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Abstract

Intermediate (VISA-type) vancomycin resistance in Staphylococcus aureus has been associated with a range of physiologic
and genetic alterations. Previous work described the emergence of VISA-type resistance in two clonally-distinct series of
isolates. In both series (the first belonging to MRSA clone ST8-USA300, and the second to ST5-USA100), resistance was
conferred by a single mutation in yvqF (a negative regulator of the vraSR two-component system associated with
vancomycin resistance). In the USA300 series, resistance was reversed by a secondary mutation in vraSR. In this study, we
combined systems-level metabolomic profiling with statistical modeling techniques to discover specific, reversible
metabolic alterations associated with the VISA phenotype.
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Introduction

Staphylococcus aureus is a major human pathogen, responsible for

significant morbidity and mortality [1]. The threat of S. aureus is

due in large part to the emergence of antibiotic resistance [1]. For

over 30 years, the glycopeptide antibiotic, vancomycin, has been

the mainstay of therapy for treating methicillin-resistant S. aureus

(MRSA) infections. Since 1997, however, an increasing number of

MRSA strains have been reported to have decreased vancomycin

susceptibility. Clinically, these vancomycin intermediate (VISA)

strains are associated with an increased likelihood of treatment

failure and complications [2].

From a microbiologic perspective, VISA-type vancomycin

resistance is associated with a wide array of changes in bacterial

physiology. These include an increase in cell wall diameter, altered

autolysis, decreased growth, and alterations in gene transcription.

Though the etiology of intermediate-level vancomycin resistance

appears to be polygenetic (involving mutations in candidate loci

vraSR, yvqF, graSR, and walKR, among others), resistant isolates

from different genetic backgrounds share these pleiomorphic

phenotypes [2–5]. Previous studies have described the physiologic,

transcriptional and genetic changes associated with VISA-type

resistance. However, little is known about what, if any, changes in

bacterial metabolism might accompany VISA-type resistance.

Such changes are of interest as alterations in nutrient availability,

metabolism and environmental conditions have been shown to

affect both the structure and composition of cell wall peptidogly-

can [6,7]. The aim of this study was to determine if VISA-type

resistance in S. aureus might also be accompanied by specific

changes in bacterial intermediary metabolism. To do so, we

applied a conceptually unbiased, systems-level approach that

combined metabolomic profiling with statistical modeling tech-

niques.

Recent work reported a detailed genetic and physiologic

analysis of VISA-type resistance in an isogenic series of

methicillin-resistant S. aureus (MRSA) isolates [4]. The resistant

strain – SG-R –the corresponding isogenic susceptible ‘‘parent’’ -

SG-S – and its spontaneous revertant – SG-rev – all belonged to

MRSA lineage ST8, pulsed-field gel electrophoresis (PFGE) type

USA300. Moreover, the resistant isolate was found to differ from

the parent and revertant strains with respect to its in vitro rate of

growth, cell wall diameter, autolytic properties and antibiotic

resistance profile; all of which were reverted – i.e., returned to the

phenotype of the parental strain – in the spontaneous revertant.

Whole genome sequencing of these 3 strains, followed by

complementation analysis, identified an amino acid change

PLOS ONE | www.plosone.org 1 May 2014 | Volume 9 | Issue 5 | e97137

*

@med.cornell.edu; kyr9001@med.cornell.edu

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0097137&domain=pdf


A165D (alanine to aspartate) in the genetic determinant yvqF (a

negative regulator of the two-component regulator vraSR) as the

genetic lesion responsible for vancomycin resistance in SG-R.

These complementation experiments further showed that this

specific mutation was responsible for the physiologic abnormalities

detected in strain SG-R, described above. Additional complemen-

tation experiments further established the subsequent mutation in

vraSR (the target of vyqF inhibition) was responsible for the loss of

resistance in the revertant strain, SG-rev [4]. These three isolates

thus provided a unique, genetically-defined window into VISA-

type resistance. In particular, the presence of the revertant isolate

afforded the potential opportunity to discover metabolic alter-

ations specifically linked to the yvqF allele.

