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Abstract

Endometrial cancer (EC) contributes substantially to total burden of cancer morbidity and mortality in the United States.
Family history is a known risk factor for EC, thus genetic factors may play a role in EC pathogenesis. Three previous genome-
wide association studies (GWAS) have found only one locus associated with EC, suggesting that common variants with large
effects may not contribute greatly to EC risk. Alternatively, we hypothesize that rare variants may contribute to EC risk. We
conducted an exome-wide association study (EXWAS) of EC using the Infinium HumanExome BeadChip in order to identify
rare variants associated with EC risk. We successfully genotyped 177,139 variants in a multiethnic population of 1,055 cases
and 1,778 controls from four studies that were part of the Epidemiology of Endometrial Cancer Consortium (E2C2). No
variants reached global significance in the study, suggesting that more power is needed to detect modest associations
between rare genetic variants and risk of EC.
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Introduction

Endometrial cancer (EC), a cancer of the uterine epithelial

lining that typically occurs near or after menopause, is the most

common cancer of the female reproductive organs and the 10th

leading cause of cancer death in women in the developed world

[1–3]. EC is strongly associated with estrogen-only post-meno-

pausal hormone therapy [4,5] and excess body weight [6] due to

increased aromatization of C-19 steroids by excess adipose tissue

[7]. These risk factors support the ‘‘unopposed estrogen’’
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hypothesis in which EC may develop because of the unchecked

mitogenic effects of estrogen in the absence of sufficient

progesterone [8]. Some studies have shown that family history

increases risk two to three-fold in younger women who have a first-

degree female relative with EC [9,10], while among older women

the association is less strong. In addition, there is an increased risk

of EC in women with Lynch syndrome [11], a hereditary

autosomal dominant condition that confers a high risk of

colorectal cancer as well. These observations suggest that germline

genetics may contribute to EC susceptibility.

Genome-wide association studies (GWAS) have successfully

identified more than a hundred susceptibility loci for a variety of

cancer types [12]. Three GWAS studies of EC have been

conducted to date with only one identifying a novel genome-wide

significant locus, rs4430796, (p = 7.1610210) associated with EC

[13] at the HNF1B gene region on chromosome 17q12. Two

independent studies subsequently replicated the association with

rs4450796 [14,15]. However, two other GWAS studies of EC

[14,16] were not able to identify additional genome-wide

significant loci, suggesting that common variants with large effects

may not highly contribute to the familial risk of EC.

Most risk alleles discovered through GWAS have modest effect

sizes that do not account for much heritability of common diseases

[17]. Moreover, GWAS studies have focused on common variants

(.5%) in the general population. Low frequency variants make up

a large fraction of genetic variation in humans and may explain a

substantial portion of the heritability in cancer etiology. Recent

exome-sequencing studies have found rare variants in candidate

susceptibility genes for familial colorectal cancer [18], breast

cancer [19], and prostate cancer [20], suggesting that analysis of

rare variants may also provide insight into the etiology of EC.

However, exome-sequencing studies require samples sizes that are

not amenable to large epidemiological studies due to the high cost

currently needed to achieve sufficient statistical power.

There has been a push to develop statistically powerful, yet

relatively inexpensive, methods to detect associations for rare

variants with larger effect sizes. Illumina has recently developed

the Infinium HumanExome BeadChip (exome array) from non-

synonymous variants found at least 3 times on more than 2 data

sets from the whole-exome sequencing of more than 12,000

individuals. This array provides a platform from which we can

begin to survey the landscape of rare variation in a large number

of samples.

We genotyped rare variants in a multiethnic population of 3,067

women (1,169 EC cases and 1,898 controls) from the Epidemi-

ology of Endometrial Cancer Consortium (E2C2) [21] in order to

test the hypothesis that rare variants in coding regions may be

associated with EC risk.

Methods

Ethics committee from each participating study (Alberta Health

Services; Estrogen, Diet, Genetics and Endometrial Cancer Study;

Multiethnic Cohort Study) obtained written informed consent

from all study participants. All written consent was approved from

the Institutional Review Board (IRB) from each institution

(Alberta Health Services, Canada; Memorial Sloan Kettering,

USA; University of Hawaii Cancer Center, USA; Keck School of

Medicine-University of Southern California, USA).

