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Abstract

In transcriptomics research, design for experimentation by carefully considering biological, technological, practical and
statistical aspects is very important, because the experimental design space is essentially limitless. Usually, the ranges of
variable biological parameters of the design space are based on common practices and in turn on phenotypic endpoints.
However, specific sub-cellular processes might only be partially reflected by phenotypic endpoints or outside the associated
parameter range. Here, we provide a generic protocol for range finding in design for transcriptomics experimentation based
on small-scale gene-expression experiments to help in the search for the right location in the design space by analyzing the
activity of already known genes of relevant molecular mechanisms. Two examples illustrate the applicability: in-vitro UV-C
exposure of mouse embryonic fibroblasts and in-vivo UV-B exposure of mouse skin. Our pragmatic approach is based on:
framing a specific biological question and associated gene-set, performing a wide-ranged experiment without replication,
eliminating potentially non-relevant genes, and determining the experimental ‘sweet spot’ by gene-set enrichment plus
dose-response correlation analysis. Examination of many cellular processes that are related to UV response, such as DNA
repair and cell-cycle arrest, revealed that basically each cellular (sub-) process is active at its own specific spot(s) in the
experimental design space. Hence, the use of range finding, based on an affordable protocol like this, enables researchers to
conveniently identify the ‘sweet spot’ for their cellular process of interest in an experimental design space and might have
far-reaching implications for experimental standardization.
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Introduction

Design for experimentation plays an important role in

transcriptomics research. There are several aspects that need to

be considered: biological, technological, statistical and practical.

Statistical principles for experimental design are well established

[1–3] and usually applied. The technological, e.g. choice of

(microarray) platform, or practical, e.g. available budget, consid-

erations are of great importance, but depend mostly on the

individual experimenter’s setting. This leaves biological aspects,

such as those related to time, dose and space, which are frequently

intuitively considered or based on common practice. In molecular

biology based research, common practices in perturbation

experiments are by tradition regularly tuned to phenotypic

observations, such as the apoptosis, cellular responses, or cell

growth. This could be based on the assumption that these

measurable phenotypic endpoints coincide with changes in gene

expression that are directly relevant to the mechanism under

study, which might not always be the case. In addition, phenotypic

endpoints might (partially) originate from other biological

processes, such as general stress, than the biological mechanism

under study. As a consequence, the relevant genetic processes

could occur at other experimental ranges than those investigated,

causing these significant processes to be missed or polluted by non-

specific stress processes. Hence, the selection of optimal experi-

mental ranges within the design space should be an integral part of

transcriptomics experimentation.

This holds especially true for time-series experiments, for

instance in toxicogenomics exposure studies [4,5]. Selecting a dose

that is too high or low or a time point that is too early or late will

have a profound effect on the insights that can be gained. In the

recent past, we came across such an issue in a transcriptomics

study regarding the role of p53 in response to UV-C exposure of

Mouse Embryonic Fibroblasts (MEFs) [6]. The applied dose and

time-scale were based on traditional experiment settings from the

literature and the phenotypic endpoint apoptosis. Over one third
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of all genes were found to show differential expression (DEGs). In

depth analysis revealed that this was a result of a general stress

response, rather than a specific UV-C response [7]. There are

other experiments with high numbers of DEGs that might suffer

from similar problems. For example, in these two studies of UV

exposure, one on cardiac cells [8] and one on human skin [9],

about 40% of all genes were found to be differentially expressed.

Any experimental design space in a mechanism-oriented

transcriptomics experiment usually has multiple axes, e.g. time,

dose, space, etc. (Figure 1A) and is in essence limitless. Given that

technological and practical considerations restrict the number of

experimental samples, it is essential to select parameter ranges that

yield the relevant, most important information with respect to the

biological question under study. As most biological processes are

modular and each module often has its own optimal spot in the

design space, there is a demand for a rather strict biological

question for each experiment. Also, some responses are induced

quickly after the perturbation and last shortly, whereas others will

be different in these respects. Given all these uncertainties, it is

quite impossible to upfront guess the optimal spot, i.e. ‘sweet spot’

(as coined in [10]) for a transcriptomics experiment in the total

design space. Small-scale range finding tests can be helpful to

discover an optimal experimental setup for a specific biological

study.

Here, we provide a proof-of-concept range finding protocol for

transcriptomics by determining the optimal dose and time ranges

for studying several specific cellular processes in response to UV

exposure. We show the value of executing a transcriptome-wide

range-finding test before designing an in depth transcriptomics

study, as was previously suggested [7,10,11]. Our approach is easy

to set up, cost-effective, and covers a substantial part of the design-

space. It can be used as blueprint protocol for designing expensive

omics experiments. Both an in-vitro and an in-vivo case study are

presented, emphasizing the broad applicability of the approach.