The JH series consists of 5 sequential, clonal MRSA isolates

(JH1, JH2, JH5, JH6 and JH9) recovered from a single patient in

which VISA-type resistance emerged in the setting of extensive

vancomycin chemotherapy. Whole genome sequencing revealed

the appearance of 36 point mutations associated with an increase

in vancomycin MIC from JH1 (MIC 1.0 mg/mL) to JH9 (MIC

8 mg/mL) [8]. To determine the extent to which the metabolic

changes observed in SG-R versus SG-S were specific to the yvqF-

associated VISA phenotype, rather than genetic lineage, we

compared their metabolic profiles to the VSSA isolate, JH1, and a

representative VISA isolate from the series, JH2. JH2 was chosen

as the level of vancomycin resistance (as defined by MIC) is closest

to that of SG-R (4 mg/mL and 3 mg/mL, respectively). Recent

complementation experiments (Gardete, et al., in preparation)

indicate that the mutation responsible for vancomycin resistance in

JH2 is an amino acid change H164R (histidine to arginine) in yvqF,

only one amino acid away from the resistance-conferring mutation

in SG-R [8].

Given the multiple phenotypic changes common to VISA

isolates of different genetic lineages, we hypothesized that VISA-

type resistance might also be accompanied by specific changes in

S. aureus intermediary metabolism. We therefore examined the

baseline metabolic profiles of isolates SG-S, SG-R and SG-rev, as

well as JH1 and JH2 during the logarithmic phase of growth using

a mass spectrometric metabolomics platform to determine what, if

any, metabolic changes are common to the yvqF-associated VISA

phenotype.

Methods

Sample Preparation and Liquid Chromatography-Mass
Spectrometry (LC/MS)

Sample preparation and liquid chromatography-mass spec-

trometry analyses were performed using methods similar to those

previously detailed by de Carvalho et al [9]. Briefly, single colony

units of each isolate from 24 h growth on brain heart agar (BHA,

Difco Laboratories, Detroit MI) at 37uC were selected and again

grown on BHA at 37uC for 24 h growth to obtain a clonal

population and synchronize the growth cycle. A 0.1 OD595nm

suspension of each was then made in Brain Heart Infusion (BHI)

(Difco Laboratories, Detroit MI), from which 250 mL was

inoculated to 5 mL fresh BHI to obtain a .005 OD starting

culture. Liquid cultures were grown to early stationary phase (8 h)

at 37uC with aeration (220 rpm) and then inoculated (500 mL)

onto 22 mm nitrocellulose filters (Millipore, Billerica, MA) under

vacuum filtration in sterile conditions, according to Brauer et al

[10]. Biological replicates (at least 4) of S. aureus-laden filters were

then placed atop equivalent agar media (BHA) and allowed to

grow at 37uC. Bacterial growth was monitored by weighing

additional biological replicates of S. aureus laden filters (which were

then sacrificed at 24 hours) which increased with constant

doubling times from 1 h to 12 h, and a consistent mid-log-

rhythmic phase of 4–5 h. Filters were harvested at mid-log-

rhythmic phase (4 h) and metabolically quenched by immersion

into acetonitrile/methanol/H20 (40:40:20) precooled to 240uC.

Metabolites were extracted by mechanical lysis of the entire

solution with 0.1 mm Zirconia beads in a Precellys 24 tissue

homogenizer (Bertin Technologies, France) for 4 cycles of 30 s at

6000 rpm with 2 minute cooling intervals at 0uC. Lysates were

clarified by centrifugation at 14 g for 10 minutes at 4uC and

extracted 50:50 into acetonitrile with 0.2% formic acid. Intracel-

lular metabolites were analyzed by liquid chromatography-mass

spectrometry as recently described by Eoh and Rhee [11].

Experiments were performed at least in duplicate to ensure

replicability.

LC/MS Data Processing and Analysis
Metabolites were searched for both by chemical formula and

molecular feature and identities of specific metabolites were

confirmed against pure chemical standards (where available) by

molecular mass (mass tolerance ,0.01Da) and retention times.

Where chemical standards were not available, provisional

identifications were made by matching against a database of

accurate mass-retention time pairs using Agilent MassHunter

Qualitative Analysis software [12]. Peak heights of all detected

metabolites were imported into an Excel (Microsoft) data sheet,

and adjusted for bacterial biomass by residual protein content

analysis (Pierce BCA Protein Assay Kit, Thermo Scientific,

Rockford, IL), as described by Stich et al [13]. Normalized levels

for each metabolite across replicates from independent experi-

ments were generated by dividing the adjusted abundance for each

by the average adjusted abundance in the parent VSSA to allow

comparison across metabolites (Tables S1–S4). A heat map was

then created using Microsoft Excel after log(2) transformation of

the average normalized abundance of each metabolite in each

isolate (average of replicates across independent experiments).

