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Abstract

Linear discriminant analysis (LDA) is a classical statistical approach for dimensionality reduction and classification. In many
cases, the projection direction of the classical and extended LDA methods is not considered optimal for special applications.
Herein we combine the Partial Least Squares (PLS) method with LDA algorithm, and then propose two improved methods,
named LDA-PLS and ex-LDA-PLS, respectively. The LDA-PLS amends the projection direction of LDA by using the
information of PLS, while ex-LDA-PLS is an extension of LDA-PLS by combining the result of LDA-PLS and LDA, making the
result closer to the optimal direction by an adjusting parameter. Comparative studies are provided between the proposed
methods and other traditional dimension reduction methods such as Principal component analysis (PCA), LDA and PLS-LDA
on two data sets. Experimental results show that the proposed method can achieve better classification performance.
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Introduction

Dimensionality reduction is a critical pre-processing step in

many applications, and several methods have been proposed for

dimensionality reduction, such as PCA [1–3], Fisher linear

discriminant (FLD) [4] and PLS [5,6]. FLD is sometimes known

as LDA and the primary purpose of LDA is to project high-

dimensional data onto a low-dimensional space where the data

achieves maximum class separability [4,7]. The derived features in

LDA are linear combinations of the original features. The optimal

projection or transformation in classical LDA is obtained by

maximizing the ratio of between-class and within-class distance,

thus achieving maximum discrimination [8]. The intention of PLS

is to form components that capture most of the information in the

X variables that capture most of the information in the X variables

that is useful for predicting y1,…,yl, while reducing the

dimensionality of the regression problem by using fewer compo-

nents than the number of X variables [9–11].

In recent years, many approaches have been proposed to

overcome the limitations of LDA. The partial least squares

discriminant analysis (PLS-DA) using PLS for classification by

establishing the connection to Fisher’s linear discriminant analysis

was properly formalized by Barker and Rayens [5] and Nocairi et

al. [12]. This method has been also further developed by Indahl et

al. [13] in which an incorporated prior probabilities (associated

with the present groups) in the computation of PLS components

was suggested. In particular, the existence of high number of

irrelevant variables has led to inconsistency of coefficient estimates

in the linear regression setting. As a result, Chung et al. [14]

proposed sparse partial least squares discriminant analysis (SPLS-

DA) which has extended SPLS to solve this problem. By taking

advantage of a sequence of data reducing linear transformations

(consistent with the computation of ordinary PLS-DA compo-

nents), Liland et al. [15] developed a powered partial least squares

discriminant analysis (PPLS-DA) for computing each component

from the transformed data by maximization of a parameterized

Rayleigh quotient associated with Fisher’s canonical discriminant

analysis (FCDA [16]). Telaar [17] introduced an extension of

PPLS-DA for optimizing a power parameter towards the final aim,

namely towards a minimal classification error. Marigheto [18]

proposed a method termed linear discriminant analysis based on

partial least-squares (PLS-LDA), where a two-group LDA was

performed by using PLS analysis as the reduction step. This

method obtained better results than many other widely used

classification methods [19–22]. Sometimes, small sample problems

can be encountered. In this situation, the within-class scatter

matrix of LDA is often irreversible. Some researchers have

proposed some solutions, for example, using SVD [38] or QR [45]

decomposition to solve the within-class scatter matrix. Cai et al.

[46] proposed a method called Spectral Regression Linear

Discriminant Analysis (SRLDA), which casts the problem of

learning an embedding function into a regression framework, by

adjusting the regularization parameter, can be avoided to the small

sample problem. Schafer and Strimmer [42] proposed a novel

shrinkage covariance estimator that exploits the Ledoit-Wolf

lemma for analytic calculation of the optimal shrinkage intensity.

This shrinkage LDA can guarantee the within-class scatter matrix

is always positive definite even for small sample sizes.

Herein we propose two PLS based LDA discriminant methods:

LDA-PLS and ex-LDA-PLS. Unlike PLS-LDA in which the PLS

method is used for dimension reduction, the proposed LDA-PLS

and ex-LDA-PLS uses PLS to adjust the LDA projection direction.