Alberta Health Services, Memorial Sloan Kettering, University

of Hawaii Cancer Center, and University of Southern California

institutional review boards specifically approved the present study

(Exome-Wide Association Study of Endometrial Cancer), as well

as the written consent obtained from participants.
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Participating studies also obtained IRB certification, permitting

data sharing according to the NIH Policy for Sharing of Data

Obtained in NIH Supported or Conducted Genome- Wide

Association studies (GWAS).

Study Population
Exome array genotyping was performed on 3,067 samples from

3 retrospective case-control studies: the Alberta Health Services

Study (AHS) [22], the Estrogen, Diet, Genetics and Endometrial

Cancer study (EDGE) [23], and the Fred Hutchinson Cancer

Research Center (FHCRC) study and 1 case-control study nested

within the prospective Multiethnic Cohort Study (MEC) [24].

Studies participating in this analysis are described in Table 1 and

in our previous GWAS[14]. Of the women included in the study,

1,169 were EC cases and 1,898 were controls. Cases were

restricted to those diagnosed with the most common subtype of EC

(type I) while controls were cancer free and had an intact uterus.

Controls were matched to cases by age and study site.

Genotyping and Quality Control
DNA was extracted at each study site from buffy coat or cheek-

cell samples following the manufacturer’s protocol and genotyped

at the University of Southern California using the Infinium

Human Exome BeadChip (Illumina Inc., San Diego, CA) as part

of the Stage II replication of the E2C2 GWAS. The BeadChip

included 9,232 custom markers, 2,211 of which are specifically

relevant to EC, in addition to the 247,870 markers coding

primarily for protein-altering variants already included in the

BeadChip’s default design.

Genotype calling was performed with Illumina GenCall on all

samples (n = 3,067) using the MEC cluster file (16,000

multiethnic samples) for the non-custom markers and autocluster-

ing for the custom markers. Variants were excluded from analyses

if call rates were , 90% (n = 115), the variant was monomorphic

(n = 77,521), the loci had no observed founders and missing all

genotypes (n = 1,962), the variant was an insertion or deletion

allele (n = 117), or the variant deviated from Hardy-Weinberg

equilibrium at p-value , 0.0001 in any ethnic group (n = 248).
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Figure 1. Minor allele frequency for all variants successfully
genotyped over all ethnicities. The number of variants is plotted by
the minor allele frequency over all ethnicities. These variants include
those that are monomorphic in all ethnicities.
doi:10.1371/journal.pone.0097045.g001

EXWAS Study of Endometrial Cancer

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e97045



The final disease trait analysis data set contained 177,139

successfully genotyped variants.

In total, 3,031 out of 3,067 samples were successfully genotyped

with call rates $ 90%. Of these, we removed 40 duplicate samples

(genotype concordance rate . 99.9%) used for assay quality

control and 15 samples for other quality control reasons. We

conducted principal components analysis (PCA) to identify self-

reported ethnicity outliers and infer ancestry with EIGENSOFT

v 4.2 [25] using 47,097 custom and non-custom SNPs with

genotyping rates . 90% and MAF . 1%. The HapMap phase II

(build 37) CEU, YRI, and JPT-CHB samples were used as

reference populations. Using the first 5 principal components, we

determined 7 individuals that were ethnicity outliers and excluded

them from analyses. After further removal of 136 outliers (more

than 3.5 standard deviations from the mean) of sample heterozy-

gosity by ethnicity, 2,833 women (1,055 EC cases and 1,778

controls) remained for disease trait analysis.

Statistical Analysis
Single variant association analysis. Single variant analyses

were performed overall and stratified by self-reported ethnic

group. For each SNP, we estimated odds ratios (OR) and 95%

confidence intervals (CI) using unconditional logistic regression,

assuming an additive genetic model (0, 1, 2 copies of the minor

allele) and adjusting for body mass index (BMI in kg/m2), age,

study site, plate, and the first 4 principal components to account

for population stratification. All single variant analyses were

performed using PLINK v 1.07 [26].

Gene-based analysis. As an additional method to discover

rare variants associated with EC, gene-based testing was

performed using SKAT-O [27] over all ethnicities. SKAT-O

combines gene-burden tests and SKAT, a SNPset level test for

association using kernel machine methods, in special cases for an

optimized approach that maximizes power. These analyses were

also adjusted for BMI, age, study site, plate and the first 4 principal

components. In total, 16,245 genes with at least one variant were

tested.

