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Abstract

Early and accurate pre-clinical and clinical biomarkers of hepatotoxicity facilitate the drug development process and the
safety monitoring in clinical studies. We selected eight known model compounds to be administered to male Wistar rats to
identify biomarkers of drug induced liver injury (DILI) using transcriptomics, metabolite profiling (metabolomics) and
conventional endpoints. We specifically explored early biomarkers in serum and liver tissue associated with
histopathologically evident acute hepatotoxicity. A tailored data analysis strategy was implemented to better differentiate
animals with no treatment-related findings in the liver from animals showing evident hepatotoxicity as assessed by
histopathological analysis. From the large number of assessed parameters, our data analysis strategy allowed us to identify
five metabolites in serum and five in liver tissue, 58 transcripts in liver tissue and seven clinical chemistry markers in serum
that were significantly associated with acute hepatotoxicity. The identified markers comprised metabolites such as
taurocholic acid and putrescine (measured as sum parameter together with agmatine), classical clinical chemistry markers
like AST (aspartate aminotransferase), ALT (alanine aminotransferase), and bilirubin, as well as gene transcripts like Igfbp1
(insulin-like growth factor-binding protein 1) and Egr1 (early growth response protein 1). The response pattern of the
identified biomarkers was concordant across all types of parameters and sample matrices. Our results suggest that a
combination of several of these biomarkers could significantly improve the robustness and accuracy of an early diagnosis of
hepatotoxicity.
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Introduction

Drug-induced liver injury (DILI) is a major concern during drug

development and beyond. Pre-clinical candidate drug molecules

frequently fail in development due to induced organ toxicities,

often hepatotoxicity. Likewise, a common reason of withdrawal of

approved drugs is toxicity. Although the incidence of drug-related

hepatotoxicity is only 1 in 10000 to 100000, DILI is the leading

cause of acute liver failure among patients referred to liver

transplantation in the United States [1]. Despite the efforts from

the last years in this field, appropriate biomarkers for monitoring

liver function and to identify onset, progression and reversibility of

DILI remain a major need in pharmaceutical research and in the

clinic.

In this context, we define biomarkers as measurable character-

istics that reflect physiological, pharmacological, or disease

processes in animals or humans. They are indicative of certain

biological processes or responses like adverse drug effects or

treatment efficacy. Preferably, biomarkers should be measurable in

body fluids, non-invasive and sensitive to be applied in clinical

monitoring of potential toxicities of investigational drugs. Trans-

lational biomarkers are such for which research based on pre-

clinical models can provide novel biomarkers which then may be

used in clinical practice. Evolving technologies continuously

improve the capabilities to measure smaller amounts of various

types of biomolecules and parameters rapidly, more accurately,

and in parallel in several biological matrices. These technologies

include, for example, real time quantitative polymerase chain

reaction (RT-PCR) and microarrays for gene expression profiling,

multiplex enzyme-linked immunosorbent assay (ELISA) for the

detection of proteins, and chromatography separation methods

combined with mass spectroscopy for the quantification of

peptides and small metabolites. These technological advancements

enhance our means to systematically identify and establish

biomarkers. For example in the field of nephrotoxicity, the

combined analysis of gene and protein expression, metabolite

concentration and in-situ hybridization and immunohistochemis-

try was successful in identifying putative biomarkers such as the

kidney injury molecule-1 (Kim-1) that has been shown to

outperform traditional markers [2,3,4]. Interestingly, these pre-

clinical results were not only translated from the pre-clinic to the

clinic and from tissue to urine, but also from the transcriptome to

the proteome. In addition, the application of liquid and gas
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chromatography followed by mass spectrometry discovered

metabolites as further potential biomarkers for the early detection

of drug-induced nephrotoxicity [5]. The use of specific metabolite

profiles determined using different measurement platforms for the

toxicological assessment has also been published by several groups

either on its own or with concomitant transcriptomic data [6,7,8].

In these examples, metabolite profiling is useful to identify putative

biomarkers that can be readily measured in body fluids.

Given these promising published results we set out to identify

biomarkers that were indicative of hepatotoxicity after acute

exposure to a number of known hepatotoxicants. In order to gain

granularity and mechanistic understanding, we decided to base

our biomarker research not only on a single analytical technology

or a single sample type, but on multiple technologies and two

relevant matrices, serum and liver tissue. Therein we measured

transcripts, enzymatic activities and metabolites while aiming to a

more comprehensive view on the molecular changes associated

with hepatotoxicity. We also aimed at combining established

parameters (e.g. enzymatic activities) with less standard ones (e.g.

transcriptional changes in the tissue and the small metabolite

composition). In addition, appropriate phenotypic anchoring was

obtained by thorough histopathological assessment of the liver

tissue.

