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Abstract

Few quantitative measures of genome architecture or organization exist to support assumptions of differences between
microorganisms that are broadly defined as being free-living or pathogenic. General principles about complete proteomes
exist for codon usage, amino acid biases and essential or core genes. Genome-wide shifts in amino acid usage between free-
living and pathogenic microorganisms result in fundamental differences in the complexity of their respective proteomes
that are size and gene content independent. These differences are evident across broad phylogenetic groups–a result of
environmental factors and population genetic forces rather than phylogenetic distance. A novel comparative analysis of
amino acid usage–utilizing linguistic analyses of word frequency in language and text–identified a global pattern of higher
peptide word repetition in 376 free-living versus 421 pathogen genomes across broad ranges of genome size, G+C content
and phylogenetic ancestry. This imprint of repetitive word usage indicates free-living microorganisms have a bias for
repetitive sequence usage compared to pathogens. These findings quantify fundamental differences in microbial genomes
relative to life-history function.
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Introduction

Microorganisms exhibit a wide range of environmental adap-

tations and lifestyles encoded by their genomes [1–5]. Our

understanding of the limits of microbial life on Earth keep

expanding as microbes are found in myriad, unique environments

[6,7] and as synthetic biology has developed [8,9] to explore the

minimum gene sets required for life [10–12]. Progress in both

fields, however, is limited by lack of understanding of the genomic

rule set or principles that shape gene structure and organization

for either life in a specific habitat (e.g., hydrothermal vent,

metazoan host, industrial bioreactor) or a defined life-history

strategy (e.g., chemoautotrophy, heterotrophy, methanotrophy).

Pathogens containing nearly minimal gene sets needed to survive

in a host are generally considered to have smaller genome sizes

and less complexity than free-living organisms [13,14]. Genome

size, however, is merely a consequence of net gene loss (or gain); it

cannot be used to distinguish free-living organisms from pathogens

because of the broad overlap in genome sizes that exist between

these two groups. Even within a broad group defined as

‘‘pathogen’’, there is a range of life histories. Furthermore, recent

analyses and single-cell amplified genome sequencing revealed

that many oligotrophic marine microbes are cost-minimized and

have small, low GC genomes [15,16]. Genome streamlining [17]

appears to be an important feature of free-living marine

oligotrophic microbes [16].

Genomes are highly organized information structures [18].

Working with sequence entropy is one way to formulate

information or organization in whole genome sequences [19–

21]. A high level of local sequence organization can be assessed

with bibliometrics where large differences in information structure

are evident among different genomes [22,23]. Local sequence

organization in the form of multiple alignments of amino acid

blocks or short motifs has been used in protein classification for

two decades [24]. An extension of this concept is maximum

entropy models which have been used to characterize sequence

diversity in antibodies and provide a mathematical framework for

extracting quantitative information from experimental data [25].

As well, heuristic models from large environmental data sets are

being used to relate genomic information to trophic lifestyle

[15,26]. We focused on isolating and characterizing information

content as a way to more fully understand how local amino acid

sequence features can be exploited further to provide functional

information about unknown or poorly characterized open reading

frames (ORFs). There is a pressing need for analytical tools to
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Figure 1. E. coli O157 amino acid dictionaries. Over- and underrepresentation of repetitive amino acid words is plotted for E. coli O157 as the
residual difference between Observed and Expected counts of each word (from 2 to 12 mers). (a) Word counts of the non-redundant (cdhit 95%),
protein-coding genes of the native E. coli O157 genome (n = 555753 repeated amino acid words); (b) Word counts after randomizing the amino acid
sequence of the non-redundant, protein-coding genes of E. coli O157 (n = 433566 repeated amino acid words).
doi:10.1371/journal.pone.0096910.g001

Table 1. Comparison of amino acid frequencies in all annotated proteins among free-living (Free) and pathogenic (Path) microbes.