Data Normalization and Processing
To minimize batch effects associated with individual experi-

ments, we normalized the data from each experimental repeat to

the first experiment. To do so, we calculated the average of the

data for every isolate (SG-S, SG-R, SG-rev, JH1, JH2) in each

experiment, and divided this by the average of the data for the

same isolate obtained on the first experimental repeat. We then

multiplied the values obtained on each subsequent experimental

repeat by this ratio to obtain values normalized to the first

experiment.

Hierarchical Mixture Model Analyses
Changes in bacterial physiology may lead to the adoption of

different homeostatic states. We therefore hypothesized that VISA

isolates might exhibit changes in the mean abundance of

individual metabolites. On the other hand, we considered that

changes in bacterial physiology might also activate new regulatory

mechanisms that seek to maintain metabolite pool sizes and

manifest only as changes in flux. We therefore sought to detect

changes in both metabolite abundance and flux (as reported by

pool size variations).

Conventional t-test is one of the most commonly used methods

to compare metabolite levels between two groups. This method is

only valid, however, if certain assumptions hold. First, the

distribution of data must be approximately normal, or the sample

size must be sufficiently large. Second, the difference between the

means of the two groups (D) and the standard error of that

difference (S) must be independent. Finally, the variances must be

Metabolic Alterations in VISA Strains
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equal in the two groups. In our analyses, our normalized data

violated these assumptions. While the means were normalized with

the first set as reference, within each group the means were quite

different, and there appeared to be batch effects, as seen in Figures

S1 and S2. Additionally, there appeared to be a relationship

between means and variances, and variances in the two groups

were sometimes quite different. To address the issues of different

means, batch effects and the relationship between mean and

variance, we median centered the data (Figure S1 & S2). To

address the problem of unequal variance, one option would be use

of a modified t-test with a Satterthwaite approximation to the

transformed data. However, as we desired to simultaneously test

for changes in variance, as well as adjust for them (as these could

be due to changes in flux), we chose to use a more powerful

approach. We therefore used a newly-developed hierarchical

mixture model, which benefits from ‘‘borrowing information’’

across tests [14]. The phrase ‘‘borrowing information’’ refers to

methods that combine data from multiple tests (metabolites) into a

simple parsimonious model, effectively increasing the sample size.

Specifically, in the model used here, we assumed that the

differences between means, Di (i = 1,2,3,…72), are observations

from up to three normal components – non-differential, increased

abundance, or decreased abundance. Thus, metabolites in each

component are all used jointly to estimate the difference between

population means in that component. Moreover, this approach

allows the two groups to have different variances. The 72 ratios of

the variances of the two groups are also assumed to be a mixture of

up to three components (same variance in both groups, larger

variance in group 1, or larger variance in group 2). This leads to

further improvement in power, as a result of better estimation of

the standard errors Si (the denominators of the t-statistics.)

We refer to this approach, in which we test whether the two

groups have different variances, different means, or both, as the

‘‘combined analysis of mean abundance and variance’’ [14]. We

refer to the analysis of means alone (assuming homogeneity of

variance) as ‘‘analysis of changes in mean abundance’’ [14].

Simulation studies show that this hierarchical mixture model

provides significant improvement over methods that either test one

metabolite at a time, controlling for Type-I error probability or

false discovery rate (such as the simple T-test or Satterthwaite’s

approximation).

Statistical Analyses
Biomass-adjusted, baseline-normalized and experiment-normal-

ized ion counts (provided in Tables S3 & S4) were recorded in a

Microsoft Excel database and plotted in R [15]. Results of these

plots showed that, despite the means being normalized between

experiments, within each group the means were different and

batch effects persisted. To adjust for this, the data was centered to

equalize the means across groups, as previously described (Figure

S1 & S2). Figure S3 demonstrates similar output statistics

(minimum, quartiles, mean, variance and coefficient of variation)

between the groups tested (JH2 versus JH1, SG-R versus SG-S,

etc.) using the mean-centered, normalized data. Resultant overall

differences between means and variances between the susceptible

and resistant isolates for each series were incorporated as the

hypothesized mean and variance and differences in the mean

abundance of each metabolite were tested for using the

hierarchical mixture model described above [14], and adjusted

for multiple hypothesis testing by the Benjamini-Hochberg

procedure [16]. Combined analysis of changes in mean abun-

dance and variance was then performed as previously described,

again correcting for multiple hypothesis testing by the Benjamini-

Hochberg procedure [16]. In addition, analyses of changes in

mean abundance was performed by Significance Analysis of

Microarrays for Excel (SAM) analysis (with input parameters set to

two class unpaired, FDR , 1%, median centered) as previously

described [17]. Hierarchical cluster analysis of the 72 identified

metabolites across all samples for the JH series and SG series was

performed using TM4MEV, a freeware software program for

multi-parametric statistical analysis using a Pearson correlation

distance metric (after standardizing by metabolite and group) [18].