Materials and Methods

Study Design
Male Han Wistar rats (11–14 weeks old) were housed

individually and randomly assigned to groups of 5. Animals were

given water and chow ad libitum at all times. Regarding selection of

compounds, doses and times for sample collection, studies were

designed based on the known effect of the compounds, with the

aim of eliciting subtle to marked hepatotoxicity. All animals were

dosed either with one of following compounds (ANIT, Aminep-

tine, Cyclosporine A, Erythromycin, Glibenclamide, Methylene

Dianiline, Phalloidin, Tetracycline) or the corresponding vehicle

(Table 1). Immediately preceding sacrifice, terminal blood samples

for clinical chemistry investigations and determination of en-

dogene metabolites (metabolite profiling) were collected from the

retroorbital sinus. Liver samples were collected for further analysis,

including gene expression measurements (transcriptomics), en-

dogene metabolite determination (metabolite profiling) and

histopathological examination. Experiments were conducted with

authorization from the Swiss Federal Veterinary Office and the

Association for Assessment and Accreditation of Laboratory

Animal Care International.

Clinical Chemistry
A panel of up to 23 clinical chemistry parameters was assessed

for 274 samples. The following determinations were made in

serum: alanine aminotransferase (ALT), albumin (ALB), alkaline

phosphatase (ALP), alpha globulins (AGLOB), aspartate amino-

transferase (AST), beta globulins (BGLOB), bilirubin, bile acids

(BA), calcium (Ca2+), chloride (Cl–), cholesterol, creatinine, gamma

globulins (GGLOB), gamma-glutamyltransferase (GGT), glucose,

inorganic phosphate (PI)), lactate dehydrogenase (LDH), potassi-

um (K+), sodium (Na+), sorbitol dehydrogenase (SDH), total

protein, triglycerides, and urea.

Gene Expression Analysis (Transcriptomics)
A portion of liver tissue from the left medial lobe was stored at

necropsy into RNALater (Ambion, Austin, TX) for RNA

preservation. RNA isolation, processing and hybridization were

essentially carried out as recommended by Affymetrix (www.

affymetrix.com, Affymetrix, Santa Clara, CA) with minor mod-

ifications. RNA was extracted from 274 liver tissues, processed and

hybridized onto Affymetrix rat genome microarray U34A. This

microarray quantifies 8799 different sequences of transcripts

(probe sets). The resulting gene expression intensity data were

quality controlled and normalized.

Metabolite Profiling (Metabolomics)
Two types of mass spectrometry analyses were applied: GC-MS

(gas chromatography-mass spectrometry) and LC-MS/MS (liquid

chromatography-MS/MS) were used for broad profiling, as

described elsewhere [9]. Proteins were removed from serum

samples by precipitation. Subsequently polar and non-polar

fractions were separated by adding water and a mixture of

ethanol and dichloromethane. Liver tissue samples were homog-

enized and extracted with a mixture of water, ethanol and

dichloromethane. After filtration and centrifugation polar and

non-polar fractions were separated. For GC-MS analysis, the non-

polar fraction was treated with methanol under acidic conditions

to yield the fatty acid methyl esters derived from both free fatty

acids and hydrolyzed complex lipids. The non-polar and polar

fractions were further derivatized with O-methyl-hydroxylamine

hydrochloride and pyridine to convert oxo-groups to O-methyl-

oximes and subsequently with a silylating agent before analysis

[10]. For LC-MS/MS analysis, both fractions were reconstituted

Table 1. Overview of treatments.

Treatment Dose Route Time N

ANIT 30; 150 mg/kg p.o. 24 h 10

Amineptine 0.125 mM/kg / 0.25; 0.5 mM/kg i.p. 24 h / 3; 6; 24 h 35

Cyclosporine A 5*; 15; 30 mg/kg i.v. 1,5*; 3*; 6 h 42

Erythromycin 734 mg/kg i.p. 1.5; 3; 6 h 13

Glibenclamide 2.5; 25 mg/kg i.v. 24 h 10

Methylene Dianiline 20; 100 mg/kg p.o. 3; 6; 24 h 30

Phalloidin 0.2; 0.8 mg/kg i.v. 3*; 6*; 24 h 30

Tetracycline 0.2 mM/kg i.p. 3; 6 h 10

Vehicle (Control) 0 mg/kg several 1.5; 3; 6; 24 h 100

The total number of samples is 280. Samples marked with * were not used for metabolite profiling analyses.
doi:10.1371/journal.pone.0097249.t001
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in appropriate solvent mixtures. High-performance liquid chro-

matography (HPLC) was performed by gradient elution using

methanol/water/formic acid on reversed phase separation

columns. Mass spectrometric detection technology was applied

which allows target and high sensitivity MRM (multiple reaction

monitoring) profiling in parallel to a full screen analysis (patent

application: WO2003073464). For GC-MS and LC-MS/MS

profiling, data were normalized to the median of reference

samples which were derived from a pool formed from aliquots of

all samples to account for inter- and intra-instrumental variation.

Metabolite profiling of liver and serum samples was performed by

Metanomics Health (Berlin). In serum, we identified 200

metabolites at concentration levels above the limit of quantifica-

tion allowing semi-quantitative (SQ) analysis. In liver tissue, 545

SQ metabolites were measured.

