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Abstract

The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of
increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic
acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we
performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of
physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting
algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning
models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naı̈ve Bayes, and Neural Network
models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute
weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross
validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/
frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as
the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of
SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein
attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza
virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less
energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus
through supervised algorithms represent a new avenue for understanding and predicting possible future structure of
influenza pandemics.
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Introduction

Increasing host range of Influenza A virus is a major concern

worldwide [1,2]. Avian H5N1 influenza has been infecting

humans zoonotically since 1997, resulting in a high mortality rate

and there were fears that it might cause the first pandemic of the

21st century. Recent 2013 human infection with a novel avian-

origin Influenza A (H7N9) virus with pandemic potential has

caused significant concern with more than 130 human cases of

severe infection in China and 43 fatalities [3–6]. It should be noted

that due to non-existence of previous host immunity, emergence of

new broad host range of influenza strain with the ability of human-

to-human transmission could result in a pandemic with millions of

fatalities [7,8].

Influenza A virus evolve in a complex manner with high

frequency of genomic alteration, mainly because of: (1) its intrinsic

segmented RNA genomic structure facilitating high frequency of

genetic reassortment and antigenic drift [9], (2) circulating

different subtypes of HA and NA as available genetic materials

for genetic alteration and pandemic induction [10], and (3)

availability of hosting environments such as swine as a shelter

against humans or birds vaccines and as a mixing vessel for

generating reassorted viruses [10,11].

Surface glycoproteins, haemagglutinin (HA) and neuraminidase

(NA), determine subtypes of influenza A virus of which 16 HA

subtypes and 9 NA subtypes have been identified [12–14]. The

HA and NA genes are extremely variable in sequence, and less

than 30% of the amino acids are conserved among all subtypes.

Host range/specificity of influenza differs due to its surface

proteins. HA is the key responsible of viral infectivity and

specificity [15,16]. When virus releases from host cells, NA

PLOS ONE | www.plosone.org 1 May 2014 | Volume 9 | Issue 5 | e96984

r

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0096984&domain=pdf


catalyzes the cleavage of a-ketosidic linkage between a terminal

sialic acid and an adjacent D-galactose [9].

Alteration of viral surface proteins to recognize a range of host

receptors is the strategy by which influenza increases its host range

[2,14]. Interestingly, despite its complexity, recent studies shows

that a few amino acid substitutions (4–5) has the potential of

altering A/Indonesia/5/2005 avian A/H5N1 and A/Vietnam/

1203/2004 A/H5N1 to be transmissible between ferrets via

respiratory droplets [2,17–19]. Converting nonlethal H5N1

influenza virus isolated from a human to a lethal virus in mice

happened by a single amino acid substitution from glutamic acid

to lysine at the position 627 of the PB2 protein [20]. While the

origin isolate solely replicates in respiratory organs, the lethal

isolate has the ability to replicate in a variety of organs and

produce systemic infection [20]. It seems that amino acid profiling

of surface influenza proteins has the potential to monitor the host

specificity.

Allignment based methods including similarity search (BLAST),

sequence alignment, and clustering have the ability to cluster HA

sequences with high accuracy. However, these unsupervised

models only work with one feature of sequence similarity and do

not provide knowledge in deeper levels of functional/structural

protein architecture. In contrast, application of supervised models

provides the possibility of large scale rule discovery (associated to

label variable) where this opportunity is restricted in common

unsupervised (clustering) methods. The extracted rules and

knowledge can lead to unravel underlying structure of HA

differentiation. Recently, a great attention has been paid to

supervised machine learning methods implementing diverse amino

acid composition and physic-chemical properties to unravel the

underlying layers of protein function [21–31]. Mining of structural

amino acid features have the potential to reflect these differences

and lead us to specific changes which make a considerable impact

on protein structure.

The determination of protein characteristics of HA subtypes in

a comprehensive survey can provide a new vista for understanding

the evolution of influenza based on the modulation of protein

characteristics. Recent achievements in developing influenza

forecasting mathematical models based on mining of massive

number of emergency department visits [32] or monitoring the

health-seeking behaviour of millions of users around the world in

the form of queries to online search engines (particularly Google)

[7] reinforce the necessity of large scale investigations in pattern

recognition and modelling of influenza.

Machine learning methods have three main steps. The first step

is extracting the n-dimensional features vector (which is composed

of descriptors derived from the protein sequences in order to

reflect different aspects of structural and physic-chemical proper-

ties of each protein) with a class label attached. Various sets of

protein features including amino acid compositions, dipeptide

compositions, pseudo amino acid compositions, normalized

Moreau-Broto autocorrelation, Moran autocorrelation, Geary

autocorrelation, and recently, distribution of various structural

and physic-chemical properties have been used to make protein

features vector [25,31,33–36]. Studies considering the impact of

the different protein features in predicting protein function have

demonstrated that the combination of protein features and

considering features such as dipeptides gives a significantly higher

performance than the use of individual protein features [36]. The

second step of machine learning approach is application of

machine learning method (or classifier) for prediction of the class

label of the protein features input [25,26,31,33–36]. Currently,

many machine learning methods, such as neural networks, support

vector machine (SVM), and decision trees have been successfully

developed for the prediction of protein function

[21,22,25,27,30,37,38]. Each algorithm may be run with different

criteria aiming to find important features and predict the function

based on key announced features. The third step is measuring the

performance of the prediction method and its validity using

approaches such cross validation technique and independent

evaluation (IE) datasets [39–50].

A decision tree is constructed by looking for regularities in data,

determining the features to add at the next level of the tree using

an entropy calculation, and then choosing the feature that

minimizes the entropy impurity [51,52]. Decision tree is method

of choice for prediction since it presents hierarchical ranking of

important features and provides a clear image of differential

protein structure [25].

Support Vector Machine (SVM) is a binary classification

method proposed by Vapnik et.al (1995) which originally designed

for classification and regression tasks [53]. The SVM method has

been employed for pattern recognition problems in computational

biology, including gene expression analysis [54], protein–protein

interactions [55], protein fold class prediction [37,56], and

protein–nucleotide interactions [21]. SVM has high performance

level when high degree of diversity exists in datasets, because

basically, SVM classifier depends on the support vectors, and the

classifier function does not influenced by the entire dataset. Due to

the exploitation of kernel functions, SVM is able to efficiently deal

with a very large number of features [57]. Regarding the

construction of a big dataset of protein features in this study,

SVM is one of the preferred machine learning algorithms.

Bays and Empirical Bayes algorithms are highly efficient in

prediction of cases with a Large number of variables but fewer

observations [58]. Here, the dataset is unbalanced regarding the

huge number of available sequences of H1 and H5 subtypes but

small number of subtypes such as H15 and H16. In this case, Naı̈ve

Bayes based on Bayes conditional probability rule might work well

in prediction.