Finally, principal component analysis was performed in R (using

the default function princomp) on the 72 identified metabolites

across all samples for each series individually and together to

determine the extent to which metabolic changes clustered

according to strain background, resistance phenotype, or did not

cluster [15]. Unless otherwise cited, metabolites were ascribed to

pathways by comparison against the KEGG (Kyoto Encyclopedia

of Genes and Genomes) Database [19].

Results

Analysis of the JH Series Yields a Greater Number of
Metabolic Alterations than Analysis of the SG Series,
Consistent with a Greater Number of Genetic Mutations

We detected and quantified a maximum of 228 metabolites

(defined as a chromatographically resolved family of co-eluting

ions corresponding to an empirically confirmed molecular

formula), of which 164 were observed in all three SG isolates

(SG-S, SG-R and SG-rev) in three independent experiments

(Table S1). A schematic representation of the metabolic profile

(LC-MS overlay) of each isolate is shown in Figure S4. Of the 164

‘‘core’’ metabolites detected in all three SG isolates, we were able

to provisionally assign and/or chemically confirm the identities of

72, using an accurate mass-retention time database [12]. These 72

identified metabolites included intermediates of glycolysis/gluco-

neogenesis/the pentose phosphate pathway, fermentation, the tri-

carboxylic (TCA) acid cycle, amino acid metabolism, pyrimidine

metabolism, purine metabolism, and others [20]. While the

identities of the remaining 92 metabolites were not definitively

confirmed, 19 exhibited statistically significant differences in their

intracellular abundance between SG-R and SG-S by hierarchical

mixture model analysis [14]. Of these 19, 4 returned towards the

levels of the parental strain (albeit imperfectly in some cases) in

SG-rev, indicating a possible link to the VISA phenotype (Table

S1).

Metabolomic profiling of JH2 and its parental isolate JH1 again

yielded the same 72 metabolites as the SG series whose identity

could be confirmed using accurate mass/retention time identifiers

(Table S2). Comparison of the intracellular abundance of these

metabolites in the VISA (JH2) against the parent VSSA (JH1),

however, revealed a larger number of alterations than found in

SG-R compared to its parental isolate, SG-S by both statistical

methods (SAM and hierarchical mixture modeling). These results

are consistent with the larger number of genetic mutations in the

JH isolates (8 in JH2 vs. JH1 and 5 in SG-R vs. SG-S). Specifically,

hierarchical mixture model analysis of the SG series yielded 12/72

metabolites whose mean abundance was significantly different ($

0.25-fold) between SG-R and SG-S (p#0.05), after adjusting for

multiple comparisons using the Benjamini-Hochberg correction

(Table S1). Of these 12, eleven metabolites were significantly

altered on analysis of both mean abundance and variance, after

adjusting for multiple comparisons. Hierarchical mixture model

analysis of the JH series, by contrast, identified 25/72 metabolites

whose mean abundance was significantly different between JH2

and JH1 ($0.25-fold, p#0.05) after adjusting for multiple

comparisons. Of these 25 metabolites, 22 metabolites remained

Metabolic Alterations in VISA Strains

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e97137



significantly different on combined analysis of mean abundance

and variance (again adjusted for multiple comparisons) and 13

were unique to the JH series (i.e. remained unaltered in the SG

series) (Tables S1 & S2). Analysis by SAM similarly yielded a larger

number of altered metabolites in the JH series than the SG-series,

consistent with the larger number of genetic alterations. Specif-

ically, 50/72 identified metabolites showed changes in intracellular

abundance by SAM analysis in the JH series versus 26/72 in the

SG series (Tables S1 & S2).