The former merely controls the number of PLS latent variables to

adjust the LDA projection direction, while the latter combines the
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LDA-PLS regression coefficient Blda-pls and the LDA projection

vector wlda by adjusting a parameter thereby giving more accurate

projection direction.

Background

Notation
Capital and lowercase letters in boldface denote matrix and

vector, respectively. Lowercase italic letters denote the scalars.

Matrix dimensions are shown as (m6n), where m and n are the

number of rows and columns, respectively.

X n6k matrix of samples

Y n6m matrix of sample labels

Y n61 vector of sample labels

Bpls k6m matrix of PLS regression coefficients

T n6a matrix of the PLS scores for X

P k6a matrix of the PLS loadings for X

U n6a matrix of the PLS scores for Y

Q m6a matrix of the PLS loadings for Y

n number of samples

k number of sample features

m number of sample labels

a number of components

ST total class scatter matrix

SW within-class scatter matrix

SB between-class scatter matrix

Overview of Linear Discriminant Analysis
Focused on binary classification problems, LDA finds the set of

the most discriminant projection vectors which can map high-

dimensional samples onto a low-dimensional space. Using the set

of projection vectors determined by LDA as the projection axes, all

projected samples will form the maximum between-class scatter

and the minimum within-class scatter simultaneously in the

projective feature space [23].

Suppose we have two classes of labeled data x1~ x1,1, . . . ,x1,N1f g
and x2~ x2,1, . . . ,x2,N2f g. Where xi,j [ Rd (i~1,2; j~1, � � � ,Ni)

and d denotes the sample size of the data dimensionality. Then the

centers of two classes are mi~
1

Ni

X
x[xi

x(i~1,2), and two scatter

matrices, called within-class and between-class scatter are defined as

follows;

SW~S1 zS2 ð1:1Þ

where Si~
X
x[xi

(x�mi)(x�mi)
T(i~1,2)

SB~(m1�m2)(m1 �m2)T ð1:2Þ

The algorithm is as follows.

Algorithm LDA
Input: Two sets of labeled data x1~ x1,1, . . . ,x1,N1f g and

x2~ x2,1, . . . ,x2,N2f g
Output: Find a linear projection w that maximizes the

separability between these two classes.

1. Compute the class center of ith class mi and compute within-

class scatter SW and between-class scatter SB

2. Obtain LDA projection by maximizing: J(w)~
wTSBw

wTSWw

The optimization problem in J(w)~
wTSBw

wTSWw
can be written as

follows

min
w

wTSBx

s:t: wTSWw~c

(
ð1:3Þ

Let c=0, thus we can construct the Lagrangian as;

L(w,llda)~wTSBw�llda(wTSWw�c) ð1:4Þ

LL(w,llda)

Lw
~SBw�lldaSWw ð1:5Þ

It is clear that SBw~lldaSWw, so we can easily obtain the

optimal w and use the value of new samples after the projection on

the w as the input parameters of classification [24–26]. Herein we

will use SVD [38] decomposition to obtain the project vector w.

Overview of Partial Least Squares
Partial least squares (PLS) algorithm was initially suggested by

Wold [27–29]. It is widely used in social sciences, chemometrics

and other fields. The PLS method, which in its classical form is

based on the nonlinear iterative partial least squares (NIPALS)

algorithm [11]. Many NIPALS based algorithms [47–49] are

those that incorporate generalized linear regression frame work

which is simple and readily feasible to implement. Moreover, it

can be easily generalized to any model that is linear at the level of

the explanatory variables. The classical NIPALS algorithm is

used herein and the following steps are repeated until conver-

gence.

Algorithm NIPALS
Input: Sample data X and label matrix Y, the number of latent

variable of PLS

Output:Score matrix of X and Y, the loading matrix of X and

Y, the regression coefficient matrix B.