Neural network is a mathematical structure able to process

information through many connected neurons that respond to

inputs through modifiable weights, thresholds, and mathematical

transfer functions [59,60]. The network topology is one of the

parameters that has a significant effect on the performance of a

neural network [61]. Neural networks are widely used in a number

of protein studies including protein secondary structure prediction

[62], protein–nucleotide interactions [63], protein fold class

prediction [37] and protein localization prediction [64].

Supervised machine learning algorithms have been merely

applied on raw sequence. These modles have demonstrated high

capability in rule discovery, finding hot spots on sequence, and

prediction. Attaluri (2009) extracted 2154 sequences of H1, H2,

H3, N1 and N2 antigens from NCBI and constructed J48 decision

tree. They successfully identified 78 informative positions for

detecting HA subtype and 63 positions for detecting NA subtype

to predit virus subtypes [65]. In another study, protein sequences

of all 8 segments of swine and human hosts of 2009 pandemics

viruses were used to construct SVM model. The developed SVM

model was able to detect viral host [66]. Association rules have

been also employed in this context successfully to classify virus host

between human, avian and swine [67].

Recently, we demonstrated that, instead of raw sequence

analysis, extracting a large number of amino acid attributes and

utilizing adequate data mining models can result in efficient and

precise models in predicting the behaviour of malignant and

benign breast cancer proteins [68], thermostable proteins [23],

halostable proteins [69], ammonium transporters [70], and protein

pumps [71]. A large scale analysis of amino acid structural
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attributes of influenza surfaces proteins rather than raw sequence

allignment, may provide a clearer image of underlying molecular

mechanisms of host range increase by detecting the key structural

protein characteristics which govern HA subtyping.

The aim of the present study was unravelling the molecular

bases of HA subtype differences and discovery of the key protein

characteristics which govern these differences. We used various

clustering, screening, item set mining and decision tree models to

determine which protein attributes may be used as a marker to

differentiate between HA subtypes of influenza A viruses. A large

scale analysis of computationally calculated protein characteristics

of HA sequences provided a clear image of the role of simple

amino acid characteristics in HA-based host differentiation.

Finding reliable models to predict mutations/reassortments

responsible for crossing the species barrier via amino acid features

opens new avenues for prediction of protein structure of possible

future pandemics.

Results

Data Cleaning
The initial dataset contained 7338 records (HA protein

sequences) with 896 protein attributes. Of these records, 46.14%

(3386 records) were classified as H1 class, 1.77% (130 records) as

H2, and 26.06% (1913 records), 2.16% (159 records), 9.85% (723

records), 3.92% (288 records), 4.68% (344 records), 0.21% (16

records), 2.46% (181 records), 1.10% (81 records), 0.96% (71

records), 0.35% (26 records), 0.19% (14 records), 0.04% (3

records), 0.04% (3 records) were classified as H3 to H16,

respectively. For each record, 868 features remained following

removal of duplicates, useless attributes, and correlated features

(dataset is available upon request).

When the number of variables (attributes) is sufficiently large,

the ability to process units significantly reduces. Data cleansing

algorithms have been used previously to remove correlated,

superfluous or duplicated attributes and consequently to generate

much smaller databases [27,28,72]. Following application of

similar algorithms, 5% of the attributes were discarded from the

original dataset.

Attribute Weighting
Data were normalised before running the models; consequently,

all weights would be between 0 and 1. The result of application of

10 different attribute weighting algorithms is presented in Table

S4. In this table, the weight closer to 1 shows high correspondence

between the certain protein feature and target variable (HA

subtypes). In other words, each weight shows the importance of

each attribute regarding the target label based on its attribute

weighting algorithm. As mentioned before, an attribute was

assumed important if that attribute received weight higher than

0.5 (.0.5) by a certain attribute weighting algorithm (Table S4).

Weighting by PCA. Only one attribute, non-reduced Cys

extinction coefficient at 280 nm significantly weighed (equal to

1.0, Table S4).

Weighting by SVM. The percentage of Met and Cys and the

frequencies of Asp, Ala and Gln were the five protein attributes

that gained weights higher than 0.50 (1.0, 0.89, 0.64, 0.54 and

0.54, respectively) (Table S4).

Weighting by relief. Thirteen attributes showed weights

higher than 0.50 when this model was applied to the dataset

(FCdb). These attributes were the frequencies of Phe – Ala and

Tyr, the percentage of Tyr, the frequencies of Arg and Gln, the

count of Ile, the percentage of Cys, the frequency of Glu,

Isoelectric point, the frequency of Asp and Lys and the

percentages of His and Try (Table S4).

Weighting by uncertainty. Sixteen protein attributes

weighed higher than 0.50. The percentage and the frequency of

Tyr gained the highest values (1.0 and 0.96, respectively) and the

count of Thr gained the lowest value (0.51).

Weighting by gini index. Again the percentage and the

frequency of Tyr weighed the highest (1.0) and the count of Ile, the

frequencies of Arg and Gln, the count of Ser, the frequency of Glu,

the percentage of Cys, the count of Val and nitrogen, the

frequency of Asp, the percentage of His, weight, isoelectric point

and the percentage of Try received the highest weighs as 0.95,

0.91, 0.87, 0.85, 0.81, 0.78, 0.77, 0.76, 0.72, 0.63, 0.52 and 0.51,

respectively.

Weighting by chi squared. The following 13 attributes were

weighted higher than 0.50: the percentage and the frequency of

Tyr, the frequencies of Gln and Phe, non – reduced Cys extinction

coefficient at 280 nm, the frequency of Gly, the percentages of

Met and Cys, the frequency of Glu, the percentage of Try and Pro,

the frequency of Ala and the percentage of His.

Weighting by deviation. We found the non – reduced Cys

extinction coefficient at 280 nm to be the sole important protein

attribute gained the weight equal to 1.0.

Weighting by rule. The frequencies of Tyr and Gln were

among 14 other protein attributes with weighted equal to or

greater than 0.50 when rule algorithm ran on the dataset. The

other attributes were: the percentages of Tyr, Trp, Met, the

frequencies of Phe and Arg, aliphatic index, the frequency of Glu,

the count of Ile, the frequency of Asp, the count of Ser, isoelectric

point and the frequency of negatively charged residues.

Weighting by Information gain. Seventeen protein attri-

butes weighted equal to or greater than 0.50. They included the

percentages of Cys and Tyr, the frequencies of Tyr and Glu, the

count of Ile, the frequencies of Glu and Arg, the percentage of His,

the counts of Ser, Nitrogen and Val, the frequency of Asp, weight,

the percentages of Try and Meth, the count of hydrophilic

residues, non – reduced Cys extinction coefficient at 280 nm and

the frequency of Phe.