Materials and Methods

Ethics Statement
This study was agreed upon by the Animal Experimentation

Ethical Committee of the RIVM in Bilthoven, the Netherlands

under permit number 201200128. Animal handling in this study

was carried out in accordance with relevant Dutch national

legislation, including the 1997 Dutch Act on Animal Experimen-

tation.

Biopsies were taken under Isoflurane anesthesia, at the end of

the study animals were euthanized by cervical dislocation and all

efforts were made to minimize suffering.

In-vitro UV exposure experiment
Primary Mouse Embryonic Fibroblasts (MEFs) were isolated

from E13.5 embryos in a C57BL/6 background (backcrossed for

more than F8 generations). MEFs were cultured in Dulbecco’s

modified Eagle medium (Invitrogen, Breda, The Netherlands)

containing 10% fetal bovine serum (Biocell, Rancho Dominguez,

CA), 1% nonessential amino acids (Invitrogen, Breda, The

Netherlands), penicillin (0.6 mg/ml), and streptomycin (1 mg/ml)

at 37uC and under 5% CO2, 3% O2 conditions. The experiment

was performed with early-passage MEFs (prior to passage five).

MEFs were expanded and plated at 3.56105 cells per 6-cm plate.

Six hours later when almost all cells are in G1 phase [12], cells

were washed with phosphate-buffered saline and exposed to UV-C

light at various doses (0.25, 0.75, 2.25, 6.7, 20.0 J/m2). Control

samples were mock treated. At various time points after treatment

(10 mins, 30 mins, 1 hrs, 3 hrs, 6 hrs, 12 hrs, 24 hrs, 48 hrs),

MEFs were rinsed with phosphate-buffered saline and collected in

350 ml RLT buffer (RNeasy mini kit). An overview of all samples is

shown in Figure 1B. Total RNA was isolated using the RNeasy

mini kit (Qiagen, Valencia, CA). RNA quality was assessed with

the Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA).

In-vivo UV exposure experiment
All mice were males of 7–10 weeks of age and at least 10 times

backcrossed in SKH hairless strain. Mice received normal feed

and water ad libitum. Mice were UV-B exposed at various doses

(90, 180, 360, 450, 720 J/m2) in a chamber containing Phillips

TL12 lamps. Control mice were mock treated. At various time

points after treatment (1, 3, 6, 9, 12, 24 hr) both treated and

untreated mice were anaesthetized by isoflurane and 1.5 mm

biopsies were sampled from the back by punching a half moon

shape on folded skin. Biopsies were immediately snap frozen in

liquid nitrogen and stored at 280uC until further processing.

Total RNA was isolated as previously described in [13]. At 48 hrs

after treatment all mice were euthanized by cervical dislocation

after biopsies were taken. An overview of all samples is shown in

Figure 1C. RNA quality was assessed with the Bioanalyzer 2100

(Agilent Technologies, Palo Alto, CA).

Figure 1. Experimental design space. Any experiment is designed in a design space defined by variable experimental parameters. A: a
visualization of a hypothetical experiment in a design space defined by three variable experimental parameters. B: The in-vitro range-finding
experimental setup with two variable experimental parameters: pulse exposure of MEFS by UV-C and recovery time after exposure. C; The in-vivo
range-finding experimental setup with two variable experiment parameters: pulse exposure of mouse skin by UV-B and recovery time after exposure.
Each dot represents a sample. Black dots indicate failed samples.
doi:10.1371/journal.pone.0097089.g001
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Microarrays with custom Mouse Roche NimbleGen
platform

Gene expression levels of the mouse samples were analyzed with

a 126135 k Mus. musculus microarray (Custom design GEO

Platform accession number GPL17736) containing 24,302 genes

based on NCBI-GeneID. Per RNA sample, 200 ng total RNA was

amplified according to the Agilent LRILAK kit manual (Agilent

technologies). Amino-allyl modified nucleotides were incorporated

during the aRNA synthesis (2.5 mM rGAU (GE Healthcare),

0.75 mM rCTP (GE Healthcare), 0.75 mM AA-rCTP (TriLink

Biotechnologies). Synthesized aRNA was purified with the

E.Z.N.A. MicroElute RNA Clean Up Kit (Omega Bio-Tek).

Each individual aRNA test sample was labeled with Cy3 and a

reference sample, which was made by pooling equimolar amounts

of RNA from either all in-vitro or in-vivo test samples, was labeled

with Cy5. 5 mg of aRNA was dried down and dissolved in 50 mM

carbonate buffer pH 8.5. Individual vials of Cy3/Cy5 from the

mono-reactive dye packs (GE Healthcare) were dissolved in 200 ml

DMSO. To each sample, 10 ml of the appropriate CyDye

dissolved in DMSO was added and the mixture was incubated

for 1 h. Reactions were quenched with the addition of 5 ml 4 M

hydroxylamine (Sigma-Aldrich). The labeled aRNA was purified

with the E.Z.N.A. MicroElute RNA Clean Up Kit. The yields of

aRNA and CyDye incorporation were measured on the Nano-

Drop ND-1000. For the in-vivo experiment 3 samples failed the

quality requirements and were discarded for further processing.