Histopathology
Representative liver samples were fixed in 10% neutral buffered

formalin. One additional liver sample from top half of the left

lateral lobe was placed in Carnoy fixative. All samples were

processed using routine procedures and embedded in Paraplast.

Tissue sections approximately 2–3 microns were cut and stained as

follows for histopathological evaluation: hematoxylin-eosin, peri-

odic acid-Schiff for glycogen, and Oil Red-O for lipid. Hematox-

ylin-eosin and Oil Red O stained liver slides were evaluated

histopathologically. The histopathological assessment was the basis

for the classification of the samples into positive and negative for

liver toxicity. Any of following findings was considered to indicate

liver toxicity and drove the classification of the samples: apoptosis

or single cell necrosis, hemorrhage, hepatocellular cytoplasmic

vacuolation different from fat droplets (Oil Red O slides), necrosis

and inflammation. All other observations noted in the histology

evaluation like glycogen content were not considered to reflect

hepatotoxicity and were thus not used for the classification.

Data Analysis
We transformed the measurements of all parameters (gene

expression, metabolite profiling and clinical chemistry) to the log2-

scale. The mean of the time matched control group (vehicle

treatment) was subtracted from each data point. Hence, the

control groups were centered at zero. The histopathological

classification of the samples was refined and the samples were

divided into three classes: negative, positive and increased. The

negative class comprised all samples which neither showed any

relevant histopathological alteration nor any substantial changes in

ALT or AST measurements. None of the measurements of the

control samples, i.e. vehicle treated samples, deviated from the

average of their group and thus all control samples were classified

negative. The positive class encompassed all samples with

histopathological findings as described above, irrespective of

ALT and AST changes. The third class, termed ‘increased’,

contained all samples which were classified as negative by means

of the histopathological descriptors mentioned above, but showed

at least a two-fold increase in either ALT or AST compared to the

mean of the corresponding control group. Following this

partitioning a two-tailed t-test with equal variance assumption

was applied to identify parameters with significant differences

between the positive and the negative class. To account for

multiple testing and to reduce and control the number of false

positive parameters, we calculated the false discovery rate (FDR,

Benjamini and Hochberg method) for each type of measurement

separately. All calculations were performed with the statistic

software R, Bioconductor and in-house tools (www.r-project.org,

www.bioconductor.org). The interpretation of obtained results
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primarily focused on parameters which were significantly dereg-

ulated (FDR value ,0.05) and in addition exhibited fold-changes

of at least twofold (FC .2).

Results

Eight independent animal studies performed in male Wistar rats

were used to identify early biomarkers associated with histopath-

ologically evident hepatotoxicity. The inclusion of measurements

within 24 hours of dosing allowed us to monitor potential changes

in biomarker concentration before toxic injuries were detectable at

the microscopic level. Details on all studies, treatments and time

points are summarized in Table 1.

Histopathologically positive samples were found in animals

treated with ANIT, Erythromycin, Methylene Dianiline or

Phalloidin (Table 2). ANIT, Erythromycin, Methylene Dianiline

and Phalloidin caused hepatocellular damage characterized by

single cell necrosis/apoptosis, inflammation and vacuolation.

Phalloidin in addition caused hepatic hemorrhage. The results,

with the observed incidence are summarized in Table 2. The other

tested compounds did not cause histopathological changes in the

liver. Clinical chemistry results showed increase in liver param-

eters in the animals showing histopathological findings in the

livers, but also in treated animals without microscopic indications

of liver damage (Figures S1 and S2).

Based on the histopathological findings and on the ALT and

AST measurements, individual animals were assigned to one of

the three classes defined in materials and methods, e.g. negative,

positive and increased (Table 3). The statistical analysis aimed at

identifying differences while enhancing the contrast between the

negative and positive class. For this purpose, a two-tailed t-test was

applied to determine parameters which were significantly dereg-

ulated between the negative class (no histopathological finding in

the liver) and the positive class (histopathological evident

hepatotoxicity). Samples with increased ALT or AST but without

concomitant histopathological manifestation (classified as ‘‘in-

creased’’) were left out in this step. This approach was motivated

by the following considerations. Firstly, we wanted to base our

analysis on confirmed toxicities, i.e. the positive class, rather than

on expectations on the effects of the treatment. Therefore, we only

classified as positive samples that had a clear phenotypic anchoring

(histopathology) [11]. Secondly, we expected that molecular

responses indicative of hepatotoxicity would arise prior to the

morphological evidence (e.g. in animals without histopathological

findings that were treated with known toxicants). Hence, a direct

comparison based solely on histopathologically detected hepato-

toxicity (negative versus the positive class) may bias the results in

the direction of late stages molecular changes since early molecular

alterations are presumably already present before histopatholog-

ical correlate. Thirdly, ALT and AST are well known, sensitive

serum markers of hepatotoxicity [12]. Thus, while aiming at an

enhanced contrast between the positive and negative class we

decided to remove samples which potentially represent early stages

of hepatotoxicity from the negative class. This was achieved by

leaving out all samples with increased ALT or AST. An overview

of the sample numbers for each parameter type and each class is

given in Table 4. As indicated in Table 2 fewer treatment groups

were used for metabolite profiling, particularly reducing the larger

sample numbers of the negative class. For the clinical chemistry

parameter gamma-glutamyltransferase (GGT) substantially less

sample measurements were available (see Figure S1 for the details

of all clinical chemistry parameters).