Weighting by Information gain ratio. When this algorithm

was applied to the dataset, three attributes (the percentage of Try,

the frequency of Ala and non – reduced Cys extinction coefficient

at 280 nm) weighed the highest possible weights (1.0). Thirty other

attributes had weights equal to or higher than 0.50.

Overall, the number of protein attributes that gained weights

higher than 0.5 in each weighting model were as follows: PCA (1

attribute), SVM (5 attributes), Relief (13 attributes), Uncertainty (16

attributes), Gini index (15 attributes), Chi squared (13 attributes),

Deviation (1 attribute), Rule (14 attributes), Gain ratio (33 attributes)

and Info Gain Ratio (18 attributes). The most important attributes

that were confirmed by different weighting algorithms to be

involved in differentiation of HA protein are shown in Table 1.

Key Structural Protein Attributes Distinguishing Different
Influenza HA Subtypes based on Overall Conclusion of
the Attribute Weighting Algorithms

The protein attributes which announced important by most of

the attribute weighting algorithms (intersection of different

weighting methods) were assumed as the key distinguishing

protein features in HA subtyping and are presented in Table 1.

Based on the mentioned intersection of attribute weighting models

(Table 1), 14 protein attributes were announced as the key

distinguishing features in structure of HA subtypes, including The

frequency of Gln, The frequency of Tyr, Percentage of Tyr,

Percentage of Cys, The frequency of Glu, Percentage of Try,

HA-Subtyping in the Level of Physic-Chemical Characteristics
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Count of Ile, The frequency of Arg, Percentage of His, The

frequency of Asp, Percentage of Met, Non-reduced Cys extinction

coefficient at 280 nm and The frequency of Phe.

Decision Trees
Of the 176 generated trees, most of them generated good and

meaningful trees and just one of them (Random Tree with accuracy

criteria) did not result in tree with roots and leaves.

The count of Tyr was the sole attribute used to build a single -

branched tree when the Decision Stump model on Gini Index criterion

was applied to the dataset (Figure 1). When the value for this

feature was equal to 26, 27, 28, 29 or 30, the virus fell into the H1

class; if the value was equal to 18, 19, 20, 21 or 22, the virus

belonged to the H3 class. When the count of Tyr was equal to 17,

the subtype of the virus was H4; but when the value was equal to

23 or 24, the virus was associated with H5. H6 virus subtype was

identified when the count of Tyr was equal to 26. Finally, when

the value was equal to 13, 14 or 15, the virus fell into the H7 class.

Other simple trees were produced by the Decision Stump and

Decision Tree models on the accuracy criterion with just one branch.

The frequency of positively charged residues was the sole protein

attribute used to build this tree. Similarly the Decision Tree Parallel

(run on Gain Ratio criterion) generated a tree with one branch. This

branch is based on the frequency of Pro – Ala with a frequency

equal to or less than 0.5 indicating a H1 subtype. The Decision

Stump (run on gain ratio) model induced a one-level tree showing

the percentage of Try to be the most important feature.

Specifically, when the value for this feature was higher than

1.407, the virus fell into the H1 subclass, but when the value was

equal to or higher than 1.407, the virus belongs to the H5 class.

Higher power of trees in distinguishing H1 and H5 is because of

higher numbers of these subtypes and consequently, ans conse-

quently better training and higher capability of theses models in

recognition of H1 and H5.

In other decision trees such as those produced by the Random

Tree (on Gini index), dipeptide features (such as the frequency of Pro

– Gly) were the main protein feature to build the trees and the

following protein attributes were used to build the tree branches:

the count of Phe – Met, the count of Asn – Met and the frequency

of Trp - Leu. All virus subclasses (except H6, H8, H10, H11 and

H14) were classified by this model (Figure 2). This model was one

of the most successful models in distinguishing H subtypes.

Decision Tree Parallel model (run on Information gain, Gini index or

Accuracy criteria), Decision Tree model (run on Information gain, Gini

index or Gain ratio) and Random Tree model (run on Information gain)

induced very complex trees to distinguish between all virus

subclasses using protein attributes.

Three models of Decision Stump (Gain ratio, Gini Index and Accuracy)

induced trees with just one branch, and the percentage of Try, the

percentage of Tyr and the frequency of Glu were the most

important protein attributes, respectively. Decision Tree model (run

on Accuracy) built a two branches tree; if the frequency of Glu was

equal to or less than 0.054, the virus fell into H3, but when the

value for this feature was higher than 0.054 and the weight of

protein was higher than 63.971, the virus belonged to H5. If the

weight was equal to or less than 63.971 and the frequency of Tyr

was higher than 0.028, the virus was from the H1 class; otherwise

from the H7 class. The other models induced more complex tress.

The percentage of Tyr, the percentage of Try and the frequency

of Glu were the most important features selected by Decision Stump

models to induce a simple tree with one branch. A two branches

tree induced by Decision Tree model (run on Accuracy), and the

frequency of Glu and the weight and non – reduced Cys extinction

coefficient at 280 nm were the key protein attributes to classify

H1, H3, H5 and H7. The other models induced more complex

tress. Again, Stump Decision models induced simple trees and the

count of other residues, the percentage of Tyr and the percentage

of Try were the most important features to build the trees on the

Info Gain Ratio database. The accuracies of different decision tree

models are compared in Table 2.

Table 1. The most important protein attributes (features) in structure of different HA subtypes selected by different attribute
weighting algorithms.

Attribute The number of attribute weighting algoritms that indicated the attribute as important

The frequency of Gln 8

Percentage of Cys 7

Percentage of Tyr 7

The frequency of Tyr 7

The frequency of Glu 7

Percentage of Try 7

Count of Ile 6

The frequency of Arg 6

Percentage of His 6

The frequency of Asp 6

Percentage of Met 6

Non-reduced Cys extinction
coefficient at 280 nm

6

The frequency of Phe 5

Total number of attribute weighting algorithms which have announced the certain attribute important (weight higher than 0.5, Table S4). This table presents the
number of algorithms that selected the attribute. Weighting algorithms were PCA, SVM, Relief, Uncertainty, Gini index, Chi Squared, Deviation, Rule, Information Gain, and
Information Gain Ratio.
doi:10.1371/journal.pone.0096984.t001
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Machine Learning Models to Predict Unknown Influenza
A Virus Classes Based on Protein Attributes

Decision trees. The accuracies of trees induced by various

decision tree models are presented in Table 2. Generally, most

models showed accuracies higher than 80% while the lowest

accuracies gained by Decision Tree models ran on FCdb (the original)

dataset with Info Gain criteria (average of 46.04%). The best

predicted accuracy achieved when Decision Tree run with Gini Index

criteria on Uncertainty dataset (99.70%) (Figure 2).