1. Compute the weight of X, w~XTy, normalize the weight

w~w= wk k
2. Obtain score of X, t~Xw

3. Compute the weight of Y, cy~YTt=(tTt), normalize the weight

cy~cy= cy

�� ��
4. Obtain the vector u, u~Ycy

5. Check convergence: compare the t with the one from the

preceding iteration. If they are equal (within a certain rounding

error) go to step 6, else go to step 1

6. Compute the loading vector of X, p~XTt
�

tTt

7. Compute the loading vector of Y, q~YTt
�

tTt

8. Compute the coefficient b, b~uTt=(tTt)

9. Update matrix X and Y, X?X� tqT,Y ?Y� tqT

10. Save the vector t, p, u, b and q. Back to step 1 and

compute the next component

Based on the above description about NIPALS [30], the PLS

model tries to determine the multidimensional direction in the X
space that explains the maximum multidimensional variance

direction in the Y space, and to decompose the component at the

Combining LDA and PLS for Dimension Reduction
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same time on sample matrix X and corresponding label matrix Y.

This is shown in the following formula;

X~TPT zE ð1:6Þ

Y~UQTzF ð1:7Þ

U~TDzH ð1:8Þ

where T and U are score matrices of X and Y, P and Q are

loading matrices of X and Y, respectively. The values of E, F and

H here are the predicted residuals. Then, we can use the score

matrix and loading matrix to do further analysis.

LDA-PLS Theory and Algorithm

LDA-PLS Theory
As can be seen from Section 2.2, LDA is a method to obtain the

optimal solution w such that J(w)~
wTSBw

wTSWw
is maximized, that is,

making within-class scatter as small as possible and between-class

scatter as large as possible. It differs from the PCA method in that

PCA chooses a maximum variance projection direction, while

LDA selects the most favorable direction for classification.

However, in some cases (Section 3.3), LDA projection direction

obtained is not necessarily optimal. Perhaps a slight rotation of the

projection direction can achieve the desired direction. A more

detailed description of this idea can be found below. Based on this

idea, we propose a combination of LDA and PLS dimension

reduction method, which we will call LDA-PLS.

The main step of LDA-PLS is that using training data set X and

corresponding label vector y to calculate the LDA projection

direction wlda and value clda (where clda~Xwlda is the projection

value of X in the wlda direction), then using the projected value clda

as the label to calculate PLS regression coefficient bpls, finally

subtracting the value in the w projection space from X,

corresponding formula is X~X�clda cldacT
lda

� ��1
cT

ldaX. This pro-

cess is repeated until this meets the number of components we

require. The LDA-PLS algorithm can be expressed as (the

relevant parameters of PLS optimization object can be found

elsewhere [36,37]);

argmin
bpls

( Xbpls�clda

�� ��2
),s:t:bpls[k

clda~LDA(X,y)

8<
: ð1:9Þ

where bpls is the regression coefficient of PLS, clda is the projection

value of X in the LDA direction. LDA(X ,y) is the LDA algorithm

for solving the projection direction, X and y are input parameters.

From the above description, we can easily obtain the LDA-PLS

method as follows.

Algorithm LDA-PLS
Input: Sample data X and label vector y, the number of latent

variable of PLS, the component number of LDA-PLS.

Output: Coefficient matrix Blda�pls and projection direction

Wlda�pls of LDA-PLS.

1. Initial Blda�pls ~ ½�, Wlda�pls ~ ½�
2. clda,wldað Þ~LDA X,yð Þ

3. bpls~PLS X, cldað Þ
4. Blda�pls~½Blda�pls;bpls�; Wlda�pls~½Wlda�pls;wlda�
5. X~X�clda cT

ldaclda

� ��1
cT

ldaX

6. Return to step 2 if the iteration number is less than the number

of latent variable, else goto step 7

7. Save the coefficient matrix Blda�pls and projection direction

Wlda�pls

The initial idea is to use Blda�pls as the model projection

direction, thus new samples need only to project on the direction

of Blda�pls. We can use this projected value for classification. The

best projection direction may be located between two directions of

LDA-PLS corresponding latent variable is 1 and 2. Only by

adjusting the latent variable can the optimal direction not be

obtained (the best direction is between the red lines with up-

triangle and down-triangle). However, the numbers of PLS latent

variables are generally integers, conceivable in that such an

adjustment is relatively difficult only by latent variables. To have a

more fine-tuning capability, we need to assume a combination

value between regression coefficient Blda�pls and the LDA-PLS

projection matrix Wlda�pls. Then we will set the final direction of

the model as,

B exlda pls~lBlda�pls z (1�l)Wlda�pls ð1:10Þ

We call this as ex-LDA-PLS algorithm. Here, the l of ex-LDA-

PLS is obtained by searching the best value from 0 to 1 and step

size is set to 0.001.