As a first step we quantified the sensitivity and specificity of the

ALT and AST serum measurements in detecting histopatholog-

ically evident hepatotoxicity based on our criteria. Serum ALT

and AST data were available for 30 out of the 35 samples in the

Table 3. Subdivision of samples into three classes split by treatment.

Treatment Negative Increased Positive N (total)

ANIT 6 0 4 10

Amineptine 15 20 0 35

Cyclosporine A 41 1 0 42

Erythromycin 2 8 3 13

Glibenclamide 10 0 0 10

Methylene Dianiline 16 0 14 30

Phalloidin 15 1 14 30

Tetracycline 1 9 0 10

Vehicle (Control) 100 0 0 100

Sum 206 39 35 280

doi:10.1371/journal.pone.0097249.t003

Table 4. Overview of samples per class and parameter type (highest numbers are shown).

Parameter Negative Increased Positive N (total)

Clinical Chemistry 202 39 30 271

Metabolites in Liver 131 37 25 193

Metabolites in Serum 130 31 20 181

Transcripts in Liver 202 39 33 274

doi:10.1371/journal.pone.0097249.t004
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positive class. From these samples, 16 showed a two-fold increase

in at least one enzyme and 14 did not exceed this cut-off value. In

addition, the class termed ‘increased’ contained further 39 samples

above the two-fold cut-off in either ALT or AST. This corresponds

to a sensitivity of 53% and specificity of 84% in our data set (200

true negative samples).

Regarding other putative biomarkers, our tailored approach

identified 75 parameters in serum and liver tissue which were

found to be significantly associated with acute hepatotoxicity (FDR

smaller than 0.05) and which were changed at a fold-change larger

than two. They are listed in separate tables for each type of

parameters and consist of 7 clinical chemistry markers in serum, 5

metabolites in liver tissue, 5 metabolites in serum and 58

transcripts, mapping to 45 distinct genes, in liver tissue

(Tables 5–8, respectively, Figures S3–S6 and Tables S1–S3).

The multiple occurrences of some probe sets in the result list

underlined the reproducibility of their measurement, e.g. we

identified four times Egr1 (early growth response protein 1) and

three times Btg2 (B-cell translocation gene 2) and Jun (jun proto-

oncogene).

The magnitude of deregulation varied across these 75 param-

eters. The distribution is visualized in Figure 1. The average fold-

change when compared to the matching control group is shown as

a colored line for each class separately. As a consequence of the

selection criteria, the changes of the mean of the class of the

negative samples for the 75 parameters are centered on zero (no

change) when compared to the matching control group. Likewise,

as a consequence of the selection criteria the changes in mean of

the positive class discriminate well from those of the negative class

for the 75 identified parameters. The number of parameters with

an increased level in the positive class by far exceeded those which

were down-regulated. Most interestingly to note is that, the

distribution of the class termed ‘increased’ lies between the

negative and positive classes, thus reassuring us of the validity of

our tailored approach. Hence, samples with no evident histopath-

ological finding, but two-fold increase in either ALT or AST,

clearly show further alterations on the molecular level in serum

and liver tissue.

A detailed graphical visualization of the measurements is given

for the best ranked parameters in Figure 2 and all other

parameters in Figures S3–S6. The parameters were ranked by

significance level (p-value) followed by amplitude of change (fold-

change), see Tables 5–8 and Tables S1–S3. The best ranked

parameters for each type of measurement were selected, i.e.

bilirubin for clinical chemistry, putrescine and taurocholic acid

from the metabolite profiling measurements and Igfbp1 (insulin-

like growth factor-binding protein 1) and Egr1 from the gene

expression data. The graphical representation depicts the variation

from the controls since all measurements were calibrated including

the vehicle treated control groups which were centered at zero.

These variations of the controls tend to be within the two-fold

range, but some extreme cases show changes up to four-fold. This

outcome appears to be irrespective of the type of measurement

and sample type, i.e. serum or tissue. Moreover, this outcome

appears to be unrelated to the matrix (serum or tissue) or the

technology of measurement. In addition, the data shows a

dynamic response in time, as seen in the graphical representation.

For example, bilirubin levels increase in a time-dependent manner

in animals treated with Methylene Dianiline and histopatholog-

ically positive scored samples. In addition to these detailed graphs,

a combined view of all 75 parameters is presented as a heatmap-

like representation (Figure S2).