For both the in-vitro and in-vivo experiment each hybridization

mixture was made up from a 1.1 mg test (Cy3) and 1.1 mg

reference (Cy5) sample. Samples were dried and dissolved in 2 ml

water. The hybridization cocktail was made according to the

manufacturer’s instructions (Roche NimbleGen Arrays User’s

Guide – Gene Expression Arrays Version 5.0, Roche NimbleGen).

5.2 ml from this mix was added to each sample. The samples were

incubated for 5 min at 65uC and 5 min at 42uC prior to loading.

Hybridization samples were loaded onto the microarrays and

hybridized for 18 hours at 42uC with the Roche NimbleGen

Hybridization System 4. Afterwards, the slides were washed

according to the Roche NimbleGen Arrays User’s Guide – Gene

Expression Arrays Version 5.0 and scanned in an ozone-free room

with a DNA microarray scanner G2565CA (Agilent Technolo-

gies). Feature extraction was performed with NimbleScan v2.5

(Roche NimbleGen). The array data have been deposited in

NCBI’s Gene Expression Omnibus (GEO) and is accessible

through GEO Series accession numbers GSE50930 for the in-vitro

experiment and GSE51348 for the in-vivo experiment

Microarray data processing
The quality of the microarray data was assessed via multiple

quality-control checks, i.e. visual inspection of the scans, testing

against criteria for foreground and background signals, testing for

consistent performance of the labeling dyes, checking for spatial

effects through pseudo-color plots, and inspection of pre- and post-

normalized data with box plots, ratio-intensity (RI) plots and PCA

plots. All arrays passed the minimal criteria for quality assessment

of the microarray data and were used in the analyses.

Handling, analysis and visualization of all data was performed

in R (http://cran.r-project.org/) using the Bioconductor (http://

www.bioconductor.org/) packages limma and maanova.

Log2 transformed data was normalized within-array using

LOESS on an MA-plot of the Cy3 test sample data vs. the

corresponding Cy5 reference sample data. Subsequently, the

robust multi-array average (RMA) algorithm was performed on

only the normalized Cy3-sample data for between-array normal-

ization through summarization of the intensity values of the probes

in a NCBI-GeneID probe set.

A mixed linear model was fitted on the in-vivo data to correct for

the effects of the individual mice on the gene expression levels.

These normalized expression values were used for the

generation of log2 ratios of zero dose points in time compared

to the dose and time point zero. These log2 ratios were used to

filter out the genes with a log2 FC .1 in the zero dose range from

the whole data set.

The filtered data sets were used to make log2 ratios for the dose

points per time point compared to the zero dose point of that time

point. These log2 ratios were tested against 64 manually selected

different gene sets (Table S5) for enrichment using the geneSetTest

function from the Bioconductor package limma. The resulting p-

values were corrected for false discoveries using the Benjamini-

Hochberg procedure. Corrected p-values were used to generate

experiment diagrams per gene set. These diagrams were colored

using an adaptive color key based on the lowest corrected p-values

found in the gene set. If the lowest corrected p-value was above 0.3

the coloring ranged from 0.3 (red) to 0.5 (grey). If the lowest

corrected p-value was below 0.3 the coloring ranged from pmin

(red) to pmin + pmax (grey), where pmin is the lowest corrected p-

value, and pmax depended on the experiment. Pmax was set to 0.2

in the in-vitro experiment and to 0.01 in the in-vivo experiment.

‘Sweet spots’ were defined as the areas in the diagrams that were

colored red.

Dose-response relations for each gene per gene set were

generated from the filtered data sets and tested using Pearson

correlation. Absolute correlations .0.8 were marked as relevant.

Genes with no correlations .0.8 in any of the time points were

removed from Tables 1 and 2 and Tables S3 and S4. All time

points were visualized in the tables and the time points per gene set

that contained a ‘sweet spot’ in any dose were marked with grey.

Results

Setting the experimental parameters
Before looking for the location of the ‘sweet spot’ for follow-up

UV experiments in a design space defined by variable parameters

(Figure 1A), we also evaluated the non-variable experimental

parameters. As a consequence, we choose optimized standard

values of important constant experimental parameters associated

with this design space based on current knowledge. For the in-vitro

study, the oxygen level, under which the MEFs were cultured, was

lowered from 21% to 3% [14] and the cells were synchronized

before the start of the experiment [12]. As no information was

available to determine several of the in-vivo constant experimental

parameters, we performed a number of tests that determined the

optimal biopsy punch diameter size and RNA isolation protocol

[12], as well as the maximum number of subsequent biopsy

sampling from the same animal. For the latter, the tests indicated

that six biopsies can be taken over time from one animal, without

these biopsies affecting each other (Data S1). These optimized

parameters set the constant parameter values for the experiments.