Principal Components and Hierarchical Cluster Analyses
Show Segregation of Isolates by Resistance Phenotype

Comparison of the metabolic profiles of isolates SG-S, SG-R

and SG-rev by principal component analysis (PCA) of the 72

identified metabolites demonstrated clustering of samples by

resistance phenotype (Figure 1A). Specifically, the metabolic

profiles of SG-S and SG-R formed separate clusters on PCA,

while those of SG-rev clustered between these two groups

(Figure 1A), suggesting that some, but not all of the metabolic

changes associated with acquisition of vancomycin resistance in

SG-R reversed with the loss of resistance in SG-rev. Principal

component analysis of the metabolic profiles of the JH isolates

showed a similar segregation of samples by resistance phenotype

with JH1 and JH2 forming distinct clusters, though one outlier

(JH2-sample 10) was noted (Figure 1B). Notably, on principal

component analysis of all isolates from both series, we again noted

clustering according to resistance phenotype. Specifically, the

metabolic profiles of the ‘‘parent’’ vancomycin susceptible isolates,

JH1 and SG-S, formed a single cluster (Figure 2A, green ellipse)

while those of SG-S and JH-2 formed separate clusters (red and

dark blue ellipses, respectively) along the same vector of change (as

denoted by the black arrow) from the cluster corresponding to the

susceptible isolates. As seen in the principal component analysis of

the SG series alone, the metabolic profiles of the SG-rev isolates

again clustered between those of its susceptible parent (SG-S) and

resistant (SG-R) isolates, overlapping both.

We also noted a separation of the metabolic profiles of all five

isolates from both series according to resistance phenotype on

hierarchical cluster analysis (HCA) [18]. Specifically, on HCA of

the 72 identified metabolites in all isolates, SG-R and JH2

separated into one branch, while SG-S, JH1 and SG-rev separated

into another (Figure 2B), though one replicate of SG-R (SG-R5)

did cluster with the susceptible isolates (red asterix). As seen on

principal component analysis, SG-S and JH1 samples were

somewhat mixed, while the SG-rev samples clustered together,

though still within the same branch as the parent VSSA isolates,

consistent with its revertant phenotype.

Vancomycin Resistance is Associated with Specific
Metabolic Alterations, Common to Both SG-R and JH2

Specific metabolites whose abundances were altered in JH2

compared against JH1 on hierarchical mixture modeling included

intermediates of the urea cycle, purine metabolism, the tri-

carboxylic acid (TCA) cycle, glycolysis/gluconeogenesis/pentose

phosphate pathway, pyruvate metabolism, and cell wall metabo-

lism, among others (Figure 3). The 12 metabolites whose

abundance was significantly altered in the SG series by hierarchi-

cal mixture modeling also included intermediates of the urea cycle,

Figure 1. Principal component analyses of the metabolic profiles of the SG series (A) and the JH series (B) show clustering of
replicates by resistance phenotype. (A) Principal component analysis of the metabolic profiles of isolates from the SG series (SG-S, SG-R and SG-
rev) shows a separation of samples (replicates) by resistance phenotype. Specifically, the metabolic profiles corresponding to replicates of the VISA
strain, SG-R (red ellipse) cluster separately from those of its parent VSSA, SG-S (black ellipse), while those of SG-rev (green ellipse) cluster between
these two, overlapping both. (B) Principal component analysis of the metabolic profiles of isolates from the JH series again shows clustering of
replicates by phenotype, with both the parent VSSA JH1 (black circles) and VISA JH2 (red circles) forming non-overlapping clusters (though one
outlier, JH2-10, is noted).
doi:10.1371/journal.pone.0097137.g001

Metabolic Alterations in VISA Strains
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TCA cycle, glycolysis/gluconeogenesis/pentose phosphate path-

way and pyruvate metabolism, of which seven subsequently

reversed in the direction of the parental isolate (albeit sometimes

imperfectly) in the revertant, SG-rev (Figure 4).