Relationship of the Projections between LDA-PLS and
LDA

Here we focus on the relationship between Blda�pls and Wlda,

First we briefly recall the formulas related to the PLS regression

coefficient B (to provide convenience, we will not distinguish

Blda�pls and B) such that;

P~(TTX)T(TTT)�1 ð1:11Þ

Q~(TTY)T(TTT)�1 ð1:12Þ

B~Wpls(P
TWpls)

�1QT ð1:13Þ

When the number of latent variable is 1, Wpls and P are

column vectors, Q is a constant. Thus Eq. (1.13) can be written as;

b~wpls(p
Twpls)

�1q ð1:14Þ

Since p, wpls are column vectors, so (pTwpls)
�1 is a constant, q is

also a constant, let us set l0~(pTwpls)
�1q. According to the basic

PLS principle that wpls~XTy, and y~Xwlda in the LDA

algorithm. Using the above Eq. (1.14) gives us;

b~l0wpls~l0XTy~l0XTXwlda ð1:15Þ

Combining LDA and PLS for Dimension Reduction

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e96944



When the number of latent variable is 2, Wpls, P and Q are all

matrices, thus we can write the three matrices in the vector form,

respectively is Wpls~ w1,w2½ �, P~ p1,p2½ � and QT~ q1,q2½ �. Sub-

stituting this into Eq. (1.13) we obtain;

b~Wpls(P
TWpls)

�1Q

~ w1,w2½ � p1,p2½ �T w1,w2½ �
� ��1 q1

q2

" #

~ w1,w2½ �
pT

1 w1,pT
1 w2

pT
2 w1,pT

2 w2

" #�1
q1

q2

" #

~ w1,w2½ � 1

det(A)

pT
2 w2,�p1

Tw2

�pT
2 w1,pT

1 w1

" #
q1

q2

" #
ð1:16Þ

where A~
pT

1 w1,pT
1 w2

pT
2 w1,pT

2 w2

� 	
, set l1~

1

det(A)
, Expanding Eq.

(1.16), we can obtain;

b~l1 w1,w2½ �
pT

2 w2,�pT
1 w2

�pT
2 w1,pT

1 w1

" #
q1

q2

" #

~l1(w1pT
2 w2q1�w2pT

2 w1q1�w1pT
1 w2q2 zw2pT

1 w1q2)

ð1:17Þ

Because pT
2 w2q1, pT

2 w1q1, pT
1 w2q2 and pT

1 w1q2 are constant, so we

set k1 ~ pT
2 q2q1, k2 ~ pT

2 w1q1, k3 ~ pT
1 w2q2 and k4 ~ pT

1 w1q2.

Also we have w2 ~ (I� l2XTXXTYYTX)w1 (where

l2~(t1
Tt1)�1 is a constant. Proof can be found in Appendix

S1), w1~XTy and y~Xwlda. Finally, we obtain;

b~ l1(k1�k3 zk4�k2)I�l1l2(k4�k2) (XTXXTYYTX)

 �
XTXwlda

ð1:18Þ

It can be seen from the above expression that LDA-PLS

projection Blda�pls fulfills the requirement of Blda�pls~MXTXwlda,

where M is a matrix, and M changes with different latent

variables. This expression indicates the direction wlda of LDA

multiplies the left side by matrix MXTX is LDA-PLS projection

Blda�pls. That is, the left multiplication factor is the significance

factor of doing the rotation and transformations on wlda. In

addition, when the number of latent variables tends to infinity,

each Bpls~PLS X, cldað Þ can be fitted consistently, so the LDA-

PLS regression coefficient Blda�pls equals to the LDA projection

direction wlda.