A closer inspection of the detailed graphical visualization

revealed two individuals that clearly deviated from the rest of

the animals in the negative class (Figure 2). These two animals

were treated with a high dose of ANIT or Methylene Dianiline,

respectively. In particular, they showed increases in taurocholic

acid of approximately 16- and 32-fold at 24 h and 3 h,

respectively. Moreover they also showed increase in bilirubin

(16x, 2x), in Igfbp (11x, 4x), in Egr1 (2x, 4x) and in putrescine (3x,

Table 5. Significantly changed (FDR ,0.05) clinical chemistry markers in serum exhibiting absolute fold changes (FC) .2.

Name FDR logFC FC

Bilirubin 0.00 3.18 9.06

BA 0.00 2.94 7.70

ALT 0.00 2.75 6.72

GGT 0.00 2.61 6.09

AST 0.00 2.38 5.19

SDH 0.00 2.12 4.34

LDH 0.00 1.74 3.35

doi:10.1371/journal.pone.0097249.t005

Table 6. Significantly changed (FDR ,0.05) metabolites in liver tissue exhibiting absolute fold changes (FC) .2.

Name FDR logFC FC

Putrescine (additional: agmatine) 0.00 2.02 4.04

Glycochenodeoxycholic Acid 0.01 21.34 0.39

Taurocholic Acid 0.00 1.15 2.21

Unknown 0.00 1.12 2.17

Maltotriose 0.03 21.06 0.48

doi:10.1371/journal.pone.0097249.t006

Metabolites, Markers and Transcripts Associated with Hepatotoxicity
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none). Given the consistent deviation of these individual animals

from the negative class, we decided to re-evaluate the histopath-

ological classification. In the case of the animals at the early time

point of 3h treated with Methylene Dianiline we could not detect

any histopathological changes upon re-evaluation. However, re-

assessment of the liver tissue of the rat treated with ANIT showed

single cell necrosis of grade one, which had been overlooked in the

first evaluation. These observations suggest the relevance of our

results, indicating that objective quantitative measurements can at

times outperform histopathological evaluation and suggesting a

higher sensitivity of analyte measurements compared to morpho-

logical assessment.

Taking into account treatment effects with fold changes ,2, a

large number of additional metabolites exhibiting significant

changes could be identified both in serum (n = 97) and liver

(n = 144). The total number of significantly changed metabolites

with known structure ID was 63 and 85 for liver and serum,

respectively (Tables S1 and S2; metabolites are sorted according to

their ontology classes). Metabolite concentration changes in serum

were largely observed for amino acids and related (including

tryptophan, metabolites of the tryptophan metabolism and

metabolites of the creatine metabolism) as well as lipids, e.g.

several (lyso)phospho- and sphingolipids and other complex lipids

(e.g. triacylglycerols) and fatty acids derived from complex lipids.

In addition to the already discussed bile acids, increases were

observed in particular for complex lipids and fatty acids that are

components of cell membranes. The metabolite classes amino

acids (and related) as well as lipids (again different lipid classes)

exhibited major changes also in liver (Table S1). It is noteworthy

to mention that particularly for amino acids and related we

observed quite some overlap of metabolites being significantly

changed in the same direction both in serum and liver (see Tables

S1 and S2, respectively). This applied to glutamate, alanine and

trans-4-Hydroxyproline (decreased by up to 27%) as well as

leucine, valine, creatine, creatinine and ornithine (increased by up

to 70%). In contrast, lysine and arginine are examples exhibiting

opposite changes in both matrices, the latter one being decreased

in serum by 58% and increased in liver by 30%).

The observed gene expression changes were summarized with

regard to gene ontology (GO) classes. To this end, all measured

transcripts were annotated and mapped to GO classes. We focused

on the most significant 500 deregulated transcripts irrespective

their fold change (p-value ,10–7). Those GO classes were selected

which were enriched in our list of 500 deregulated transcripts by

means of the Fisher exact test. The following 9 GO classes were

found overrepresented in our data set with a p-value ,10–5:

response to stimulus, external stimulus, chemical stimulus, stress,

wounding, hormone stimulus, organic substance and endogenous

stimulus; and regulation of angiogenesis.

Discussion

The aim of this investigation was to identify putative early

biomarkers for hepatotoxicity. With this purpose in mind, we

utilized clinical chemistry parameters, metabolite profiling (LC-

MS/MS and GC-MS) and gene expression in serum and/or liver.

We identified parameters which were associated with histopath-

ological findings in the rat liver. Most of these parameters were

elevated with an overall concordant pattern across the different

types of measurements and matrices (e.g. tissue transcripts and

serum metabolites). Here, we present the results of our study which

offer a repertoire of potential biomarkers to assess and monitor

DILI.

Table 7. Significantly changed (FDR ,0.05) metabolites in serum exhibiting absolute fold changes (FC) .2.