SVM approach. The total accuracy predicted by C-SVC

method (when Gamma and C were 0.0065 and 10, respectively)

reached 94.52% 60.86% with the RBF kernel function (the lowest

and highest prediction rates 2 65.19% and 100% 2 obtained for

Figure 1. Decision Tree from Decision Stump model ran with Gini Index criterion. As may be inferred from the figure, the count of Tyr was the
most important and the sole protein attributes in distinguishing various HA subtypes of influenza virus A. When the value for this feature was equal
to 26, 27, 28, 29 or 30, the virus fell into the H1 class; if the value was equal to 18, 19, 20, 21 or 22, the virus belonged to the H3 class. While the count
of Tyr was equal to 17, the subtype of the virus was H4; but when the value was equal to 23 or 24, the virus was associated with H5. H6 virus subtype
was identified when the count of Tyr was equal to 26. Finally, when the value was equal to 13, 14 or 15, the virus fell into the H7 class. Underneath,
the host species for each virus class has been depicted.
doi:10.1371/journal.pone.0096984.g001

Figure 2. Decision Tree from Random Tree model ran with Gini Index criterion. As may be inferred from the figure, the frequency of Pro - Gly
was the most important protein attributes to build the tree and the counts or the frequencies of other dipeptides used to generate the tree branches
and to distinguish various HA subtypes of influenza virus A. With the defined valuse for the count of Phe – Met, the count of Asn – Met and the
frequency of Trp – Leu, the virus subtypes were either H3 or H5. With different values for the count of Asn – Met, various virus subtypes distinguished.
All virus subclasses (except H6, H8, H10, H11 and H14) were classified by this model. Underneath each subtype common host has been depicted.
doi:10.1371/journal.pone.0096984.g002
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H5 and H1, respectively). The average number of support vectors

was 161.88 with the lowest number observed for class H15 and

H16 (3) while the highest number of support vectors was gained

for H3 (527).

When Gamma and C changed to 0 and 10, the total prediction

accuracy reached to 99.70% 60.15%. The average number of

support vectors for this run decreased to 54.50 with the lowest

number (3) again for the same classes (H15 and H16) and the

highest number for H1 class (181). The accuracy did not improve

by using the other kernel functions (linear, poly, sigmoid, and pre-

computed).

Naı̈ve bayes. As seen in Table 3, the lowest accuracy

(63.36%) gained when Naı̈ve Bayes model ran on SVM dataset. In

contrast, the best accuracy (99.22%) gained when Bayes Kernel

model ran on FCdb. The accuracy of Naı̈ve Bayes model ran on

FCdb was 98.95% 60.30% while the same accuracy for Naı̈ve Bayes

Kernel was higher (99.27% 60.20%). Distribution model for label

attribute (virus subtype) ranged from 0.0001 for H15 and H16

classes up to 0.460 for H1 classes for both Naı̈ve Bayes and Naı̈ve

Bayes Kernel.

Neural network. Tables 3 presents the comparative perfor-

mances of different combinations of neural network algorithms

with 11 datasets [original dataset (FCdb) as well as datasets pre-

filtered by PCA, Uncertainty, Relief, Chi Squared, Gini Index,

Deviation, Rule, Gain Ratio, Info Gain, and SVM weighting

algorithms based on 10-fold cross validation. The average

accuracies of Auto MLP and Neural Net models were generally high

(more than 95%, presented in Table 3).

As it can be inferred from Table 3, pre-trimming of protein

features dataset with proper attribute weighting algorithm plays a

determining role in obtaining high prediction accuracy. When the

models ran on PCA databases, the accuracies were minimum

(78.81% and 81.44%, respectively), while the best accuracy

(99.73%) gained when either Neural Net or Auto MLP models ran

on Info Gain Ratio dataset or Chi Squared datasets. The

performances of neural network models on other datasets (such

as Gini Index, Info Gain, Relief, Rule, SVM, and Uncertainty) were also

higher than 99% showing their suitability on predicting the right

HA virus classes.

Statistical Analysis of the Key Found Protein Attributes in
the Structure of HA Subtypes

Statistical distribution of important key amino acid attributes in

the structure of HA subtypes is presented in Table S2.

Interestingly, The freq of Glutamine and The freq of Tyrosine

which were selected by most of attribute weighting algorithms

(Table 1) and decision tree models (Figure 1) had the highest

variation between HA subtypes. This confirms the high efficiency

of attribute weighting algorithms in feature selection and finding

the effective features.

In agreement with the outcomes of attribute weighting

algorithms, ANOVA showed that that in respect to different HA

subtypes (as dependent variable), differences between important

structural features including Non-reduced cysteines Extinction,

Count of Isoleucine, Freq of Cysteine, Freq of Aspartic Acid, Freq

of Glutamic Acid, Freq of Glutamine, Freq of Arginine, Freq of

Tyrosine, Percentage of Histidine, Percentage of Methionine,

Percentage of Tryptophan, Percentage of Tyrosine, Count of Phe-

Met, Freq of Pro-Gly, and Freq of Trp-Leu are highly significant

(p = 0.01) (Table S3). Interestingly, the Freq of Glutamine and

Freq of Tyrosine received the highest R-square (95.75 and 96.47,

respectively) implying that these two attributes, highlighted by

decision tree and weighting algorithms (Figure 1 and Table 1), are

the key predictors of HA subtyping. It should be mentioned that

higher value of R-square denotes that higher amount of variance

of dependent variable (HA subtypes) is related to independent

variable (Freq of Glutamine and Freq of Tyrosine).

MANOVA (multivariariate analysis) also confirmed the overall

significant differences (p = 0.05) of the selected features between

different HA subtypes (Table S3). Clustering, based on the 16

important features is presented in Figure S1. As it can be inferred

in Figure S1, the key discovered features in this study have highly

accuracy in prediction and separation of HA subtypes and

reinforces the high capability of discovered features as predictors

of HA subtyping and underlying layer of subtype differentiation.

Table 3. The accuracy of Baysian and Neural Network models on various datasets [11 datasets including original protein features
dataset (FCdb) as well as 10 datasets generated by trimming (filtering) the original FCdb dataset by attribute weighting algorithms]
computed by 10-fold cross validation.