Of the 7 metabolites whose intracellular abundance was

significantly altered in both series of isolates on hierarchical

mixture modeling, and returned in the directionality of baseline in

the revertant, SG-rev (albeit sometimes imperfectly), 6 changed in

Figure 2. Principal component and hierarchical cluster analyses show separation of isolates by resistance phenotype. Principal
component analysis (A) of the metabolic profiles of all isolates from both series again shows a separation of isolates by resistance phenotype.
Specifically, the metabolic profiles of parent VSSA isolates SG-S (green squares) and JH1 (black dots) form a single cluster (green ellipse), while those
corresponding to VISA isolates SG-R (dark blue diamonds) and JH2 (red circles) form two separate clusters (dark blue ellipse and red ellipse,
respectively) along the same vector of change (denoted by the black arrow) to the left of the VSSA cluster. The metabolic profiles corresponding to
the revertant SG-rev (light blue diamonds) cluster between the susceptible parent (SG-S) and resistant (SG-R) isolates, consistent with its revertant
phenotype (light blue ellipse). (B) Results of hierarchical cluster analysis also show that the metabolic profiles of all five isolates from both series
separate by resistance phenotype, forming two distinct branches with the VISA isolates JH2 and SG-R on the left and VSSAs SG-S, JH1 and SG-rev on
the right, though one replicate of SG-R (SG-R5) was found to cluster with the parental VSSA isolates (red asterix).
doi:10.1371/journal.pone.0097137.g002

Metabolic Alterations in VISA Strains
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the same direction in the VISA isolates from both series (SG-R or

JH2) when compared against their respective parental VSSA

strain (i.e. metabolites 1–2 increased in both VISAs and

metabolites 3–6 decreased in both VISAs) (Figure 5). Results of

SAM analyses similarly yielded 11 metabolites whose abundance

was significantly altered in both VISA isolates and returned in the

direction of baseline in the revertant, SG-rev. Of these 11, ten

were altered in the same direction in the VISA isolate from both

series (Figure S5). All six metabolites which were similarly altered

in both VISAs on hierarchical mixture model analyses were also

altered on SAM analyses, and included intermediates involved in

three metabolic pathways – the urea cycle (aminobutanoate,

citrulline) pentose phosphate pathway (pentose phosphate) and the

TCA cycle (methylmalate) - among others [20,21] (Figure 5,

Figure S5). As the abundance of these 6 metabolites was

significantly altered in a similar manner in the VISA isolate in

both series and returned towards levels of the parental isolate in

the revertant, they most likely represent the metabolic correlates of

yvqF-associated VISA-type resistance.

Discussion

This study extends what is known about the VISA phenotype in

S. aureus to include specific and reversible alterations in S. aureus

intermediary metabolism. Pathways of intermediary metabolism

provide the biosynthetic precursors, ATP, and reducing equiva-

lents used by all cellular processes. It is thus remarkable that

natural VISA-type resistance emerged with such a limited, but

specific, impact on the intermediary metabolism of S. aureus. It is

also noteworthy that despite a limited number of metabolic

alterations associated with the VISA phenotype, the metabolic

Figure 3. Heat map of Altered Metabolites in the VISA, JH2, Versus its Parent VSSA, JH1. Heat map displaying the 25 metabolites whose
abundance was significantly altered in the VISA isolate, JH2, compared against its parent VSSA, JH1. Changes in abundance are indicated by color
coding with red indicative of increases in mean intracellular abundance relative to the baseline (defined by the abundance in JH1) and blue indicative
of decreases in intracellular abundance on a log (2) scale. Specific p-values for the comparison of JH2 versus JH1 are denoted to the near right of the
heat map. Metabolites are grouped according to pathway, denoted to the far right of each metabolite. The superscript (a) denotes unable to
determine if methylmalate or hydroxyglutarate in the absence of a chemical standard.
doi:10.1371/journal.pone.0097137.g003

Metabolic Alterations in VISA Strains
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Figure 4. Heat Map of Altered Metabolites in the VISA, SG-R, Versus its Parent VSSA, SG-R and the revertant VSSA, SG-rev. Heat map
displaying the 12 metabolites whose abundance was significantly altered in the VISA isolate, SG-R compared against the parent VSSA, SG-S. Changes
in abundance are indicated by color coding with red indicative of increases in mean intracellular abundance relative to the baseline (defined by the
abundance in SG-S) and blue indicative of decreases in intracellular abundance on a log (2) scale. Specific p-values for the comparison of SG-R versus
SG-S are denoted to the near right of the heat map. Metabolites are grouped according to pathway, denoted to the far right of each metabolite.
Metabolites 1–7 reversed directionality in the revertant isolate (SG-rev) indicating a link to vancomycin resistance. Metabolites 8–12, however, did not
reverse in SG-rev and are separated by a row to denote this difference. The superscript (a) denotes unable to determine if methylmalate or
hydroxyglutarate in the absence of a chemical standard.
doi:10.1371/journal.pone.0097137.g004