Name FDR logFC FC

Taurocholic Acid 0.00 5.35 40.77

Glycocholic Acid 0.00 3.42 10.72

Taurochenodeoxycholic Acid 0.00 3.21 9.23

Glucuronic Acid 0.00 1.39 2.61

Arginine 0.00 21.25 0.42

doi:10.1371/journal.pone.0097249.t007

Table 8. Top 10 ranking significantly changed (FDR ,0.05) transcripts in liver tissue exhibiting absolute fold changes (FC) .2.

Identifier Name FDR logFC FC

M58634_at Igfbp1 0.00 2.94 7.67

AF023087_s_at Egr1 0.00 2.73 6.65

U75397UTR#1_s_at Egr1 0.00 2.65 6.28

M18416_at Egr1 0.00 2.63 6.18

D38066exon_s_at Ugt1a2 0.00 2.23 4.68

M60921_g_at Btg2 0.00 2.2 4.59

rc_AI175959_at Jun 0.00 2.05 4.14

rc_AA944156_s_at Btg2 0.00 2.04 4.1

rc_AA900505_at Rhob 0.00 1.97 3.91

M63282_at Atf3 0.00 1.86 3.63

doi:10.1371/journal.pone.0097249.t008
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Our approach compares samples with treatment-related histo-

pathological findings in the liver (called ‘positive’) with those which

do not show any substantial alterations neither histopathologically

nor with regards to the their serum levels of ALT or AST (called

‘negative’). The approach implicitly aims to identify universal

biomarkers, i.e. biomarkers which are indicative for DILI

irrespective of the type of the toxic injury or its underlying

molecular mechanism. However, a single, universal marker

associated with any kind of hepatotoxicity may not exist, since

early toxic events may differ among different mechanisms of

toxicity. A biomarker discovery strategy that initially stratifies

hepatotoxicity based on the type of finding or mechanism could be

used to identify mechanism-specific markers [13]. Here, we did

not attempt to do so, but rather focused on histopathologically

positive samples, irrespective of the mode of action. Biological

understanding of the roles of the detected putative biomarkers

provided additional evidence of the true (rather than spurious)

association between the detected markers and the underlying

cellular processes.

Thus, we assessed the set of parameters identified as significantly

changed upon toxic insult to the liver considering their biological

function. The parameters included in the clinical chemistry panel

and that were elevated in the positive samples are known to be

associated with hepatotoxicity (Table 5 and Figure S3). For

example, Hy’s law, defined as elevations of circulating transam-

inases (ALT or AST) and bilirubin has become the standard of

practice to determine the severity of liver damage in the clinic.

This combination of parameters, however, will only indicate

serious cases of liver damage in patients [14]. Gamma-glutamyl-

transferase (GGT) is localized to bile ducts, so that elevations in

circulating levels are indicative of hepatobiliary damage. Sorbitol

dehydrogenase (SDH) elevations were found to be specific for liver

damage, but much less sensitive than the transaminases. Lactate

dehydrogenase (LDH) is considered a general marker of tissue

damage, although certain isoforms (LDH-4 and LDH-5) are more

specific to liver or muscle disease.

In association with hepatotoxicity, we detected increased bile

acids in serum (total bile acids, glycocholic and taurochenodeoxy-

cholic acids) and in liver tissue either by clinical chemistry or by

metabolite profiling. The fact that this metabolite family can be

detected in both matrices, irrespective of the analytical method

confirms that bile acids are robust and informative markers of liver

damage. These organic anions are synthesized in hepatocytes from

cholesterol, conjugated, and excreted into the canaliculus [15].

Measurement of serum bile acid concentrations is a more specific

indicator of functional hepatic excretory capacity than is serum

bilirubin [16]. Our data suggest that differential determination of

total and/or specific bile acids may add information on subtle

excretory abnormalities and improve sensitivity by employing of

more accurate analytical methods such as GC/MS or LC/MS.

Further indication of detoxification processes triggered in the liver

by the treatments is the increase in circulating glucuronic acid.

Metabolite profiling has proven high reliability and reproduc-

ibility in the past. In many cases rather small yet physiologically

meaningful changes observed in a highly controlled matrix like

serum or plasma could be assigned to specific toxicological mode

of actions. In particular, it has been shown that plasma

metabolome changes, e.g. for amino acids, fatty acids and

complex lipids, below a fold change of 2 can be indicative for

liver toxicity [17,18,9]. Furthermore, increased values of creati-

nine in rat urine have been reported to be related to treatment

with the hepatotoxicant hydrazine [19] and increases of urinary

bile acids have been associated with ANIT treatment [20]. These

results are in line with highly significant metabolome changes

observed in this study, such as increases of creatinine and creatine

levels both in liver and in serum. Recently it was reported that

changes in circulating bile acids as well as amino acids are

associated with acetaminophen-induced hepatotoxicity in rats

[21]. In particular, elevated blood bile acids have been observed,

with increases in cholic acid, deoxycholic acid and glycocholic acid

being statistically significant. Strong correlations with the hepato-

toxic outcome of acetaminophen were also observed for e.g.

arginine and derivatives [21]. In line with this observation, in the

current study serum arginine levels decreased while serum

ornithine levels increased (Table S2). The corresponding urea

cycle enzyme arginase I, catalyzing the conversion of arginine to

ornithine and urea, exhibited a significant increase in transcript

levels by ,20% in liver tissue as well (not shown). Remarkably, the

metabolites arginine, ornithine, citrulline and urea exhibited

significant increases in liver (Table S1), confirming deregulation

of the urea cycle as seen in the transcriptomics analysis in the

current study: in addition to the increase of arginase I, an increase

of argininosuccinate dehydrogenase by ,30% and a decrease of

ornithine carbamoyltransferase by ,13% was observed (not

shown).