Baysian Models Neural Nets Models

Bayse Kernel Naive Bayse Auto MLp Neural Net

Chi Squared 98.72% 98.59% 99.71% 99.73%

Deviation 88.55% 96.70% 79.94% 82.71%

Gini Index 98.90% 98.26% 99.70% 99.69%

Info Gain 98.12% 98.79% 99.70% 99.70%

Info Gain Ratio 84.38% 63.36% 99.70% 99.73%

PCA 99.22% 98.69% 78.81% 81.44%

Relief 98.95% 98.65% 99.63% 99.59%

Rule 98.53% 98.97% 99.70% 99.67%

SVM 84.38% 63.36% 98.44% 98.37%

Uncertainty 92.69% 97.89% 99.71% 99.71%

FCdb %99.18 %97.51 %99.73 99.69%

This table presents the accuracy percentage of Baysian (Naı̈ve Bayes and Bayse Kernel) and Neural Network models (Auto MLp and Neural Net) run on all 10 datasets.
doi:10.1371/journal.pone.0096984.t003
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Discussion

In the last century, three influenza A pandemics happened:

H1N1 in 1918, H2N2 in 1957 and H3N2 in 1968 [73]. Since

1997, avian H5N1 and recently avian H7N9 influenza have been

infecting humans zoonotically with high mortality rates. The 2009

pandemic was the result of H1N1 multiple reassortant with genes

derived from viruses that originally circulated in the swine, avian,

and human populations [74]. 2013 China pandemic was the result

of novel reassortant in avian influenza (H7N9) with six internal

genes from avian influenza A (H9N2) viruses. Substitution Q226L

(H3 numbering) at the 210-loop in the HA gene was found in two

pandemic strains [3]. To be prepared for future pandemics, a

detailed understanding of the basic biology of this virus its

evolution and subtype differentiation is critical.

An important point of this study was discoverey of some new

rules underpining HA differentiation, not in the level of sequence

but in the level of structural protein architechture via extraction

and data mining of structural protein features. Influenza virus is

also subjected to host immune pressure (enriched by vaccines in

many cases) and undergoes rapid evolution in the antigenic

regions, especially when the virus crosses the host species barrier

[75]. Influenza virus does not have enough time to develop/add

long domains or major changes in proteins; instead, it is

reasonable that influenza viruses alter short amino patterns.

Consequently, rapid structural amino acid alteration is an strategy

for influenza to survive. Based on the key amino acid attributes, we

found the possible routes (based on decision tree algorithms) that

influenza can acquire additional host specificity of another subtype

via a small change in amino acid attributes (Figure 2). Through

theses routes, influenza has more chance in increasing host range

and survival by acquiring host specificity of another subtype with

less energy consumption and minimum change in protein

structure.

This is the first successful high accurate attempt in modelling

and prediction of influenza A virus subtypes based on physic-

chemical properties of HA proteins. It should be noted that

unbalanced number of HA subtypes can influence the efficiency of

attribute weighting and modelling. Considering that each attribute

weighting system uses a specific pattern to define the most

important features, results may vary according to modelling

techniques as has been highlighted in previous studies

[23,27,28,72,76,77]. Despite this possibility, our analysis revealed

a high level of accuracy. Applying 10 statistically different attribute

weighting algorithms and selection of the key features based on the

overall (intersection) of these algorithms reinforce the importance

of the selected features. Furthermore, weighting algorithms such as

Relief can deal with unbalanced data by taking subsamples and

reduce this bias [78]. Altogether, achieving the precise modelling

approach in linking the amino acid attributes with HA subtyping is

the result of the following improvements in the present study: (1)

increasing the number of computationally calculated amino acid

features to cover different aspects of HA protein structure, (2)

testing different feature selection (attribute weighting) algorithms

and selection of the most important amino acid attribute based on

the overall conclusion of algorithms, (3) examining different

supervised data mining (machine learning) algorithms, and (4)

joining attribute weighting with different data mining algorithms

which sharply increases the accuracy of the models in some cases.

The frequency of Gln was the most important feature to

distinguish virus subtypes, as defined by 80% of the attribute

weighting algorithms while the percentages of Cys, Tyr and Try

and the frequencies of Tyr and Glu were defined as important

features by 70% of algorithms (Table 1). Gln, Cys, Tyr and Glu

have been classified as polar or hydrophilic amino acids. Thus, our

results confirm the importance of hydrophilicity in forming HA

proteins. In fact, hydrophobicity has been used as a vital

parameter in designing a new anti-viral vaccine against HA

proteins [79]. It has been shown that an increase in the

hydrophilicity of the receptor binding region is apparently an

evolutionary adaptation of the 2009 H1N1 pandemic influenza A

virus in 1918 Spanish, 1930 swine, and 2005 seasonal strains [80].

It has also been identified that mature peptide sequences of HA

genes isolated from humans in 2009 have Gln at position 226 of

the receptor binding site [81]. Interestingly, this was different from

previously isolated viruses where the presence of Leu at the same

position contributes to a preference for human receptors whereas

the presence of Gln contributes to a preference for avian receptors

[81].

Some generated models, such as Decision Tree from Random Tree

model ran with Gini Index criterion (Figure 2), provide novel

knowledge in structural amino acid architecture and packaging of

different HA proteins. It shows that count of specific dipeptides

including Phe-Met and Asn-Met structurally differentiate H1 from

H3. Theses dipeptides are the possible modulated amino acid

features in the structure of future Influenza A viruses tending to

acquire host range of both H1 and H3 subtypes. Figure 2 (left

branch of tree) predicts that mutation or reassortment in H5

resulting in lower number of Trp-Leu which may be considered as

a key requirement for increasing host range and possible future

pandemics by H5 subtype. Similar conclusion has been made

recently documenting that the A/Indonesia/5/2005 avian A/

H5N1 influenza virus may require as few as five amino acid

substitutions [17,82] and the A/Vietnam/1203/2004 requires

four substitutions and reassortment [14,18] to become transmis-

sible between ferrets via respiratory droplets. Interestingly, Russell

et al., 2012 demonstrated that these substitutions can arise in

nature [19]. Based on the above discussion, the presented

bioinformatics models in this study may open a new avenue in

predicting the structure of future influenza A pandemics.

Up to now, there has been little discussion about the role of di-

peptides in protein function. Our recent study has already

demonstrated that specific di-peptides play the central role in

protein halostability and thermostability [28,72]. The role of some

di-peptides, such as Pro - Ala, Pro – Gly, Phe – Met, Trp – Leu

and Trp – Pro (selected as important protein features by decision

tree models to identify influenza A subtypes) was indentified in the

present study. Interestingly, as presented in Figure 2, wide-speared

HA subtypes of influenza virus (H3 and H1) have lower

frequency/counts of particular dipeptides such as Asn-Met, Phe-

Met, and Pro-Gly. Decreasing the number of tough structural

dipeptides provides more flexibility for virus to attack surface cells

of different hosts and escap host immune system.