Figure 5. Heat Map of Metabolites In Which Alterations in Intracellular Abundance was Linked to VISA-type Resistance. Heat map
displaying the 7 metabolites whose abundance was significantly altered in the VISA isolates from both series (SG-R and JH2) compared against the
parent VSSA isolates (SG-S and JH1) and reversed directionality in the revertant, SG-rev, indicating a link to the vancomycin resistance phenotype. Of
these seven metabolites, all but one (aminoadipate) changed in a similar fashion in both VISA isolates compared against the parent VSSA isolates.
Changes in abundance are indicated by color coding with red indicative of increases in mean intracellular abundance relative to the baseline (defined
by the abundance in SG-S) and blue indicative of decreases in intracellular abundance on a log (2) scale. Specific p-values for the comparison of SG-R
versus SG-S are denoted to the near right of the heat map. The superscript (a) denotes unable to determine if methylmalate or hydroxyglutarate in
the absence of a chemical standard.
doi:10.1371/journal.pone.0097137.g005
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profiles of these isolates segregated according to resistance on both

principal component analysis and hierarchical cluster analyses.

Additional studies will be required to more fully characterize the

complement of metabolic changes associated with VISA-type

resistance, particularly in isolates with other resistance-conferring

mutations (e.g. graRS, walKR, rpoB and pp2C), as well as their

mechanistic significance [2]. However, it is interesting that despite

differences in the number of altered metabolites, both isolate series

showed alterations in intermediates of the urea cycle, TCA cycle

and pentose phosphate pathway. It is also of interest to note that

citrulline and aminobutanoate, the two metabolites whose

intracellular abundances were most increased and decreased,

respectively, are both intermediates of the urea cycle, which

generates substrates that may feed pyrimidine synthesis, which has

been linked to cell wall metabolism [22,23]; and arginine

metabolism, which has also been implicated in the unique ability

of USA300 S. aureus strains to survive the acidic environment of the

skin [24].

The current study thus provides unexpected evidence of a

specific link between alterations in core metabolism and the VISA

phenotype. The metabolic pathways involved, the specific ways in

which they are altered, and whether/how those alterations may

support vancomycin resistance remain to be explored. The

discovery of other metabolic changes apparently dissociated from

vancomycin resistance more broadly highlights a generally

unrecognized class of physiologic changes associated with the

acquisition and/or evolution of antibiotic resistance and/or

adaptation to the host environment.

Supporting Information

Figure S1 Box-plot of the distribution of normalized
data for the SG series. A box-plot (A) of the distribution of the

normalized data for the SG series show that, despite the means

being normalized, within each group the means are different and

batch effects persist. To adjust for unequal means and batch effects

within groups we centered the data (B) so all samples have the

same means.

(PDF)

Figure S2 Box-plot of the distribution of normalized
data for the JH series. Box plot (A) of the distribution of the

normalized data for the JH series similarly shows that despite

normalization, within each group the means are different. Box plot

(B) shows the distribution after centering the data.

(PDF)

Figure S3 Summary statistics for all analyses per-
formed using hierarchical mixture modeling. (A) Displays

the output summary statistics, including minimum, quartiles,

maximum, mean, variance and coefficient of variance (CV) from

the analysis of the 72 named metabolites in isolates JH1 (WT1-12)

and JH2 (M1-12). Notice that the overall distributions of the

metabolites are very similar across individuals and groups. (B)
Show the same output summary statistics from analysis of the 72

named metabolites in isolates SG-S versus SG-R and SG-R versus

SG-rev.

(DOCX)

Figure S4 Metabolomic comparisons of isogenic VSSA
(SGS, SG-rev, JH1) and VISA (SG-R, JH2) strains
demonstrate unique and specific metabolic changes.
Schematic of data output from a representative LC-MS analysis of

each isolate. Data correspond to individual metabolites represent-

ed by individual points on a three dimensional axis where the x-

axis denotes chromatographic retention time in minutes (RT), z-

axis denotes accurate mass in atomic mass units (mass) and y-axis

denotes peak height in total ion counts, which can be used as an

estimate of abundance (abundance). 186 unique metabolites were

detected and quantified in SG-S (blue dots), compared against

228 in SG-R (red dots) and 220 in SG-rev (dark blue dots).
A total of 164 metabolites were common to all three isolates in

three independent experiments.