Statistical significance. We determined single variant asso-

ciation to reach global significance if the unadjusted p-value was

,2.82 6 1027, corresponding to a Bonferroni correction for

177,139 tests. Gene-based associations were considered significant

for unadjusted p-values ,3.08 6 1026, corresponding to a

Bonferroni correction for 16,245 tests.

In accordance to NIH/NCI policy all data will be submitted to

the database of Genotypes and Phenotypes (dbGaP, http://www.

ncbi.nlm.nih.gov/gap).

Results

Association analyses included 177,139 successfully genotyped

variants with MAF . 0 from a total of 257,102 variants included

in the array. Population characteristics of the four participating

studies (AHS, EDGE, FHCRC, and MEC) are described in

Table 1. Mean age at diagnosis for cases ranged from 58.5 years in

AHS to 65.5 years in MEC and mean BMI at diagnosis for cases

ranged from 28.8 kg/m2 in MEC to 32.3 kg/m2 in AHS and

EDGE. Of the 3,067 samples genotyped, 2,833 were included in

Figure 2. Minor allele frequency for all variants successfully genotyped by reported ethnicity. The number of variants is plotted by the
minor allele frequency for each ethnicity. All these variants are polymorphic in at least one reported ethnicity.
doi:10.1371/journal.pone.0097045.g002
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the analysis. There were no differences in age, BMI, and ethnicity

between excluded cases and those included in the analysis (results

not shown). Of these 2,833 individuals, there were 254 self-

reported African-Americans, 347 self-reported Asians, 1,686 self-

reported Caucasians, 79 self-reported Hawaiians, 360 self-reported

Latinas, and 107 who did not report a specific ethnicity (Table 2).

Variant Distribution among Reported Ethnicities
In this study population, 77,521 variants (30.4%) were found to

be monomorphic across all reported ethnicities and 177,139

variants (69.6%) were polymorphic in at least one ethnic

population with 74.0% of polymorphic alleles having MAF

# 1% (Figure 1). Of the variants that were polymorphic in at

least one ethnic population, 42.0% in African Americans, 71.7%

in Asians, 34.9% in Caucasians, 69.7% in Hawaiians, 49.5% in

Latinas, and 60.0% in those of unknown ethnicity were

monomorphic (Figure 2). The MAF distributions were fairly

similar among Asians, Hawaiians, and those who did not report a

specific ethnicity while African Americans, Caucasians, and

Latinas shared more similarities in MAF with each other than

with Asians, Hawaiians, and those of unknown ethnicity. About

20.2% (n = 35,912) of variants were shared by all 5 reported

ethnicities while Caucasians and Latinas had the most variants in

common at 41.1% (n = 72,878) (Figure 3). Caucasians had the

most unique polymorphic variants (18.7%), followed by African-

Americans (14.0%), Latinas (3.2%), Asians (2.7%), those who did

not report ethnicity (1.0%), and Hawaiians (0.4%).

Single Variant Association for Endometrial Cancer
No variants reached global significance in single variant

association of EC for all ethnicities combined (Figure 4a,

Table 3) when correcting for multiple comparisons using

the Bonferroni adjustment (p ,2.82 6 1027). The strongest

associations were for variants with .0.05 MAF (Table 3) located

within 50 kb of the long non-protein coding intergenic RNA,

LINC00520 (rs1953358, OR = 1.36, p = 4.7661027) and in the

intron region of PROS1 (rs8178648, OR = 1.71, p = 1.53 6
1026), which codes for protein S, a cofactor to protein C in the

anti-coagulation pathway. In Caucasians, who make up the

majority of the overall analysis, only rs8178648 remained

suggestively associated with OR = 1.98 and p = 3.35 6 1026

(Figure 4b, Table 3). There were no globally significant or

suggestive variants in African Americans, Asians, Hawaiians,

Latinas, and those who did not report ethnicity (Table S1).

Gene-based Analysis of Endometrial Cancer
None of the gene-based tests of association were globally

significant (p , 3.08 6 1026) after adjusting for multiple

comparisons (Table S2). Of the 16,245 genes tested, the most

significant EC association was with KRT81 (p = 2.21 6 1025), a

member of the keratin gene family located on 12q13. PROS1,

where rs8178648 is located, was not significantly associated with

EC (p = 0.6789) when testing over all ethnicities neither when

testing only in Causasians (results not shown).