The ability of various decision tree induction models applied in

this study to correctly classify influenza A subtypes based on

protein attributes varied considerably. In some models, very few

subtypes (two or three) were identified which illustrate the

incompetence of these models. However, other models, such as

Stump and Random tree run on removed correlated features dataset

were able to completely classify the HA subtypes based on their

protein features. The latter models are suitable tools to classify

those viral subtypes. As shown in Table 2, the overall accuracies

for tree induction models were generally high and improved when

joined with appropriate feature weighting criteria. For example,

the accuracy for Decision Tree model with Info Gain criterion run on

FCdb was 46.04%, but improved to 99.06% when the criterion

changed to Accuracy, indicating a very sharp increase in the model

accuracy and performance. The best accuracy achieved when the
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Random Forest model ran with Gini Index criterion (99.70%) which

makes it the best model to apply in such conditions. The

performances of Naı̈ve Bayes models (with and without kernel) were

also high enough (more than 99%), which also makes these models

to cluster HA subtypes into the right classes with high accuracies.

SVM is a supervised non-parametric statistical learning

technique with there are no assumption problem that usually

involve in identification of multiple classes (more than two).

Adjustments are made to the simple SVM binary classifier to

operate as a multi-class classifier using methods such as one-

against-all, one-against-others, and directed acyclic graph. Since

example data is often not linearly separable, SVMs introduce the

notion of a ‘‘kernel induced feature space’’ which casts the data into a

higher dimensional space where the data is separable. Overall,

SVMs are intuitive, theoretically well- founded, and have been

shown to be practically applicable. The methods have been widely

employed by researchers in different areas of science [83–88],

including influenza research [89–93]. In general, the RBF kernel is a

reasonable first choice in SVM approaches. This kernel nonlinearly

maps samples into a higher dimensional space. Thus, unlike the

linear kernel, it can handle the situation when the relationship

between class labels and attributes is nonlinear [93]. In this study,

RBF kernel function applied and showed high level of accuracy in

classifying 16 classes of HA viruses based on their protein features.

These results illustrate for the first time that RBF kernel is an

appropriate model (on dataset scaled by grid search) to find the key

underlying physic-chemical charateristics of HA subtypes and

predict based on them. Convergence of training with SVM (which

is a deterministic quadratic optimization procedure) is much faster

than neural network (which is randomized procedure).

Sequence-alignment based methods (BLAST and phylogenic

trees), drawn by nucleic acid or amino acid sequence alignments,

have been extensively employed as the basis for evolutionary

studies. However, homology-based methods does not consider the

structural and functional features of proteins during evolution

[24]. The presented approch in this study based on the machine

learning algorithms running on structural protein features provides

a new evolutionary pathway separation of HA a subtype which

takes into account the structural reasons of this diversity. As

discussed before [24], the presented procedure can significantly

enrich and qualify any type of further evolutionary studies by

completion of the common sequence homology based phylogenic

analysis methods.

There is a major difference between the presented method in

this study with the ‘‘composition vectors based methods’’ as

another alignment-free method. The ‘‘composition vectors based

methods’’ use a sting or repeats (amino acid or nucleotide), with a

limited number between 1 to in maximum 7 and count the

number of these repeats within different genomes or genes [94–

96]. If we consider each repeat as a feature (attribute); in total, we

will have 7 features. In our method, ‘‘large scale supervised mining

of protein attributes’’, we have calculated 896 physic-chemical

protein characteristics for each sequence which offers a compre-

hensive view on underlying protein architecture and shed light on

the key protein characteristics which govern HA subtyping.

This research will serve as a basis for future studies on

prediction of the structure of future HA sequences which will be

capable of infecting a broad range of hosts. Applying this approach

on other influenza protein segments in particular N and M2e (the

other surface protein) will complete the puzzle of underling

structural protein architecture of influenza subtypes and the

possible structural changes which happens during host range

increase.

Based on the findings of this study, it is possible to predict

antigenic variation of any input influenza sequence using

haemagglutinin amino acid composition. This prediction does

not need similarity searches or gathering information about the

complex, expensive, and time-consuming features of the tertiary

and quaternary protein structure or any need to laboratory

activity. The developed models can be further embedded in web-

based applications or softwares to predict possible pandemic

strains from recently observed or computationally guessed HA

sequences. Extraction of a large number of protein characteristics

and pattern recognition trough supervised machine learning

models can also be employed in future studies on understanding

the interaction between antigen and antibody (immunity reactivity

measured by ELISA/Western Blot [97]) and finding the key

underlying physic-chemical characteristics in the structure anti-

body and antigen which can result in vaccine breakdown.

In addition, our findings add to the growing body of literature

on the molecular biology of influenza virus, which are urgently

needed by many industries and vaccine-producing institutes.

Furthermore, our method will serve as a model for future

investigation on NA and M2e amino acid compositions, as well

as the interaction between HA, M2e, and NA antigens. This study

suggests that amino acid profiling of influenza surface proteins has

the potential to monitor host specificity.

Materials and Methods

i: Extraction of Structural Protein Attributes Based on HA
Sequences

Seven thousand and three hundred and thirty eight sequences of

HA virus proteins from various species (human, bird, pig, horse,

mouse, etc) were extracted from the Influenza Research Database

(http://www.fludb.org/) and categorized as H1 to H16, according

to the database classification. Some sequences of avian influenza

were obtained based on AH/2006/050 and AH/2010/039

projects supported by Australian Centre for International Agri-

cultural Research (ACIAR).

For each of these sequences, eight hundred and ninety six

protein features (attributes) such as length, weight, isoelectric

point, count and frequency of each element (carbon, nitrogen,

sulphur, oxygen, and hydrogen), count and frequency of each

amino acid, count and frequency of negatively charged, positively

charged, hydrophilic and hydrophobic residues, count and

frequency of dipeptides, number of a-helix and b-strands, and

other secondary protein features were extracted using various

bioinformatics tools and software from the ExPASy site (http://

www.expasy.org) and CLC bio software (CLC bio, Finlandsgade

10–12, Katrinebjerg 8200 Aarhus N Denmark). All features were

classified as continuous variables, except virus subtypes, virus host

and N-terminal amino acids, which classified as categorical. A

dataset of these protein features imported into RapidMiner

software [RapidMiner 5.0.001, Rapid-I GmbH, Stochumer Str.