Simple Example
In order to better understand the LDA-PLS and ex-LDA-PLS

algorithm, we construct a special two-dimensional data set, and

draw the data set and the projection direction of a variety of

algorithms, as shown in Figure 1. In Figure 1, the green line with a

Figure 1. Two dimensional data set with the using of different algorithms. Black line with a square represents the direction of the LDA
which coincides exactly with the direction of LDA-PLS when the latent variable is equal to 2 (the proof can be seen from Section 3.2). Red dotted lines
of la and lb are the boundary lines which can be correctly separate the two kinds of samples, and all lines between these boundaries can also do.
Boundary classification la and lb correspond to the direction of ex-LDA-PLS (la) and ex-LDA-PLS (lb).
doi:10.1371/journal.pone.0096944.g001
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circle is the direction of PLS regression coefficient Blda�pls, black

with square is the direction of the LDA which coincides exactly

with the direction of LDA-PLS when the latent variable is equal to

2 (the proof can be seen from Section 3.2). The blue lines with left

and right triangles are LDA-PLS projection direction. The red

lines with upper and down triangles are the ex-LDA-PLS

projection direction achieved by adjusting parameter l, there is

often more than one line can be correctly separated the samples in

the process to determine the lambda parameter. Here, we only

give two boundary lines, ex-LDA-PLS (la) and ex-LDA-PLS (lb).

The red dotted lines la and lb are the classification of ex-LDA-

PLS (la) and ex-LDA-PLS (lb) respectively. Optimal classification

is given between these two lines. When the center of each kind of

samples is determined, then the projection direction of LDA is also

determined. If each class does not have horizontal data points,

then the LDA direction is the ideal line colored as black in

Figure 1. This is a toy dataset with the best classification direction

between the two red dotted lines in Figure 1, and the

corresponding projection direction in red generated by the ex-

LDA-PLS algorithm. The LDA-PLS result is not acceptable

currently, primarily because the latent variable uses only integer

value 1 or 2. These two latent variables are not able to adjust to

the result in the best direction. However the ex-LDA-PLS is

readily able to give meaningful results.

Experimental

Data Sets
For the purpose of testing and comparing PCA, LDA, PLS,

PLS-LDA, shrinkage LDA, LDA-PLS and ex-LDA-PLS methods,

we use two data sets. Data set 1 is Raman spectral data, and Data

set 2 is a UCI data set consisting Gas Sensor Array Drift (http://

archive.ics.uci.edu/ml/datasets.html). Before using the data sets,

we removed the non-numerical and missing inputs data, while

class label is converted to a numeric type. The details of datasets

are shown in Table 1. The Gas dataset was made using an array of

16 metal-oxide gas sensors and a robust gas delivery system [29]. It

consisted of a six-gas/analyses classification problem dosed at

different concentrations, in which the goal was to discriminate the

six different analyses regardless of the concentration. Herein we

chose tags for 5 and 6 categories as our classification data.

Raman spectral data set were carried out with a micro-Raman

setup of a standard Raman spectroscope (HR LabRam Invers,

Jobin-Yvon-Horiba). The excitation wavelength of the used laser

(Nd: YAG, frequency doubled) was centered at 532 nm. Collec-

Table 1. Data Sets.

The Name of Data Set Number of Examples Number of Attributes Class label Year

Gas 4782 128 5 and 6 2012

Raman 925 1834 0 and 4 N/A

Toy 1224 2 21 and 1 2013

doi:10.1371/journal.pone.0096944.t001

Figure 2. Estimation of Lambda. Acc represent classification accuracy. Red line is the classification accuracy of ex-LDA-PLS algorithm when
lambda from 0 to 1, blue line is the best lambda which can make the classification results reach maximum.
doi:10.1371/journal.pone.0096944.g002

Combining LDA and PLS for Dimension Reduction

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e96944

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html


tively, there were 2545 spectra for 20 different strains available

[31]. Herein we select two classes (B. subtilis DSM 10 and M. luteus

DSM 348).