Amino Acid GFM FREE (mean frequency) PATH (mean frequency) p-value

A 89 0.0948 0.0860 2.060e-05

C 121 0.0094 0.0097 NS

D 133 0.0539 0.0531 NS

E 147 0.0635 0.0614 2.833e-03

F 165 0.0396 0.0434 1.035e-11

G 75 0.0756 0.0686 2.263e-16

H 155 0.0199 0.0208 2.624e-04

I 131 0.0647 0.0702 2.213e-04

K 146 0.0515 0.0604 7.478e-07

L 131 0.1021 0.1023 NS

M 149 0.0237 0.0240 NS

N 132 0.0373 0.0452 1.511e-12

P 115 0.0453 0.0399 2.675e-14

Q 147 0.0341 0.0389 1.220e-13

R 174 0.0576 0.0490 1.103e-12

S 105 0.0589 0.0621 1.061e-08

T 119 0.0526 0.0529 NS

V 117 0.0725 0.0676 1.375e-12

W 181 0.0120 0.0110 1.883e-05

Y 204 0.0301 0.0324 2.772e-05

A Welsh’s two-sample t-test was used to compare the mean frequencies and test for the likelihood that the difference among Free and Path observations was not zero.
This statistic essentially establishes a 95% confidence interval around the difference of means and assigns significance based on how far the observed arithmetic
difference is from 0.
doi:10.1371/journal.pone.0096910.t001

Protein Languages of Microbes

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e96910



extract as much information as possible from all currently

available genome sequences – not just well-annotated genes.

We hypothesized that any of the evolutionary bottlenecks that

occur in obligate/facultative intracellular organisms (e.g., [27])

should impact the entire proteome and alter genome-wide patterns

of amino acid word usage. These patterns should be evident in the

broad group of organisms defined as pathogens. The goal of this

analysis was to establish rule sets or pattern principles to describe

genome-level differences between free-living and pathogenic

bacteria arising from the major shift in gene function associated

with their ecology and evolution. Our results illustrate fundamen-

tal differences in the genome architecture of free-living and

pathogen genomes, independent of genome size, G+C content or

phylogenetic ancestry. This approach perhaps can be exploited to

reveal new information about pathogens and our attempts to

control them.

Results and Discussion

We analyzed amino acid word usage in the predicted proteomes

of 797 genomes from two categories of microorganisms: free-living

microbes (marine and/or terrestrial) and known pathogens

(obligate or facultative; Table S1). These categories were based

on keyword filters applied to National Center for Biotechnology

Information (NCBI) genome submission data. The definitions

‘‘free-living’’ and ‘‘pathogen’’ have broad meanings, and this

breadth increases the variance that must be isolated in analyses,

not the fundamental differences underlying these categories. For

the remainder of the discussion, we refer to these groups as FREE

and PATH with the understanding that many pathogens during

their lifecycle are not obligately associated with a host.

Our strategy was derived from linguistic analyses of word

frequency in language and text [21,28]. The predicted proteome

of each genome was first pre-processed to remove duplicate or

redundant proteins greater than 95% identical in sequence. This

non-redundant proteome of each genome was broken into

‘‘words’’ from two-to-twelve amino acids long. Observed and

expected frequencies of these words within a genome were

compiled into reference dictionaries for data retrieval during

analysis. To eliminate confounding effects of genome size and G+
C content and to explore the importance of phylogenetic

grouping, analyses were repeated on randomized copies of the

genomes by shuffling all proteome amino acids as one large

sequence string and then dividing back to the original ORF

number and sizes.

The amino acid word dictionary of a genome contains

frequency counts of all N mer amino acid words present in non-

redundant predicted proteins. Knowing counts for any N mer

length, it is trivial to calculate expected frequency of any N+1 mer

in a neutral (null) recombination distribution. For example, in an

organism that uses alanine 5%, the frequency of a homodipeptide

AA is 0.25%. A focus of this informatic method is to provide a

Figure 2. Ratio of free-living and pathogen amino acid usage versus amino acid mass. Data were plotted from the values and statistics
presented in Table 1.
doi:10.1371/journal.pone.0096910.g002
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statistical measure to identify motifs that are weak links in the

proteome of a pathogen. Targeting these weak links could have a

significant impact on pathogen survival (fitness). We assessed the

severity of the retention or overrepresentation of specific words

within proteins by a statistical analysis looking at amino acid word

usage patterns that are in disequilibrium with the usage expected

in a null selection model. In Figure 1a, observed and expected

word counts for E. coli O157 evidence a skew toward over-

representation (above expected values) of many amino acid words

of 5 to 12 residues. By comparison, a randomized O157 genome

(same amino acid usage and protein number and length; Figure 1b)

shows far smaller differences between observed and expected

counts, and far fewer words longer than five mers that are

repeated after randomization.