475, 44227 Dortmund, Germany]. Virus subtypes (H1-H16) was

set as the output variable (label) and the other variables were set as

input variables. The following steps were then applied to the

dataset.

ii: Data Cleaning
Initially, duplicate features were removed by comparing all

examples on the basis of the specified selection of attributes (two

examples were assumed equal if all values of all selected attributes

were equal). Then, we removed the superfluous attributes from the

dataset. Nominal attributes were regarded as superfluous when the

most frequent values were contained in more or less than nominal
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useless above or below percent of all examples. Numerical

attributes which possessed standard deviations less than or equal

to a given deviation threshold (0.1) were assumed to be superfluous

and removed. Finally, correlated features (with Pearson correlation

greater than 0.9) were omitted. After cleaning, the number of

attributes decreased from 896 to 893. We called this dataset final

cleaned dataset (FCdb) and used for next attribute weighting

analysis. This dataset is represented in Table S1.

iii: Application of Attribute Weighting Algorithms to Find
the Most Important Structural Protein Attributes
Distinguishing HA Subtypes

To determine how structural protein features of HA sequence

determines its final subtype, 10 different attribute weighting

algorithms including weighting by PCA, weighting by Uncertain-

ty, weighting by Relief, weighting by Chi Squared, weighting by

Gini Index, weighting by Deviation, weighting by Rule, weighting

by Gain Ratio, weighting by Info Gain, and weighting by SVM

were applied on final cleaned database (FCdb, Table S1). Attribute

weighting algorithms find the most important protein attributes

which differ in protein structure between different HA subtypes.

The protein attributes which announced important by most of

attribute weighting algorithms (intersection of different weighting

methods) were assumed as the key distinguishing features of HA

subtypes.

Ten new generated datasets produced by trimming (filtering) of

the original dataset (FCdb) via attribute weighting algorithms as

well as the original FCdb dataset (11 datasets in total) were used as

input for Decision Tree, Baysian, and Neural Network models.

Weight by Information gain. This operator calculated the

relevance of a feature by computing the Information Gain in class

distribution.

Weight by Information Gain ratio. This operator calculat-

ed the relevance of a feature by computing the information Gain

Ratio for the class distribution.

Weight by rule. This operator calculated the relevance of a

feature by computing the error rate of a one R Model on the

example set without this feature.

Weight deviation. This operator created weights from the

standard deviations of all attributes. The values were normalised

by the average, the minimum, or the maximum of the attribute.

Weight by chi squared statistic. This operator calculated

the relevance of a feature by computing, for each attribute of the

input example set using chi-squared statistic with respect to the

class attribute.

Weight by gini index. This operator calculated the relevance

of an attribute by computing the Gini index of the class distribution,

if the given example set would have been split according to the

feature.

Weight by uncertainty. This operator calculated the rele-

vance of an attribute by measuring the symmetrical uncertainty

with respect to the class.

Weight by relief. This operator measured the relevance of

features by sampling examples and comparing the value of the

current feature for the nearest example of the same and of

different class. This version also worked for multiple classes and

regression data sets. The resulting weights were normalised into

the interval between 0 and 1.

Weight by SVM (Support Vector Machine). This operator

used the coefficients of the normal vector of a linear SVM as

feature weights.

Weight by PCA (Principle Component Analysis). This

operator used the factors of the first of the principal components as

feature weights.

iv: Attribute Selection and Generation of New Pre-
trimmed Cprotein Feature Datasets

After running attribute weighting models were run on FCdb

dataset (original clean dataset of protein features), each protein

attribute (feature) gained a value between 0 and 1, which reveales

the importance of that attribute with regard to a target attribute

(HA subtypes). As mentioned before, an attribute was assumed

important if that attribute received weight higher than 0.5 (.0.5)

by a certain attribute weighting algorithm (Table S4). The protein

attributes which announced important by most of attribute

weighting algorithms (intersection of different weighting methods)

were assumed as the key distinguishing protein features in HA

subtyping and are presented in Table 1. In conclution.

All variables with weights higher than 0.50 were selected and

10 new datasets were created according to 10 applied attribute

weighting algorithms. These newly formed datasets were named

according to their attribute weighting models (Information gain,

Information gain ratio, Rule, Deviation, Chi Squared, Gini index,

Uncertainty, Relief, SVM and PCA) and were used to join with

subsequent models (supervised). Each model of supervised or

unsupervised clustering were performed 11 times; the first time it

ran on the main dataset (FCdb) and then on the 10 newly formed

datasets from attribute weighting and selection.

V: Machine Learning Models to Predict Unknown
Influenza A Virus Classes Based on Protein Attributes

As mentioned above, the original FCdb dataset as well as

10 new generated datasets produced by trimming (filtering) of the

original dataset (FCdb) via attribute weighting algorithms were

used as input for machine learning models.

Four classes of machine learning models (Decision Trees, SVM,

Baysian and Neural Network algorithms) were applied on all 11

datasets to find suitable model(s) in order to predict unknown

classes of influenza A virus virus based on the computed protein

attributes computed.

To prevent overfitting and calculate the accuracy of each

model, 10-fold cross validation was employed in this study to train

and test models on all patterns. Ten-fold cross validation is a

standard and commonly used method for evaluating classifier

methods, as set of proteins used for training and testing are

mutually exclusive. Details of this well-known method and its

principals have been extensively discussed in many previous

published papers [18–29].

Based on 10-fold cross validation; records were divided into 10

nearly equal parts randomly. Our dataset had 7353 records in

total. In other words, records (7353) were randomly divided into

10 parts: 9 parts consisted of 735 records, and the last one

contained 738 records. When prediction algorithms such as SVM,

Neural Network or Tree Induction models were performing, nine

sets (parts) were used for training and the 10th one for testing.

Then, in next run, another part set as testing set and the other 9

parts as training sets. The process was repeated 10 times and the

accuracies for true, false and total accuracy were calculated. The

final accuracy reported as the average of the accuracy in all ten

tests (runs).

In each run, the predictor or machine learning system did not

expose to test set and just trains on 9 training sets (so this diminish

the possibility of overfitting into zero). When the system is trained

well and the calculated accuracy is reached at least to 0.85%, then

the model tries to predict or guess the unknown test set and

calculates the accuracy for this set. Repeating the same procedure

for 10 times and non-using of the test set for training are the bases

of preventing the learning application from overfitting.
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Decision tree. Sixteen machine learning models run on four

decision tree algorithms (Decision Tree, Decision Tree Parallel, Decision

Stump and Random Forest) with four different criteria (Gain Ratio,

Information Gain, Gini Index and Accuracy) on all 11 datasets. A

decision stump is a Decision Tree, which uses only a single

attribute for splitting. For discrete attributes, this typically means

that the tree consists only of a single interior node (i.e., the root has

only leaves as successor nodes) [98]. If the attribute is numerical,

the tree may be more complex. Models trained and tested with

ten-fold cross validation and the average of accuracies were

computed as stated above.

Support Vector Machine (SVM). SVMs are popular and

powerful techniques for supervised data classification and predic-

tion, so four different SVM models (SVM, LibSVM, Linear SVM and

Evolutionary SVM) were used here to implement models for

prediction of Influenza A classes based on protein features. Briefly,

all 11 databases [original protein feature dataset (FCdb) and 10

datasets generated by trimming (filtering) FCdb dataset by PCA,

Uncertainty, Relief, Chi Squared, Gini Index, Deviation, Rule,

Gain Ratio, Info Gain, and SVM weighting algorithms] were

transformed to SVM format and scaled by grid search (to avoid

attributes in greater numeric ranges dominating those in smaller

numeric ranges) and to find the optimal values for operator

parameters.