Experimental Environment
All programs (http://mda.ia.ac.cn/people/tangliang/code.htm)

except shrinkage LDA were performed in house using the Matlab

Version R2013a (Math Works, Inc.) and run using a personal

computer with a T5550 1.83GHz Intel Core 2 Duo processor,

4 GB RAM, and Windows 7 operating system.

Results and Discussion

Estimation of Lambda
For practical application of Eq. (10) one needs to obtain a best

estimate l. A key question is how to select, one common but also

computationally very intensive approach to estimate the l is by

using traverse method [39] or cross-validation [40]. Whether

traverse method or cross-validation, we can obtain the best

lambda only in the training dataset. But the real optimal lambda is

to obtain good result in test set, this need the sample is divided

evenly. Otherwise, we even can obtain optimal result in the

training set. The result in test set often seems not good. As can be

seen from Figure 1, the best value of l may be a sub-interval

between 0 and 1. Our approach is to divide training set into two

parts, one is used to select the best l, another part is used to verify.

Finally, we chose one of the most ideal l from the validation

results. For simplicity, we only took a traversal once to the training

set. As can be seen from Figure 2A, the classification accuracy of

the best l is better than l equal to zero (the Bexlda�pls is the LDA

projection direction) or one (the Bexlda�pls is the LDA-PLS

projection direction). In Figure 2B, although found an interval,

ex-LDA-PLS can achieve the optimal result, and from Table 2

also can be seen that the accuracy of LDA and ex-LDA-PLS is

equal, but Raman is a small sample dataset. The best result in

training set may be not necessarily the best in the test set. This

phenomenon can be seen from Table 2, the result of ex-LDA-PLS

is slightly better than LDA, but less acceptable than LDA-PLS.

Theoretically, according to the Eq. (1.10), the result of ex-LDA-

PLS will be equal to LDA-PLS or LDA even in the worst case. But

this situation is based on having adequate training and test set.

Comparative Studies on Classification
We conducted a comparative study of PCA, LDA, PLS, PLS-

LDA, shrinkage LDA, LDA-PLS and ex-LDA-PLS in terms of

classification. The final result contains four indicators, and they

were training and test accuracies, G-Mean and F-Value [41]. G-

Mean and F-Value are the reasonable evaluation criteria in

imbalanced data sets, and they can be simultaneously reflecting

the ability to identify the positive samples and negative samples.

The algorithm will have more accuracy rate for positive and

negative samples when the value of G-Mean and F-Value become

higher. In order to evaluate the performance fairly, we used the

Bayesian linear classifier [32,33] for all the above dimension

reduction methods. For PLS-LDA, LDA-PLS and ex-LDA-PLS,

the optimal variable value for the PLS latent ranged from 1 to 10

was estimated through 10-fold cross-validation in Gas and Raman

datasets. Here we will use the cumulative contribution rate [34,35]

assessment strategy for PCA, thus the cumulative contribution rate

is set to 0.95. The data was randomly split into training and test

sets of ratio 7:3. The experiment was repeated 20 times. The final

accuracy reported is the average of the 20 different runs. The

results on Gas dataset are summarized in Table 3. As observed in

Table 3, when the cumulative contribution rate is 0.95, the

Table 2. Classification Accuracy of Different Comparative Algorithms on Raman Dataset.

Algorithm Train Acc Test Acc G-Mean F-Value

PCA 0.5087 0.4958 0.5259 0.5208

LDA 1.0000 0.9603 0.9599 0.9399

PLS 0.9870 0.9841 0.9854 0.9755

PLS-LDA 0.9870 0.9847 0.9861 0.9762

Shrinkage LDA 0.9815 0.9783 0.9815 0.9669

LDA-PLS 0.9935 0.9848 0.9849 0.9765

ex-LDA-PLS 1.0000 0.9794 0.9758 0.9680

doi:10.1371/journal.pone.0096944.t002

Table 3. Classification Accuracy of Different Comparative Algorithms on Gas Dataset.