(TIF)

Figure S5 Heat map displaying the 11 metabolites
whose abundance was significantly altered on SAM
analysis (. 0.25-fold, FDR , 1) in the VISA, SG-R
compared against the parent VSSA SG-S, and reversed
directionality in SG-rev. Of these eleven metabolites, ten were

significantly altered in a similar direction in the VISA isolate JH2

compared against its parent VSSA JH1. Changes abundance are

indicated by color coding with red indicative of increases in mean

intracellular abundance relative to the baseline (defined by the

abundance in SG-S) and blue indicative of decreases in

intracellular abundance on a log (2) scale. Bold font denotes the

six metabolites whose abundance was also significantly altered in

both VISA isolates on hierarchical mixture model analysis.

(TIF)

Table S1 List and characteristics of the 164 ‘‘core’’
metabolites (including 72 identified) in isolates SG-S,
SG-R and SG-rev. Superscript (a) denotes Retention Time (RT),

(b) denotes Positive Mode (POS) versus Negative Mode (NEG), (c)

denotes Molecular Feature Extraction (MFE), which extracts

chromatographic peaks by molecular features versus Find by

Formula (FBF) which extracts peaks by chemical formula.

Superscript (d) denotes metabolites confirmed by chemical

standard (stnd). All other identifications are provisional identifica-

tions made by matching against a database of accurate mass-

retention time pairs (mass-matching, MM), (e) denotes univariate

statistical analysis of changes (. 0.25 – fold) in mean intracellular

abundance by hierarchical modeling, adjusted by Benjamini-

Hochberg procedure, (f) denotes bivariate analysis of changes (.

0.25 – fold) in intracellular abundance and variance by

hierarchical modeling, adjusted by Benjamini-Hochberg proce-

dure. Significance analysis of microarrays (SAM) analysis of

changes in intracellular abundance (. 0.25-fold, FDR , 1%),

significant metabolites denoted by an asterix (*). Bold font is used

to indicate those metabolites whose abundance was altered in a

similar fashion in the VISA isolate from both series (SG-R and

JH2) and subsequently reversed in the revertant, SG-rev, as shown

in Figure 4.

(PDF)

Table S2 List and characteristics of the 72 identified
metabolites for isolates JH1 and JH2. Superscript (a) denotes

Retention Time (RT), (b) denotes Positive Mode (POS) versus

Negative Mode (NEG), (c) denotes Molecular Feature Extraction

(MFE), which extracts chromatographic peaks by molecular

features versus Find by Formula (FBF) which extracts peaks by

chemical formula. Superscript (d) denotes metabolites confirmed

by chemical standard (stnd). All other identifications are

provisional identifications made by matching against a database

of accurate mass-retention time pairs (mass-matching, MM), (e)

denotes univariate statistical analysis of changes (. 0.25 – fold) in

mean intracellular abundance by hierarchical modeling, adjusted

by Benjamini-Hochberg procedure, (f) denotes bivariate analysis of

changes (. 0.25 – fold) in intracellular abundance and variance by

hierarchical modeling, adjusted by Benjamini-Hochberg proce-

dure. Significance analysis of microarrays (SAM) analysis of

changes in intracellular abundance (. 0.25-fold, FDR , 1%),
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significant metabolites denoted by an asterix (*). Bold font is used

to indicate those metabolites whose abundance was altered in a

similar fashion in the VISA isolate from both series (SG-R and

JH2) and subsequently reversed in the revertant, SG-rev, as shown

in Figure 4.

(PDF)

Table S3 Characteristics and ‘‘raw’’ (biomass-adjusted
and normalized to baseline) ion counts of the 164 ‘‘core’’
metabolites (including 72 identified) in isolates SG-S,
SG-R and SG-rev. Superscript (a) denotes Retention Time (RT),

(b) denotes Positive Mode (POS) versus Negative Mode (NEG), (c)

denotes Molecular Feature Extraction (MFE), which extracts

chromatographic peaks by molecular features versus Find by

Formula (FBF) which extracts peaks by chemical formula.

(XLSX)

Table S4 Characteristics and ‘‘raw’’ (biomass-adjusted
and normalized to baseline) ion counts of the 72
identified metabolites for isolates JH1 and JH2. Super-

script (a) denotes Retention Time (RT), (b) denotes Positive Mode

(POS) versus Negative Mode (NEG), (c) denotes Molecular Feature

Extraction (MFE), which extracts chromatographic peaks by

molecular features versus Find by Formula (FBF) which extracts

peaks by chemical formula.

(XLSX)
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