Obviously, genomes are not random collections of amino acids,

but the striking difference between the two panels in Figure 1

illustrates how the complexity of natural genomes can be

measured in terms of overrepresentation or repetition of key

amino acid words (peptide motifs). These words likely form local

domains in proteins such that a singular amino acid combination is

more likely to be successful as a sequence unit within a protein

than other possible variants. This is a direct result of natural

selection favoring retention or co-evolution of functional/struc-

tural sequence blocks [29]. As well, overrepresentation of non-

functional sequence blocks could be the result of genetic drift,

codon bias, or other random effects. The departure between word-

observed counts and neutral expected counts thus can be

considered an index of these forces driving retention or

maintenance of a word across many genes within a genome.

These values are difficult to compare among genomes, however,

because of differences in amino acid word usage. Even single

amino acid frequencies can be highly variable (Table 1; Figure 2)

[30–32]. Despite the large number and diverse genomes in this

analysis, the majority of amino acids that occur in statistically

significant higher frequency in PATH are greater than 130 gram

formula mass (GFM) with the exception of arginine and

tryptophan which are found in higher frequency in the FREE

data set. The two smallest amino acids, glycine and alanine, are

found in statistically higher frequency in the FREE data set despite

the broad range of data (Table S1). Cost minimization require-

ments for FREE organisms are not as necessary in PATH [30,33].

Our method and analysis extend this argument by quantifying a

metric of the complexity of higher order amino acid word usage.

The observed-minus-expected residual distance of amino acid

words among 376 FREE and 421 PATH genomes differs across a

broad range of phylogeny, genome size and % G+C content (see

Table S1). In Figure 3, residual distances (adjusted for variation

present in the randomized copy of each genome by subtraction)

were plotted against genome size (calculated from the non-

redundant, protein-coding regions). We found a strong relation-

ship between size and the adjusted word distance with larger

genomes utilizing higher amino acid word repetition. But the

opposite trend is just as intriguing – as size decreases, there

appears to be a genome minimum around 0.5 MB where the sum

of the differences between observed and expected word counts

would be the same as the residual distance found in their

Figure 3. Residual word distance of free-living and pathogen genomes. Total word distance minus the random dictionary contribution (see
Figure 4) plotted as a function of genome size.
doi:10.1371/journal.pone.0096910.g003
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randomized versions. Although the limit in this plot has a wide

confidence interval, it raises two timely questions: 1) what are the

smallest free-living vs. pathogen genome sizes possible? and 2)

what is it about amino acid word usage that impacts gene

composition to determine those size limits?

In order to compare total word utilization patterns among

FREE and PATH genomes, we reduced the 2-to-12 mer amino

acid word dictionaries of each genome and an identical,

randomized copy to a 30,000 element vector with each i
th

element representing total residual distance between observed and

expected counts in that dictionary for all words repeated i times.

This finite vector condensed amino acid word dictionaries into a

numerical array directly comparable among genomes. Here, the

sum of the observed minus expected deviations in amino acid

words repeated between 2 and 30,000 times is independent of

either the length of those words or their specific amino acid

sequence. We described the degree to which some local domain

sequences were retained across many genes within a genome by

comparing distributions of these word counts. The fundamental

differences between the two groups are highlighted in a

comparison plot of these data for native and randomized genomes

(Figure 4). This phenomenon is not a function of genome size,

localized regions in a genome, or phylogeny. If it were, then the

native and random plots would not differ significantly. Further-

more, there would be no evidence of difference in the native

genomes of FREE versus PATH (Figure 4a). The asymmetric

Figure 4. Residual word distance of native and random genomes. Residual word distances for individual genomes in free-living (n = 376) and
human-pathogen (n = 421) microbes were divided into class levels based on the number of times words were repeated within a genome, from 2 to
30,000. A group mean of the word distance at each repeat level was calculated and plotted above as FREE vs. PATH for the native genome data set (a)
and the randomized genome data set (b).
doi:10.1371/journal.pone.0096910.g004

Figure 5. LDA plot with color-coded phylogenetic groups.
Linear discriminant analysis of the repeat bin word distance results
(Figure 4) between free-living and pathogen genomes. The gray box
represents statistical significance (p,10–6). The points of genomes from
the three largest phylogenetic groups in the data set are highlighted to
show no phylogenetic significance of differences in groups.
doi:10.1371/journal.pone.0096910.g005
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distribution of word distance where the PATH repeat bin is

greater than free-living organisms (closed circles) or vice versa

(open circles) suggests fundamental differences in word usage

architecture among the groups. These differences were subse-

quently analyzed using a series of statistical tests.