This left us with both an in-vitro and an in-vivo experimental design

space defined by two variable parameters: UV dose and recovery-

time-after-exposure.

Defining the experimental design space
To determine the optimal spot for any specific biological process

in a given experimental design space defined by relevant variable

experimental parameters, this design space needs to be explored.

Such an exploration can be done by using small-scale range-

finding transcriptomics experiments that identify transcriptome-
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wide gene expression in the relevant section of the design space. As

proof-of-concept, we performed two such range-finding experi-

ments with our two variable parameters: UV-exposure dose and

recovery time-after-exposure (Figure 1B and C). For this both in-

vitro UV-C exposed MEFs, as well as in-vivo UV-B exposed mouse

skin were used. The range-finding approach that we suggest here

aims to explore the design-space at a high density without replicate

sampling. The in-vitro range-finding experiment consisted of 48

samples from synchronized MEF cell-cultures grown under a 3%

oxygen level after exposure to various doses of UV-C exposure

and different recovery periods (Figure 1B). The in-vivo range-

finding experiment consisted of 60 samples from mouse skin-

biopsies after exposure to various doses of UV-B exposure and

different recovery periods. To estimate the inter-individual

variation, two mice were used per UV-B dose and a control

sample was taken from each mouse before exposure. Samples at

the remaining time points were collected alternating between mice

with the same exposure dose (Figure 1C). Both UV-B and UV-C

induce p53 through similar DNA damage response. UV-C was

selected as radiation source for in-vitro as this is common practice

for in-vitro studies on UV and p53 [6,12,15] whereas UV-B is

commonly used in in-vivo studies [16–18]. In addition, UV-C

seems to be too harmful for in-vivo use.

Both the in-vitro and in-vivo timeframes and UV-doses are based

on a range of p53 protein accumulation and phosphorylation and

on apoptosis studies in previous experiments on wild type p53+/+
MEFs or mice. For the in-vitro time range we used earlier in-vitro

experiments that showed p53 accumulation at early time points

(3 hr), peaking around 12 hours and returning to normal 24 hours

after irradiation. In addition, the apoptosis response is shown to

occur from 8–12 hours, peaking around 16–20 hours and

continuing to increase until 48 hours after irradiation. We

enriched the early time points since gene expression often

precedes these phenomena and because we observed a clear

change at t = 6 in previous gene expression studies [12,19,20]. The

in-vivo time range was chosen based on previous in-vivo experiments

in p53+/+ mice (hairless). These showed p53 accumulation and

apoptosis at 6 and at 24 hours after UV exposure [15]. The

selection of the in-vitro dose points was based on experiments that

studied the effect of different doses in-vitro on p53 accumulation,

phosporylation and apoptosis [6,19,20]. The most and at the same

time highest dose studied is 20 J/m2. Based on earlier gene

expression range studies we made the observation that 20 J/m2

was high (no cell growth). A recent study [20] shows that 37% of

cells survive at a UV dose of 5 J/m2. Lower doses were selected

since gene expression is more sensitive than endpoint apoptosis/

cell survival. The in-vivo dose point selections were based on the

minimal erythemal dose (MED, appearance of red skin) for

p53+/+ mice that was 900 J/m2. Accumulation of p53 is observed

24 hours after UV exposure at a dose of 300 J/m2 [15]. Stepwise

doses were selected lower and higher. Here, lower doses were

included as gene expression may be more sensitive than p53

staining or caspase 3 staining of the skin.

Table 1. In-vitro example of dose-response correlations of individual genes per time point.

Nucleotide Excision Repair

gene 10 h 30 h 60 h 180 h 360 h*

Rfc3 0.82 0.8

Ercc2 20.93

Pole3 0.88 0.95

Cetn2 0.88 0.94

Pold3 20.85

Pold4 0.81

Mnat1 20.97 20.86

Xpa 0.88

Rbx1 0.87

Gtf2h2 20.85

Ercc5 0.82 0.88

Gtf2h1 0.82

Rfc4 0.91

Rfc5 0.89

Pold2 20.88

Rad23b 0.88

Ercc4 0.87

Ercc8 0.85

Gtf2h5 0.83

Ercc1 20.82

Xpc 0.82

Per time point of the in-vitro range-finding experiment, dose-response correlations are depicted for each gene of the KEGG nucleotide excision repair gene set that is
found at least once significantly correlated (.0.8). Columns with an ‘‘*’’ indicate the time points in which at least one sample was found significantly differential
expressed in the gene-set enrichment (Figure 4).
*location of the sweet spot.
doi:10.1371/journal.pone.0097089.t001
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Assessing the RNA yield
In previous studies [6,7], we observed large effects on the