Figure 3. Six-way Venn diagram showing polymorphic putative functional variants shared by reported ethnicities. Numbers of shared
variants are shown at intersections. The total numbers of polymorphic variants by ethnicity are listed in the upper-left hand corner.
doi:10.1371/journal.pone.0097045.g003
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Figure 4. Manhattan plots for the endometrial cancer association analysis. Results of single variant analyses (2log10p) are plotted against
chromosome position (NCBI build 37) for association over all ethnicities (A) and for associations within Caucasians (B). Suggestive variants are labeled
above. Results were adjusted for age at diagnosis, BMI, study site, plate, and the first four principal components.
doi:10.1371/journal.pone.0097045.g004

EXWAS Study of Endometrial Cancer

PLOS ONE | www.plosone.org 6 May 2014 | Volume 9 | Issue 5 | e97045



T
a

b
le

3
.

T
o

p
fi

v
e

m
o

st
si

g
n

if
ic

a
n

t
a

ss
o

ci
a

ti
o

n
s

o
f

si
n

g
le

co
d

in
g

v
a

ri
a

n
ts

w
it

h
e

n
d

o
m

e
tr

ia
l

ca
n

ce
r

ri
sk

.*

A
ll

C
a

se
s

(n
=

1
0

5
5

)
v

s.
C

o
n

tr
o

ls
(n

=
1

7
7

8
)

V
ar

ia
n

t
C

h
r

P
o

si
ti

o
n

(b
p

)
G

e
n

e
/L

o
cu

s
A

1
A

2
M

A
F

(a
ll)

O
R

(9
5

%
C

I)
P

-v
al

u
e

e
xm

2
2

6
7

6
6

2
(r

s1
9

5
3

3
5

8
)

1
4

5
6

2
9

5
5

8
0

LI
N

C
0

0
5

2
0

G
A

0
.4

9
1

.3
6

(1
.2

0
,

1
.5

3
)

4
.7

6
E-

0
7

rs
8

1
7

8
6

4
8

3
9

3
6

0
5

7
3

9
P

R
O

S1
G

A
0

.0
9

1
.7

1
(1

.3
7

,
2

.1
2

)
1

.5
3

E-
0

6

e
xm

2
2

7
0

3
7

8
(r

s9
3

9
9

8
4

0
)

6
1

0
4

0
7

6
4

6
3

n
/a

C
T

0
.4

7
0

.7
5

(0
.6

7
,

0
.8

5
)

3
.0

1
E-

0
6

e
xm

1
4

0
1

7
8

4
1

9
1

7
9

6
1

6
6

A
T

P
8

B
3

T
C

0
.2

3
0

.7
2

(0
.6

1
,

0
.8

3
)

1
.9

2
E-

0
5

e
xm

5
5

8
0

4
1

(r
s6

9
2

6
9

8
0

)
6

5
6

9
1

7
5

3
8

K
IA

A
1

5
8

6
A

G
0

.2
3

0
.7

5
(0

.6
5

,
0

.8
7

)
7

.9
5

E-
0

5

C
au

ca
si

an
C

as
e

s
(n

=
6

3
9

)
vs

.
C

au
ca

si
an

C
o

n
tr

o
ls

(n
=

1
0

4
2

)

V
ar

ia
n

t
C

h
r

P
o

si
ti

o
n

(b
p

)
G

e
n

e
/L

o
cu

s
A

1
A

2
M

A
F

(a
ll)

O
R

(9
5

%
C

I)
P

-v
al

u
e

rs
8

1
7

8
6

4
8

3
9

3
6

0
5

7
3

9
P

R
O

S1
G

A
0

.0
9

1
.9

8
(1

.4
9

,
2

.6
5

)
3

.3
5

E-
0

6

e
xm

7
3

6
7

2
5

(r
s1

0
9

7
4

6
5

7
)

9
4

6
2

2
4

5
3

SP
A

T
A

6
L

C
T

0
.0

9
2

.3
4

(1
.5

7
,

3
.5

0
)

3
.0

0
E-

0
5

rs
1

0
7

5
3

6
8

8
1

1
6

5
6

6
6

4
4

8
A

LD
H

9
A

1
C

T
0

.4
1

1
.4

3
(1

.2
0

,
1

.7
0

)
5

.1
8

E-
0

5

e
xm

2
2

6
7

6
6

2
(r

s1
9

5
3

3
5

8
)

1
4

5
6

2
9

5
5

8
0

LI
N

C
0

0
5

2
0

G
A

0
.4

9
0

.7
1

(0
.6

0
0

.8
4

)
6

.4
9

E-
0

5

e
xm

1
1

1
3

9
7

1
(r

s1
4

1
5

4
9

3
4

5
)