Serum metabolite profiling revealed changes in tryptophan

metabolism: tryptophan decrease by 30% was accompanied by

decreases of indole-3-propionic acid and indole-3-lactic acid by

28% and 13%, respectively, whereas kynurenic acid was

considerably increased by a factor of ,1.5 (Table S2). Remark-

ably, expression of tryptophan-2,3-dioxygenase (TDO), catalyzing

the first and rate-limiting step of tryptophan degradation in liver,

thereby producing formylkynurenine, was significantly increased

Figure 1. Changes in Mean. In total 75 parameters were found to be
significantly changed between histopathologically negative and posi-
tive scored samples (false discovery rate ,0.05) and exhibiting fold-
changes .2 or ,0.5. The average fold-changes of all 75 parameters
were calculated with respect to the matching control group and their
smoothed distribution is shown for each class. Control group means
centered at zero are not shown. Samples which are scored negative and
show increased ALT or AST were omitted in the statistical comparison
and are shown as separate line in yellow. Their intermediate distribution
reassures the validity of this approach and the relevance of the
identified parameters.
doi:10.1371/journal.pone.0097249.g001
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by 15% whereas expression levels of kynurenine 3-monooxygenase

(converting kynurenine to 3-hydroxykynurenine) and kynureni-

nase (catalyzing the following enzymatic step converting 3-

hydroxykynurenine further to 3-hydroxyanthranilic acid) were

decreased by 30% and 26%, respectively (not shown). This is in

line with the observed increase of kynurenic acid indicating that

tryptophan degradation to NAD was shifted towards synthesis of

kynurenic acid.

The most prominent candidate marker identified based on

metabolite profiling is putrescine (measured as sum parameter

together with agmatine), a simple polyamine, which showed an

increase of more than four-fold (Table 6, Figure 2 and Figure S4).

Although our analytical methods, based on full tissue homoge-

nates, do not allow for cellular localization of the changes, it is

interesting to note that the increase of putrescine may be linked to

activation of macrophages. The clearance of debris of necrotic

cells containing danger signals makes macrophages one of the

primary sensors of danger present in the host. Alternatively

activated macrophages primary role appears to be related to

wound healing, decreased inflammation and tissue repair. These

macrophages contribute to the production of polyamines and

collagen. Remarkably, major components of collagen, i.e. proline,

trans-4-hydroxyproline, glycine and others, are decreased in the

current study, primarily in serum (Table S2). Interleukin-4 (IL-4) is

known to induce wound healing macrophages and to stimulate

their arginase activity [22]. The latter may be related to the

observed arginine levels (Table 7 and Figure S5). Our measure-

ments of the Methylene Dianiline treatment support the hypoth-

esis which links putrescine to macrophages. Samples with

histopathologically verified inflammation are all those at the time

points 6 h and 24 h. These samples coincide with those showing an

increase of putrescine (Figure 2). In support of this theory, the

increase of polyamines and amino acids in urine has already been

associated with nephrotoxicity prior to observable histological

kidney damage [5].

In any case, polyamines are known to induce cell proliferation,

which is in agreement with some of the observed gene expression

modulations in the liver indicative of cell cycle regulation and

tissue repair. Among the top 10 most significantly regulated genes

(Table 8 and Figure S6), the zinc finger transcription factor Egr1

(early growth response 1 or Krox-24) represents an important

activator of target genes involved in a variety of pathophysiological

processes, including hepatocyte injury while Atf3 and Jun have

also been associated with liver injury. Egr1 is among the common

genes induced after a hepatocellular challenge leading to toxicity

[23] and is known as immediate early growth response activated

by cellular stimuli such as irradiation and small molecules [24].

Moreover, hypoxia induced up-regulation has been found in

macrophages [25]. Igfbp1 (insulin-like growth factor-binding

protein-1) listed as best ranked gene in Table 8 has been linked

to liver regeneration [26]. It is also known to antagonize the

proapoptotic effect of p53 while possibly allowing time for repair

of damage or resolution of metabolic distress [27].