Algorithm Train Acc Test Acc G-Mean F-Value

PCA 0.7896 0.7902 0.8103 0.7976

LDA 0.9652 0.9576 0.9615 0.9646

PLS 0.9869 0.9842 0.9870 0.9869

PLS-LDA 0.9866 0.9848 0.9875 0.9874

Shrinkage LDA 0.9934 0.9912 0.9928 0.9928

LDA-PLS 0.9912 0.9896 0.9913 0.9914

ex-LDA-PLS 0.9962 0.9922 0.9934 0.9936

doi:10.1371/journal.pone.0096944.t003
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classification result of the PCA seems weaker than the other

algorithms. For the LDA method, the result is better than PCA,

however less acceptable than others. The primary idea of PLS-

LDA is to remove redundancy and noise of high-dimension data

set by PLS method, then use the dimension reduction features as

the LDA algorithm input, so as to make the PLS-LDA obtain little

improvement than PLS in performance. On the basis of LDA,

LDA-PLS modifies the LDA projection direction through PLS

method. The modified projection direction permitted the dimen-

sion reduction features to be more conducive to classification, so as

to achieve improved classification result than PLS and LDA

methods. Shrinkage LDA achieves better performance, but it is

only incrementally less ideal than that of ex-LDA-PLS method. As

Schafer suggested [42], the shrinkage LDA will approach the true

value in the case of large samples. But after the selection of

parameters l, ex-LDA-PLS method obtained better results, and

looking at the results from multiple runs, the ex-LDA-PLS was

always slightly better than other comparative methods in the cases

of large samples. Because of extensive collinearity of neighboring

features in Raman spectra dataset [43,44], PCA algorithm can

only obtain one eigenvector when the cumulative contribution rate

is 0.95, and the results were often unacceptable. Raman dataset

can be regarded as a small sample set, the number of features

larger than the number of samples. In this case, LDA with

eigenvalue decomposition cannot compute the inverse of within-

class scatter matrix. Here we use SVD for solving the inverse

matrix, and as can be seen from Table 2, the overall performance

of LDA is acceptable. The algorithms which based on PLS method

can solve small sample size problem, the results of PLS and PLS-

LDA are somewhat the same, better than shrinkage LDA and ex-

LDA-PLS. From the results, although the LDA result slightly less

ideal, but after adjustment by PLS, the LDA-PLS result was

effectively equal to PLS and PLS-LDA. Since Raman is a small

dataset, even a projection direction can be completely separate all

the training samples, on the test set is not necessarily the best, this

depending on the overall distribution of the sample. Herein, the

ex-LDA-PLS result is no more than LDA-PLS.

Recognition rate vs. number of components
Herein we show how the average recognition rates of the LDA-

PLS, ex-LDA-PLS, PLS-LDA and PCA algorithms change

depending on the number of extracted components. The

fundamental condition of experiment is similar to the above, in

that each principal component reported here use the final

accuracy of an average of the 20 different runs. The difference

is the numbers of principal components of PCA which are not

based on the cumulative contribution rate for the standard, but

from 1 to 30. The LDA-PLS and ex-LDA-PLS algorithms use the

same strategy for components. Because there was only one

component after executing PLS-LDA algorithm, we assumed the

mean values as PLS-LDA results, as shown in the graph as dot

lines. The latent variables of Raman and Gas data set are set to

Figure 3. Recognition rates vs. number of components on PCA, LDA-PLS, ex-LDA-PLS and PLS-LDA in Gas dataset. Acc represent
classification accuracy. Green lines with circle represent the results of PCA, blue lines with left triangle are LDA-PLS classification results, red lines with
up triangleare the ex-LDA-PLS results, and black dot lines are the mean result of PLS-LDA.
doi:10.1371/journal.pone.0096944.g003
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optimal values by cross validation method, Solution l in ex-LDA-