1
4

7
4

4
0

1
0

3
0

LO
C

2
8

3
9

2
2

A
G

0
.0

3
0

.3
6

(0
.2

2
,

0
.5

9
)

6
.5

6
E-

0
5

*A
d

ju
st

e
d

fo
r

ag
e

at
d

ia
g

n
o

si
s,

B
M

I
at

d
ia

g
n

o
si

s,
st

u
d

y
si

te
,

p
la

te
,

an
d

th
e

fi
rs

t
fo

u
r

p
ri

n
ci

p
al

co
m

p
o

n
e

n
ts

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

9
7

0
4

5
.t

0
0

3

EXWAS Study of Endometrial Cancer

PLOS ONE | www.plosone.org 7 May 2014 | Volume 9 | Issue 5 | e97045



Discussion

We present an initial exploration into whether rare variants are

associated with EC risk in a multiethnic population from the

E2C2. No variants reached global significance (p , 2.82 61027)

in the single variant association analyses of EC in all ethnicities

combined or when stratified by reported ethnicity. Additionally,

no gene-based test of association reached global significance

(p , 3.08 6 1026).

Among all ethnicities, rs8178648 on chromosome 3 maintained

a suggestive association with EC (OR = 1.707, 95% CI: 1.363–

2.123, p = 1.5361026). The variant lies within the intron region

of PROS1, a gene coding for protein S, a cofactor in the

anticoagulant pathway that causes autosomal dominant hereditary

thrombophilia when mutated [28]. PROS1 expression has been

reported to be elevated in aggressive prostate cancer tissue [29]

and thyroid cancer tissue [30], suggesting it may have a role in

cancer etiology or progression. PROS1 has been found to be

directly upregulated by progestins [31] and downregulated by

17b-Estradiol, an estrogen that regulates gene expression via the

estrogen receptor [32], making it susceptible to imbalances in the

sex hormone metabolic pathway, which is implicated in EC

etiology. However, PROS1 was not significantly associated with

EC (p = 0.6789) when using SKAT-O and no other GWAS have

found significant or suggestive variants in this gene.

One weakness of this study is our limited sample size, which was

not sufficiently powered to detect rare variants with modest effects

associated with EC. Additionally, the exome array content is

predominantly based on European ancestry whereas our study

included a substantial number of samples with other ancestries.

Incomplete exome array coverage of all functional variants and

indels that may impact EC risk may also have limited the scope of

our study. However, our analysis is one of only two studies [33]

using the exome array to examine associations between rare

variants and complex diseases in large multiethnic populations.

Our study is also the first to utilize the exome array with EC and

serves as an extension to our previous examination of common

variants on EC risk.

A previous GWAS [13] identified one novel locus near HNF1B,

rs4430796, inversely associated with EC risk. We replicated the

findings in our GWAS [14], but no other common variants

associated with EC have been determined. Exome arrays that

focus on rare variants, which are hypothesized to have larger effect

sizes than common variants, have been used to successfully identify

new loci influencing insulin processing and secretion in type 2

diabetics [34]. To date, analyses of cancer sites using exome arrays

have failed to find strong evidence that rare variants are highly

associated with cancer, revealing only one variant significantly

associated with breast cancer and none with prostate cancer [33].

Similarly, we have not identified any loci significantly associated

with EC. Due to our limited sample size, our study was estimated

to be sufficiently powered to detect ORs . 2.53 for low frequency

variants (MAF = 0.02). An OR of 2.00 (MAF = 0.01) would also

need around 4,250 cases and 7,250 controls to be sufficiently

powered. Even for variants with higher MAFs similar to what was

observed for rs8178648, a study detecting a per-allele OR of 1.70

would require at least 1,107 cases and 1,871 controls to be

considered sufficiently powered (b= 0.80). Therefore, larger

studies need to be conducted in order to detect novel associations

with rare variants.

In conclusion, our study found no evidence that rare variants

with large effect sizes are associated with EC risk. Though we were

able to identify a few suggestive associations, as with rs8178648,

much larger studies would be needed to identify a more modest

influence of rare variants on the risk of EC.

Supporting Information

Table S1 1–5. Single variant association results. Top 100

most significant single variant associations with endometrial cancer

by ethnic groups.
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Table S2 SKAT-O gene based association results.
SKAT-O gene based associations with endometrial cancer for

all ethnicities combined.
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