transcriptome caused by strong stress perturbations, which were

reflected by substantial changes in the rRNA and mRNA yields

(Figure 2A). We therefore assessed the total RNA yields in both

experiments (Figure 2). In the in-vitro experiment, unexposed cell

growth causes an about six-fold increase in total RNA yield per

culture plate between the first and last time point. Here, a clear

dose-related effect was present: at low UV-C doses there is a slight

additional increase in total RNA yield as compared to the

unexposed control sample and the increase in total RNA yield is

reduced until the point of arrest at the highest UV-C dose

(Figure 2A). In comparison, the previous in-vitro experiment with

high oxygen level and 20 J/m2 UV-C exposure showed a decrease

in total RNA yields over recovery time, most likely caused by cell

death and/or systemic RNA degradation. In contrast, there was

no noticeable dose-related effect on total RNA yield in the in-vivo

experiment (Figure 2B)

A rRNA/mRNA ratio that changes significantly during an

experiment can severely hamper data analysis as input total RNA

consists mostly of rRNA [12]. To approximate relative mRNA

levels, we used the aRNA levels after linear amplification via in-

vitro transcription (IVT). In both experiments the IVT amplifica-

tion was started with the same amount of RNA, effectively

normalizing the existing differences in total RNA yields. Three

RNA samples in the in-vitro experiment did not amplify properly

and were excluded from further analysis (Figure 1C and Table

S1B). In the previous in-vitro UV exposure experiment, there was a

slight decrease in mRNA level over recovery time (Figure S1A). In

the current in-vitro experiment there seems little change in mRNA

level (Figure S1A). Although in the in-vivo experiment there were

differences in mRNA levels, there seems no relation to the UV

dose (Figure S1B). Combining the total RNA and mRNA

estimations indicates that the rRNA/mRNA ratio was not

substantially changed in these experiments.

Restricting the experimental design space by estimating
differentially expressed genes

In experimental range finding, the aim is usually to detect those

ranges at which specific responses to a given perturbation are

induced. A high number of differentially expressed genes (DEGs) is

an indication of a perturbation range that induces non-specific

responses. As such, we determined the DEGs in both experiments.

Log2 fold change (FC) ratios of normalized gene-expression values

compared to the dose and recovery time point zero were generated

for each point in our experimental design spaces. In the in-vivo

experiment an additional correction for individual mouse effects

was applied. An arbitrary cut-off of log2 FC.1 was used to

estimate the number of genes in the transcriptome with a changed

expression. Visualizing the numbers of DEGs in both experimen-

tal design spaces revealed huge differences (Figures 3, Figure S2

and Table S2). If we assume that around 2,000 (,10% of all genes

assessed) or more DEGs are indicative for non-specific responses,

which would be in concordance with yeast [21], it becomes clear

that in the in-vitro experiment any recovery time-point from

12 hours on, will only yield non-specific responses. This might be a

result of the fact that the synchronization of cells at the start of the

experiment begins to collapse due to continuous cell growth [12].

A strong indication is the fact that this effect is quite prominent

even without any UV exposure (Figure 3A, Figure S2A and Table

S2A). It is also clear that the highest dose of 20 J/m2 induces huge

changes in the transcriptome, already after three hours of recovery

time. All the areas of the in-vitro experimental design space with

over 2,000 DEGs are considered unusable to study specific UV-C

responses (Figure 3A, Figure S2A and Table S2A). In contrast, in

the in-vivo experimental design space, the maximum number of

DEGs was about 1,350, which means that using the same

criterion, no restriction in this design space was needed (Figure 3B,

Figure S2B and Table S2B).

Figure 2. Effect of UV exposure on RNA yield. Relative RNA yields for all A: in-vitro and B: in-vivo experimental samples are given as compared to
the RNA yield of the t = 0 sample in each experiment. In A also the RNA yields from a previous in-vitro UV exposure experiment with 21% oxygen,
non-synchronized culture conditions and 20 J/m2 UV-C [6] exposure are presented as reference. The RNA quality of the individual samples was of
good quality with a minimum RIN value of at least 9.1 in the in-vitro experiment and 6.8 in the in-vivo experiment (Tables S1A and S1B).
doi:10.1371/journal.pone.0097089.g002
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Removing genes from baseline cellular processes with
expression changes

Even with all experiment setup efforts towards synchronization

of cells and standardization of protocols, there are still genes that

showed differential gene expression without the perturbation, i.e.

UV dose zero (Figures 3A, 3B, Figures S2A, S2B, Tables S2A and

S2B). As already noted, in the in-vitro experiment this is to be

expected, as cells continue to grow and as such their environment,

to which they respond, changes. In the in-vivo experiment this

phenomenon is less prominent, but still present. Our previous,

unpublished, study (Data S1) showed that for instance genes

related to circadian rhythm show differential expression in-vivo.