The results of this study show the expected response in well-

known markers of DILI (AST, ALT and bilirubin) in many, but

not all the treated animals. In addition, we have also identified

putative biomarkers with biological anchoring such as putrescine,

bile acids, and genes such as Igfbp1 and Egr1. Among the most

interesting markers, bilirubin and taurocholic acid seem to

strongly correlate with the occurrence of histopathological liver

damage, while putrescine in serum and Igfbp1 and Egr1 in tissue

were also elevated in animals showing transaminase increases or

no changes. These results reinforce the usefulness of standard

clinical chemistry parameters, but also show that additional

parameters may improve the performance in terms of sensitivity.

Further data should be collected to determine if these additional

biomarkers may be also able to provide additional evidence with

regards of onset, relevance, and progression of DILI in cases where

ALT or AST are elevated but no tissue damage is evident

microscopically.

Translational biomarkers that allow the monitoring of patients

with regards of onset, progression and reversibility of toxicity

would offer means to design better and safer clinical trials. In

particular, sensitive, non-invasive and translational biomarkers are

useful for the clinical testing of compounds which show toxicity in

animals but may be safe in patients due to species differences of

different dose regimens. Our set of best ranked parameters based

on different technologies and different sample matrices is

biologically meaningful, in agreement with previous results and

shows an overall concordant measurement pattern across all

samples. Also, our tailored analysis demonstrated that the

identified biomarkers outperform histopathology evaluation in

terms of sensitivity. Hence, this set of biomarkers can be

implemented for the identification of early events leading to

hepatotoxicity. Future studies increasing the number of tested

compounds would improve the coverage of mechanisms causing

toxicity and hence the universal validity of our findings, as the

generalization power of our biomarkers may be constrained by the

limited number of toxicity mechanisms which were included in the

study.

Supporting Information

Figure S1 Clinical chemistry.

(PDF)

Figure S2 Significantly changed parameters exhibiting absolute

fold changes .2. Fold-changes are visualized for all samples and

all significantly changed parameters (FDR ,0.05) exhibiting

absolute fold changes .2. The fold-changes are calculated for

each sample with respect to the mean of the matching control

group (vehicle treatment). Red (blue) indicate up (down)-regulation

and yellow missing measurements. The samples are grouped by

class as shown on the top(green: vehicle control of class negative,

blue: class negative without vehicle controls, orange: increased in

ALT or AST, red: class positive). The parameters are grouped by

type as shown on the left(green: transcripts in liver tissue, red:

metabolites in serum, gray: metabolites in liver tissue, blue: clinical

chemistry in serum).

(PDF)

Figure S3 Clinical Chemistry Markers in Serum as Listed in

Table 5. The fold-change of each sample is calculated with respect

to the matching control group (vehicle treatment). The mean of

each class is shown as horizontal line (black: negative including

controls, yellow: increased in ALT or AST, red: positive). The size

Figure 2. Top Markers. All measurements are visualized in detail for the 1–2 best ranked markers for each type of parameter (subfigure A: clinical
chemistry in serum, B: metabolite in liver tissue, C: metabolite in serum, D/E: transcript in liver tissue). The fold-change of each sample is calculated
with respect to the matching control group (vehicle treatment). The mean of each class is shown as horizontal line (black: negative including controls,
yellow: increased in ALT or AST, red: positive). The size of the treatment symbols increase with dose. The time points are resolved by aligning the
symbols in columns.
doi:10.1371/journal.pone.0097249.g002
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of the treatment symbols increase with dose. The time points are

resolved by aligning the symbols in columns.

(PDF)

Figure S4 Metabolites in Liver Tissue as Listed in Table 6. The

fold-change of each sample is calculated with respect to the

matching control group (vehicle treatment). The mean of each

class is shown as horizontal line (black: negative including controls,

yellow: increased in ALT or AST, red: positive). The size of the

treatment symbols increase with dose. The time points are

resolved by aligning the symbols in columns.

(PDF)

Figure S5 Metabolites in Serum as Listed in Table 7. The fold-

change of each sample is calculated with respect to the matching

control group (vehicle treatment). The mean of each class is shown

as horizontal line (black: negative including controls, yellow:

increased in ALT or AST, red: positive). The size of the treatment

symbols increase with dose. The time points are resolved by

aligning the symbols in columns.

(PDF)

Figure S6 Transcripts in Liver Tissue as Listed in Table 8. The

fold-change of each sample is calculated with respect to the

matching control group (vehicle treatment). The mean of each

class is shown as horizontal line (black: negative including controls,

yellow: increased in ALT or AST, red: positive). The size of the

treatment symbols increase with dose. The time points are

resolved by aligning the symbols in columns.

(PDF)

Table S1 Significantly changed metabolites in liver tissue. All 63

liver metabolites for which a structure ID was identified or

proposed and which were significantly changed (FDR ,0.05) are

listed.

(XLSX)

Table S2 Significantly changed metabolites in serum. All 85

serum metabolites for which a structure ID was identified or

proposed and which were significantly changed (FDR ,0.05) are

listed.

(XLSX)

Table S3 Significantly changed transcripts in liver tissue. All 45

genes exhibiting absolute fold changes .2 and being significantly

changed (FDR ,0.05) are listed.

(XLSX)
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