PLS is analogous as described in Section 5.1. It is clear from

Figure 3 that the classification accuracy of PCA increases with the

number of principal components, and tends to be stable when

reaching a certain value. While the LDA-PLS and ex-LDA-PLS

method is less sensitive to the number of components, thereby

fundamentally maintaining a relatively stable value. The primary

reason for this situation is that the remaining value of X after

several times iteration contains little information, so even if there

are more components, only a few have a dominant role. In gas

dataset, the number of LDA-PLS and ex-LDA-PLS components

can achieve good results assuming the value is less than five, while

PCA needs to assume 15 principal components to obtain better

results than LDA-PLS. To reach the similar results for the ex-

LDA-PLS, of course we can also assume a larger value to increase

the classification accuracy than that of LDA-PLS, in that we

cannot achieve the effect of dimension reduction. For the Gas

dataset, classification accuracy increased with the increase of the

cumulative contribution rate. When the cumulative contribution

rate is 0.99 (the number of principal components for almost 15 or

so), the PCA method achieved similar performance with PLS-

LDA. However the number of components was much larger than

the other three methods. Figure 3B is an enlarged result of the

black box in Figure 3A, and Figure 3D is the enlarged results of

Figure 3C. From the Figure 3B and 3D can be seen that the results

of ex-LDA-PLS maintain consistency and are better than LDA-

PLS in the training and test set. The primary reason is that Gas is

a large sample dataset, the founded direction in the training set is

also appropriate to test set. As for Figure 4A and 4C in Raman

data set, the LDA-PLS can achieve better results. In order to

obtain somewhat the same results with LDA-PLS and ex-LDA-

PLS, we need to assume that the PCA principal components

number to 10 or so. From the perspective of the cumulative

contribution rate, in the Raman data set we found that the

classification result still cannot be compared with other the three

methods even though the cumulative contribution rate are

0.98,0.99,0.999 (0.999 corresponding to the number of principal

components with the value of between 1 to 2). As can be seen from

Figure 4B and 4D, ex-LDA-PLS achieved consistent results which

were better than LDA-PLS and PCA in the training set. However

this became unacceptable as compared to than LDA-PLS and

PCA, the primary reason for this phenomenon was that Raman

was a small sample set. The distribution of the training set is not

representative of the entire samples, so even ex-LDA-PLS can

obtain the best direction in training set, the test set not being

optimal. This shows that ex-LDA-PLS is not easy to obtain the

best results in the small sample dataset.

Impact of PLS Latent Variables
In the experiment we assumed the maximum number of latent

variables to be equal to the features of the dataset and for each

latent. We also report the final accuracy by the average of the 20

different runs. The abscissa in Figure 5 represents the number of

latent variables and y coordinates for the classification accuracy.

Figure 4. Recognition rates vs. number of components on PCA, LDA-PLS, ex-LDA-PLS and PLS-LDA in Raman dataset. Acc represent
classification accuracy. Green lines with circle represent the results of PCA, blue lines with left triangle are LDA-PLS classification results, red lines with
up triangle are the ex-LDA-PLS results, and black dot lines are the mean result of PLS-LDA.
doi:10.1371/journal.pone.0096944.g004
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Since LDA method has not latent variable parameter, we show

that the classification results are corresponding to each latent

variable of PLS, PLS-LDA, LDA-PLS and ex-LDA-PLS. In order

to facilitate observation, we draw the classification accuracy of the

train set and test set. It can be obtained from the front theory that

the primary idea of LDA-PLS is to multiply a matrix XTX on the

left side of the original LDA projection direction when the latent

variable is 1. When the latent variable is greater than or equal to 2,

then the projection direction of LDA-PLS equivalent to the

direction of LDA left multiplied by a matrix MXTX (where M is a

matrix, can be seen from Section 3.2). The ex-LDA-PLS is based

on LDA-PLS and LDA so as to emphasize the projection direction

which is more consistent with the actual situation. In theory, when

the number of latent variables tends to infinity, LDA-PLS, ex-

LDA-PLS and PLS projection direction should coincide in that it

is manifested in the experimental results with the classification

accuracy tending to be equal. In Figure 5, the two data sets have

almost the same trend. When the latent variable values were

relatively small, the classification accuracies of LDA-PLS and ex-

LDA-PLS were significantly higher than the PLS and PLS-LDA

method. While the latent variable value reached a specific value,

the results of LDA-PLS, ex-LDA-PLS and PLS tended to be as the

same. In this experiment, the PLS latent variables of the two data

sets were controlled to within 10.

Conclusions

Herein we have presented a new dimension reduction method

based on PLS and the traditional LDA, by adjusting the number of

PLS latent variables to change the projection direction of the

LDA. In some cases, the change can make projection more

conducive to the classification results. Our future work will include

an in-depth analysis of the scope of LDA-PLS and ex-LDA-PLS

algorithms and to solve multi-classification problems while

considering the joining of kernel ideas to solve nonlinear problem.
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