Although explicable, the consequence is that any differential

expression of these genes in the experimental design space outside

the zero dose range cannot or at least not exclusively be attributed

to the cellular response associated with the perturbation. In this

analysis we do not want to further explore their role. As such, we

decided to remove these genes with differential non-exposure

‘background’ expression from the data sets altogether. In total,

1,854 and 1,814 (Tables S2A and S2B) UV-unrelated DEGs (FC.

2 in relation to t = 0) were identified in the untreated samples from

the in-vitro and in-vivo data set, respectively and were removed

(Figures 3C, 3D, Figures S2C, S2D, Tables S2C and S2D). The

number of DEGs in the experimental design spaces were

recalculated using the associated untreated sample, which resulted

in 73% of the samples in the in-vitro experiment having less than

300 DEGs, whereas 70% of the samples in the in-vivo experiment

have over 300 DEGs (Figures 3E, 3F, Figures S2E, S2F, Tables

S2E and S2F). There seems to be little overlap over time or dose

between the genes found with FC.2. This effect stays consistent

throughout the filtering steps (Tables S2A–S2F).

Identifying the experimental ‘sweet spot’ in the design
space

Although obvious, the ‘sweet spot’ in any experimental design

space primarily depends on what cellular mechanism the ultimate

experiment is aimed at. In our (restricted) design spaces, all

occurring cellular processes can in principle be evaluated. An

advantageous and more focused way is to explore an experimental

design space using prior knowledge. This can be done by

determining whether the genes known to be involved in a cellular

process of interest have a changed expression as compared to the

onset of the experiment. To substantiate this search, we explored

the design spaces by performing gene-set enrichment analyses for

64 predefined, expert-selected, cellular processes and pathways

retrieved from various commercial or freely available databases

such as KEGG, BioCarta, Metacore, Ingenuity, and so on (Table

S5), combined with an intuitive visualization of the results

(Figure 4, Figures S3 and S4). Also, randomly created pathways

were tested to check whether or not the patterns in the

visualizations are likely be generated by chance, which turned

out not to be the case (data not shown).

In the in-vitro experiment for instance, a set of known genes

(n = 45) of the nucleotide excision repair (NER) pathway, showed

to be most active at one specific spot in the design space: 6 hours

and 2.25 J/m2 UV-C dose (Figure 4A). At other dose-time points

the enrichment of this gene set was not significant. In contrast, in

the in-vivo experiment, NER genes change mostly at 12–48 hours

and 180–720 J/m2 UV-B doses. Compared to NER genes, cell

cycle genes (n = 128) are changed in the in-vitro experiment at an

earlier time and a much higher UV dose (Figure 4A). As can been

construed from the presented examples (Figure 4), each cellular

process, pathway, or collection of genes shows its own preferential

spot in the design space where genes of this process are most

significantly enriched in the high FCs. This indicates the sought

after ‘sweet spot’ for each of those groups of genes to be studied in

the context of the associated cellular process and its involvement in

UV response.

However, as is clear from the examples, some gene sets do show

change in several spots in the experiment design space. This is

most obvious in the in-vivo design space and could be the result of

the fact that a specific gene set is widely used, or too broadly

defined so that it actually represents more than one biological

process. To still enable an informed decision, we zoomed in on the

individual genes of these gene sets. The doses-response (i.e. gene

expression) relation of each gene is an important indicator for the

involvement of a gene in the response to an exposure. Each gene

has a doses-response curve over each time point. The dose-

response correlations were determined per time point for each

gene in a gene set that was still present in the filtered data. (Anti-)

correlations .0.8 indicate a strong relation between the exposure

and the gene-expression (Tables 1, 2, Tables S3 and S4). In the in-

vivo example of NER genes, at the gene set ‘sweet spot’ time point

6 h, 13 genes show a strong correlation. At time point 3 h, only 7

such genes were found, of which only 2 overlapped with those

from time point 6 h (Table 1). Also at 1 h correlated genes are

found, like those at 3 h these could be different sub processes. In

the in-vivo example of the p53 responsive elements, the same

phenomenon occurs in that each time point has a different set of

dose-correlating genes. There are clearly genes that are involved in

an early, middle, or late responses to UV exposure (Table 2).

Depending on the ever advancing knowledge of these genes, an

interpretation can be made as to at what time point the genes and/

or cellular processes of interest are active. By presenting the dose-

response relation of individual genes, biologist have a tool to

qualitatively make a choice where in the experimental design

space they want to perform their ultimate experiment, focused on

a specific gene or biological process.