To prevent overfitting problems, again 10-fold cross validation

was applied and the averages of accuracies were computed. RBF

kernel which nonlinearly maps samples into a higher dimensional

space and can handle the case when the relation between class

labels and attributes is nonlinear used to run with SVM models.

Grid search is an appropriate way to determine the optimal values

for two major parameters of the RBF (parameters C and gamma).

Other kernels such as linear, poly, sigmoid and pre-computed

were also applied to the datasets to find the best accuracy.

Naı̈ve bayes. Naı̈ve Bayes based on Bayes conditional

probability rule was used for performing classification and

prediction tasks. Naı̈ve Bayes assumes the predictors are statistically

independent which makes it an effective classification tool and easy

to interpret. Two models, Naı̈ve base (returns classification model

using estimated normal distributions) and Naı̈ve base kernel

(returns classification model using estimated kernel densities)

trained with 10-fold cross validation on all 11 databases (original

dataset as well as 10 dataset generated by applying 10 different

attribute weighting algorithms) and the model accuracies in

predicting the right HA virus class computed as stated before.

Neural network. Two neural networks models (Neural Net and

AutoMLP) trained with 10-fold cross validation on all 11 databases.

The model accuracies in predicting the right HA virus class were

computed as stated before. In other words, we used 10-fold cross

validation of training subsets to compare the prediction accuracy

of ‘‘neural network with neural network criterion’’ versus ‘‘neural

network with AutoMLP criterion’’ on original dataset (FCdb) as

well as 10 datasets trimmed (filtered) via running weighting

algorithm by PCA, Uncertainty, Relief, Chi Squared, Gini Index,

Deviation, Rule, Gain Ratio, Info Gain, and SVM to find the

optimal combination of neural network algorithm with dataset

which allows the most accurate prediction (based on 10-fold cross

validation).

Neural Net learns a model by means of a feed-forward neural

network trained by a back-propagation algorithm (multi-layer

perceptron) and the structure of the neural network can be defined

by parameter list ‘‘hidden_layers’’. Here a default hidden layer

with sigmoid type and size (number of attributes+number of

classes)/2+1 created and added to the net. The used activation

function is the usual sigmoid function. Therefore, the values

ranged of the attributes scaled to 21 and +1. The type of the

output node was sigmoid because the learning data described a

classification task.

AutoMLP algorithm combines ideas from genetic algorithms and

stochastic optimization. It maintains a small ensemble of networks

that are trained in parallel with different rates and different

numbers of hidden units. After a small, fixed number of epochs,

the error rate was determined on a validation set and the worst

performers were replaced with copies of the best networks,

modified to have different numbers of hidden units and learning

rates. Hidden unit numbers and learning rates are drawn

according to probability distributions derived from successful rates

and sizes.

Vi: Statistical Analyses of the Key Distinguishing Protein
Attributes of HA Proteins (Selected by Attribute
Weighting Algorithms)

Various statistical methods such as descriptive statistics,

Univariate Analysis of Variance (ANOVA) and Multivariate

Analyses of Variance (MANOVA) were applied to investigated

the behaviour and the effects of some important amino acid

attributes (selected by attribute weighting algorithms) and some of

the important dipeptides (selected by decision tree) models on HA

subtypes (H1-H16). The features included: Non-reduced cysteines

Ext, Count of Isoleucine, Freq of Cysteine, Freq of Aspartic Acid,

Freq of Glutamic Acid (E), Freq of Glutamine, Freq of Arginine,

Freq of Tyrosine, Percentage of Histidine, Percentage of

Methionin, Percentage of Tryptophan, Percentage of Tyrosine,

Count of Phe-Met, Count of Asn-Met, Freq of Pro-Gly, and Freq

of Trp-Leu.

Also, the agglomerative hierarchical cluster analysis was applied

on dataset of the above mentioned key features consisting of 16

protein attributes per each sequence. These given variables

obtained by the feature selection criteria were standardized in

order to be equally important in computing distance [99]. The

method used in this cluster analysis was single linkage. Manhattan

distance was applied to compute the distance among items in this

study.

Supporting Information

Figure S1 Clustering of proteins based on the 16
important features found in this study. The key discovered

features (obtained by attribute weighting and decision tree models)

are highly accurate in prediction and separation of HA subtypes

and reinforces the high capability of discovered features as

predictors of HA subtyping. The features include: Non-reduced

cysteines Ext, Count of Isoleucine, Freq of Cysteine, Freq of

Aspartic Acid, Freq of Glutamic Acid, Freq of Glutamine, Freq of

Arginine, Freq of Tyrosine, Percentage of Histidine, Percentage of

Methionin, Percentage of Tryptophan, Percentage of Tyrosine,

Count of Phe-Met, Count of Asn-Met, Freq of Pro-Gly, and Freq

of Trp-Leu.

(TIF)

Table S1 The original cleaned protein feature data set
for HA sequences (Fcdb). This database contains 7338 protein

sequences and 893 protein features. Table S1 is shared by

‘‘Googledrive’’ at the following link: https://drive.google.com/

file/d/0B2Npj-saFbgeNjhwRTJubFRJdFk/edit?usp = sharing.

(DOCX)

Table S2 Distribution of important found protein
attributes (according to attribute weighting algorithms)
in the structure of HA subtypes. The features include:
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frequency of Gln, The frequency of Tyr, Percentage of Tyr,

Percentage of Cys, The frequency of Glu, Percentage of Try,

Count of Ile, The frequency of Arg, Percentage of His, The

frequency of Asp, Percentage of Met, Non-reduced Cys extinction

coefficient at 280nm, and The frequency of Phe.

(XLSX)

Table S3 Univariate Analysis of Variance (ANOVA) and
Multivariate Analyses of Variance (MANOVA) of the
effects of important amino acid attributes (selected by
attribute weighting algorithms) and some of the impor-
tant dipeptides (selected by decision tree) models on
determining HA subtypes (H1-H16).
(DOCX)

Table S4 Weighting algorithms used for selecting the
most important protein features distinguishing different
influenza HA subtypes [values (weights) closer to 1
shows higher effectiveness of feature]. Weighting algo-

rithms were weighting by PCA, weighting by Relief, weighting by

Uncertainty, weighting by Gini index, weighting by Chi Squared,

weighting by Deviation, weighting by Rule, weighting by

Correlation, weighting by Gain Ratio, and weighting by

Information Gain. Total number of attribute weighting algorithms

which have announced an attribute as important (weight .0.5) is

also counted.

(XLS)
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