA multi-spectral palmprint database.

Wavelength 460 nm 630 nm 700 nm 850 nm 940 nm WHT

EER 1.728% 1.329% 2.989% 1.825% 0.996% 1.960%

doi:10.1371/journal.pone.0097548.t004
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Finally, we compare the time consumed in feature extraction

and matching of different methods. To make the time consump-

tion proximate to its actual value, 100 randomly selected palm-

vein images from CASIA database are utilized for evaluation. We

conduct our experiments in the experimental environment of Intel

Core (TM) i5{3210 CPU 2:50 GHZ, and the results are shown

in Table 2. As seen from Table 3, the time consumption of our

method is a little bit better than that of SIFT, since RootSIFT

adopt Hellinger kernel rather than Euclidean distance for

calculating the matching distance in feature matching. At the

same time, SIFT and our method are more time-consuming than

MLBP and WLD, while their more complex feature extraction

process bring better recognition rate just as expected. So our

method is more competitive as far as comprehensive comparison.

4. Multi-spectral palmprint image verification
To further verify the robustness of our approach, the sub-

database of all palmprint images collected under six different

wavelengths in the CASIA multispectral palmprint database was

used to perform recognition experiments, and the results are

shown in Table 4. As shown in the table, the EERs is relatively

lower in the visible spectrum, including 460 nm, 630 nm and white

light, and in the NIR spectrum, including 850 nm and 940 nm. By

analyzing the CASIA multi-spectral palmprint images, it is

observed that palmprint textures are clearer in images collected

in the visible spectrum and palm-vein textures are clearer in

images collected in the NIR spectrum. However, both palm-vein

and palmprint textures are blurred and less discriminative when

the images are collected at 700 nm, which consequently affect the

accuracy of the final recognition. The above analyses suggest that

our approach is suitable not only for palm-vein verification but

also for palmprint verification.

5. Effect of different preprocessing methods on palm-
vein verification

Image preprocessing plays a key role in feature extraction and

directly affects feature extraction and matching results, so some

literatures have adopt different approaches for image preprocess-

ing before feature extraction, such as, Weber illumination

normalization [44], Retinex based illumination normalization

[26,27], and background estimation [7,35]. In order to illustrate

the effectiveness of our proposed preprocessing method, we

designed five experiments to compare the effect of different

preprocessing procedures on the final recognition results. The first

three experiments adopted three aforementioned methods for

preprocessing the entire palm region respectively, the fourth

experiment extracted the center rectangular region of the palm as

the ROI and used our hierarchical enhancement method for

preprocessing, the fifth experiment adopted our hierarchical

enhancement method for preprocessing the entire palm region.

Figure 12. Examples of five preprocessing methods. (a) Weber illumination normalization; (b) Retinex based illumination normalization; (c)
Background estimation; (d) Our method on ROI; (e) Our method.
doi:10.1371/journal.pone.0097548.g012
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Figure 12 illustrates the final results obtained from the five

experiments, which shows that the feature information and vein-

texture were markedly better when palm-vein images were

preprocessed using our proposed method.

To further verify the effect of these five preprocessing methods

on palm-vein recognition and to ensure consistency, the same

method (RootSIFT) was adopted to perform feature extraction

and matching on the images preprocessed by the five approaches.

The EERs of the five preprocessing approaches for different

distRatio values, defined by the ratio of the closest and second-

closest distance, are illustrated in Figure 13(a), and EER curves for

the five preprocessing approaches for an optimal distRatio are

illustrated in Figure 13(b). As shown in the figures, our approach

performs better than the other approaches because our method

acquires greater texture contrast and more feature information.

6. Comparison of different methods for mismatching
removal

The above analyses clearly show that RootSIFT emphasizes

local information on feature points. However, when there are

many similar structures in the palm-vein images of different

individuals, it is difficult for RootSIFT to distinguish extracted

feature points of similar structure from different images, which

may lead to mismatches. Thus, we adopted the hierarchical

mismatching removal method to increase matching accuracy. To

verify our method, five experiments were performed: (1) palm-vein

recognition without mismatching removal; (2) palm-vein recogni-

tion using RANSAC-based mismatching removal; (3) palm-vein

recognition using neighborhood-based mismatching removal; (4)

palm-vein recognition using LBP-based mismatching removal; (5)

palm-vein recognition using our proposed hierarchical mismatch-

ing removal. The results are shown in Figure 14, and they

demonstrate the effectiveness of our method.

Conclusions

To overcome translation, rotation and scale variance in contact-

free palm-vein images, we propose a robust palm-vein recognition

approach. First, we use the entire palm region for vein recognition,

which not only gains more vein information and reduces

complexity but also decreases restriction of hand posture during

registration and authentication. Second, we propose a novel

preprocessing method, DoG-HE, which can effectively enhance

vein texture and suppress noise. This step is followed by

RootSIFT, a descriptor that is more robust to variations in scale,

translation and rotation, which was adopted to perform feature

extraction and matching of the preprocessed image. Finally, we

propose a hierarchical mismatching removal method to improve

the feature matching accuracy. We performed a series of

experiments using the CASIA multi-spectral palmprint Image

Database, and our proposed approach obtained EERs of 0.996%

with 940 nm palm-vein images and EERs of 1.329% with 630 nm

palmprint images, which demonstrates that our method is suitable

for both palm-vein recognition and palmprint recognition.

Moreover, to verify the efficacy and robustness of our proposed

method for palm-vein recognition in real-life scenarios, we built a

new contact-free palm-vein database containing a large pose

variety that included 1260 sample images from 105 objects, from

which we obtained an EER of 3.112%. All of these experiments

Figure 13. Comparative experiment using five different
preprocessing methods. (a) EERs of the five preprocessing
approaches for different distRatio values; (b) EER curves for the five
preprocessing approaches for an optimal distRatio.
doi:10.1371/journal.pone.0097548.g013

Figure 14. Results from different methods for mismatching
removal.
doi:10.1371/journal.pone.0097548.g014
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illustrate the efficacy and robustness of our proposed approach.

However, there are also with some limitations. For example, our

proposed algorithm is relatively time-consuming when compared

with the statistical-based methods such as MLBP and WLD,

although the recognition rate of our proposed method surpasses

them. Furthermore, since the mobile multi-spectral palmprint

recognition is a promising direction, to construct a public mobile

multi-spectral palmprint database is urgent for performance

evaluation in future work. Therefore, we plan to construct a

mobile multi-spectral palmprint database with enough samples

and sufficient time interval between data acquisition sessions. On

this basis, we will further optimize our algorithm in order to

decrease the required time and improve the final accuracy in

recognition.
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