Discussion

This study addresses several issues that are involved with design

for transcriptomics experimentation. To find the best spot in an

experimental design space defined by the variable parameters, we

developed a protocol that allows for determining the ranges within

the experimental design space where relevant responses of the

Figure 3. Number of differentially expressed genes. A: The number of differentially expressed genes (DEGs) for each in-vitro experimental
sample as compared to the t = 0 samples applying a gene-expression ratio cut off of log2 FC.1. B: As A for the in-vivo experiment. The colors
represent the number of DEGs according to the schemes in the middle. The blue lines in the middle schemes represent the number of samples with a
given number of DEGs for the in-vitro (upper) and in-vivo (lower) experiment. C: The number of DEGs for the in-vitro experimental samples with less
than 2.000 DEGs as compared to the t = 0, applying a gene-expression ratio cut off of log2 FC.1, after removal of the genes with non-relevant
differential expression (i.e. genes that were differentially expressed in any untreated sample). D: As C for the in-vivo experiment. E: The number of
DEGs for the in-vitro experimental samples compared to the associated dose = 0 sample applying a gene-expression ratio cut off of log2 FC.1. F: As E
for the in-vivo experiment. The colors represent the number of DEGs according to the schemes in the middle. The blue lines in the middle schemes
represent the number of samples with a given number of DEGs.
doi:10.1371/journal.pone.0097089.g003
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process under study occur. Instead of using phenotypic markers,

we examined gene expression directly, thereby avoiding the

potential problem that relevant transcriptome changes often

precede phenotypic changes as well as that phenotypic changes

can be a combined outcome of multiple, including non-relevant

biological processes. Our proof-of-concept protocol can be

summarized as follows: 1) frame a specific biological question

with an associated gene-set; 2) define a wide-ranged sample space

and sampling scheme without replication; 3) obtain transcrip-

tomics data and estimate DEGs; 4) restrict the experimental design

space by eliminating areas with potentially stress-related and noise-

related DEGs; 5) determine the experimental ‘sweet spot(s)’ for the

biological question using the selected gene set in gene set

enrichment analysis and in dose-response correlation analysis for

each point in the design space.

By this pragmatic approach, the complex modularity of

biological processes is taken into account by the possibility of

using gene sets that comprise different levels of organization.

Larger processes can be investigated, but also smaller sub-

processes can be checked. Crucial here is that different cellular

processes will occur at different ranges in the design space, so the

processes of interest must be well defined to find the right spot in

the design space. For instance, we found the spots in our in-vivo

experimental design space where NER occurs, to be much later in

time than those with extrinsic apoptosis (Figure 4). In the overview

of all tested 64 processes (Figures S3 and S4), most spots show

relevant transcriptome changes for one or more processes in the

design space. This is in line with the fact that at each spot specific

cellular processes are occurring.

There are also instances where for one particular process many

spots in the design space show transcriptome changes. For

instance, the process Cell Cycle showed significant transcriptome

changes almost throughout the whole in-vivo experiment design

space (Figure 4B). This could imply that the 128 genes of this gene

set are not defined specific enough and need to be further

subdivided in gene sets that are indicative of cell-cycle arrest or cell

cycle initiation etc. Another example is the gene-set p53 responsive

elements. Given the important role p53 plays in many cellular

processes, it is to be anticipated that range-finding with this gene

set will result in many potentially interesting spots in the design

space. Again, using smaller subsets or exploring the behavior of

individual genes as proposed in our protocol, might overcome this

issue. However, we have found that when gene sets become too

small (below 20 genes), the removal of single genes, for instance

due to the application of different filtering steps, can render the

results for such a set unstable.

Considering the experimental design, one might argue that the

experimental setup of this study could be improved upon. For

instance, the use of a common reference sample pool to co-

hybridize with the samples instead of directly comparing against

the zero dose for the same time point and the time point zero for

the mock-treated samples. This approach can result in inflated

technical variation [22]. However, due to the exploratory nature

of this study, we wanted to be able to compare all samples with one

another. This approach kept all options open. The initial choices

for our design ranges were derived from common practice. In

hindsight, these choices seem to have been sufficient for our goals,

as we obtained a good insight in the relevant ranges for the

processes we want to study. Only the high dose, late in time

combinations for the in-vitro study might have been left out to save

on costs as these gave uninterpretable results as was expected

based on the known biology.

The used gene set test is an important component of the

approach presented. It is based on permutation of genes and

assumes that the genes in the set are no more correlated on

average than randomly chosen genes. It is well known that this

assumption is likely to be violated, as inter-gene correlations are

likely to occur. Hence, we would preferably have used a

methodology that takes these correlations into account. However,

this would require biological replicates [23,24], which we do not

have in these range finding studies. If the assumption is violated,

then the gene set test results in p-values that are generally too low,

and the test results may therefore be over-optimistic. Yet, in this

study we are not interested in determining an exact p-value.

Rather, we are screening for ranges in which certain pathways are

most activated. The gene set test results are sufficient to define

such ranges, and exact p-values can be calculated in the follow-up

study with biological replication.

Altogether, these findings do underline the importance of

defining the exact biological question before the execution of a

study. This would argue in favor of hypothesis-driven rather than

data-driven research. Also, the approach often used by molecular

biologists to put as many questions, as they possibly can come up

with, in one (combined) experiment is not suitable for transcrip-

tomics research. Often the argument of costs is employed as an

excuse not to perform range-finding studies. The small-scale range

finding studies proposed here are relatively cheap, as no

replications are used and the costs for these types of experiments

are still decreasing. In fact, this approach could in essence also be

done by quantitative PCR only using the genes of interest. Vice

versa, one could argue that an experiment executed at an less

informative range will be more costly in the end. Of course, the

amount of samples used here might be equal to the size of a simple

study and might not be cost-effective in comparison. Again, the

use of a qPCR based approach might be more interesting in this

case. Also, these small studies are often part of a larger research

strategy, for which it will be useful to run small-scale range finding

studies upfront.

Previous studies also recommended the use of range finding for

the selection of experiment sampling points for transcriptomics

[25,26]. However, these methods were focused solely on the

discovery of optimal time points and not on any other axes in

experiment design space, such as dose. Others have looked at the

phenotypic level [27] and might therefore, as discussed before, run

a greater risk of being outside the optimal ranges on the

transcriptomics level. We are convinced that our proposed

approach can help in advancing transcriptomics experiment

design and thus improving the insights in specific responses of a

system to perturbations by avoiding non-specific responses.

Given the clear nature of the results presented here and the

common-sense rationale that is behind it, we anticipate that range-

finding tests will become general practice in transcriptomics

experimentation in the near future. To support this, we suggest

that the results of all range-finding studies are deposited in world-

wide data repositories, so other researchers can use these data to

determine for their specific cellular process of interest where they

should design their experiment. At the same time it could provide

means by which researchers can see in which -unexpected-

Figure 4. Cellular process specific responses in the experiment design space. For each specified gene set, the spots that potentially are a
so-called ‘sweet spot’ in the experimental design space are indicated (red). The sweet spots are identified as those samples that have the lowest p-
values within the defined range in a gene set enrichment analysis.
doi:10.1371/journal.pone.0097089.g004
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experimental setups, i.e. cell state or response to perturbations,

their favorite cellular process or gene is involved. Obviously, this

only applies if the experimental setup is (near) identical. As such,

range finding might even lead to more experimental standardiza-

tion of specific research domains.

Supporting Information

Figure S1 Effect of UV exposure on mRNA yield. Relative

mRNA yields for all in-vitro (A) and in-vivo (B) experimental samples

compared to the mRNA yield of the t = 0 sample in each

experiment. The RNA yields from a previous in-vitro UV exposure

experiment are presented as reference (A).

(PDF)

Figure S2 Number of differentially expressed genes
over time. Profile plots over time of the number of DEGs for

each dose in both experiments (See also Table S2).

(PDF)

Figure S3 Cellular process specific responses in the in-
vitro experiment design space. The potential sweet spots in

the in-vitro range-finding experiment diagrams for all 64 tested

gene sets (same set up as Figure 4A).

(PDF)

Figure S4 Cellular process specific responses in the in-
vivo experiment design space. The potential sweet spots in

the in-vivo range-finding experiment diagrams for all 64 tested

gene sets (same set up as Figure 4A).

(PDF)

Table S1 RNA isolation metrics. Detailed RNA sample

information for the in-vitro experiment (A) and the in-vivo

experiment (B).

(PDF)

Table S2 Differentially expressed genes. The numbers of

differentially expressed genes (DEGs, log2 FC.1) found in both

experiments, if compared to time-point 0 (A & B, Figure 3A & B);

after additional removal of genes that were differentially expressed

in any untreated sample (C & D, Figure 3C & D); after re-

calculation using the associated dose = 0 sample (log2 FC.1) (E &

F, Figure 3E & F). Excluded samples are indicated in grey.

(PDF)

Table S3 In-vitro examples of dose-response correla-
tions of individual genes per time point. Dose response

correlations per time point of individual genes that belong to gene

sets: KEGG nucleotide excision repair, KEGG cell cycle, KEGG

extrinsic apoptosis and IARC p53 responsive elements, in the in-

vitro experiment (set up as Table 1).

(PDF)

Table S4 In-vivo examples of dose-response correla-
tions of individual genes per time point. Dose response

correlations per time point of individual genes that belong to gene

sets: KEGG nucleotide excision repair, KEGG cell cycle, KEGG

extrinsic apoptosis and IARC p53 responsive elements, in the in-

vivo experiment (set up as Table 2).

(PDF)

Table S5 Overview of GeneID’s per gene sets used for
GeneSetTesting.

(XLSX)

Data S1 Multiple longitudinal biopsies sampling in
individual mice.

(PDF)
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