In comparing word distance among genomes after size

normalization, differences in word repeat distributions at a global

level could be a function of organism lifestyle. That is, there is

some global selection pressure, for example, to reduce GC content

and streamline the genome as an adaptive mechanism to thrive in

an environment like the oligotrophic ocean [15,16,26] or in

obligate intracellular organisms (Figure 4a) [13,27]. These

distributions are not evident in the respective randomized

genomes (Figure 4b). Word repeat distributions also could arise

from gene duplications, deletions, recombination, point mutation,

horizontal transfer, and random genetic drift. Regardless, our

results suggest that there are quantifiable differences in the

representation of amino acid words between FREE and PATH

genomes that have appeared during their evolution.

We employed multidimensional scaling analysis on word

distance vectors coupled with a linear discriminant function

analysis [34]. This enabled us to assess differences in amino acid

word usage patterns among individual genomes in the FREE and

PATH groups (Figure 5). We utilized this test because of its

sensitivity in detecting group-level structures or patterns where

group identities are known already. We used a Monte Carlo

permutation test on the distance between group centroids to

determine random probability of the observed separation between

group centroids (Figure 6). Separation among individual genomes

into FREE and PATH distributions along the LDA axis was highly

significant (p,10–6 indicated by the gray box). The group mean

differences in Figure 5 indicate that FREE and PATH amino acid

word usage patterns are fundamentally different and can be used

to characterize the groups. These differences are not merely a

function of differences in amino acid composition, genome size or

G+C content because they are absent in each randomized genome

where these parameters are preserved. Furthermore, the impact of

phylogenetic ancestry on the analysis is minimal. In Figure 5, we

highlighted the FREE and PATH genomes from the largest three

groups [Alphaproteobacteria (n = 119), Gammaproteobacteria

(n = 237) and Firmicutes (n = 206)]. Phylogenetic group identity

of each genome is color coded, and we see that despite broad

phylogenetic differences among these genomes, there is no

coherent expression of a phylogenetic signal between FREE and

PATH functional groups.

The significance of these findings is that, through time, specific

sequence blocks may be preferentially retained in a genome

among heterologous genes through any of a variety of mechanisms

(Figure 1) as has been recently shown with experimental data [29].

Retention of these redundant motifs is a hallmark of free-living

genomes and allows us to differentiate these genomes from

pathogen genomes (Figures 5 and 6). On a global level, across an

entire genome, our results suggest that repeat elements in a

genome may be retained more frequently in highly interactive

Figure 6. Monte Carlo results for the separation distance between group means in the MDS-LDA analysis of residual word distance
between free-living and pathogenic bacteria. Plot shows a frequency distribution for the mean separation between groups over 10 k iterations.
The p = 0.01 and p = 1e–06 boundaries are indicated.
doi:10.1371/journal.pone.0096910.g006
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environments such as soil or ocean microbiomes, and that in such

dynamic environments, genomes evolve with increasing complex-

ity or order. Motif diversity decreases and the frequency of

preferential motifs increases in dynamic environments. For

example, organisms well-adapted to a copiotrophic (high-nutrient),

dynamic environment have distinct genomic features compared to

organisms well-adapted to low-nutrient, almost steady-state

environments [26]. Especially in single celled free-living organ-

isms, we think a more accurate model of genome architecture that

accounts for both fitness and genotypic diversity is based on the

modular or motif-driven nature of genes and proteins.

The persistent repetition of amino acid words in free-living

organisms is significantly greater than in pathogens (Figure 3). The

higher repetition of words in the genomes of free-living organisms

than in the genomes of pathogens indicates that, in comparison,

free-living microbes appear to be subjected to greater functional

and structural constraints on their proteins than pathogens. While

the relative simplicity of life as a pathogen has been suggested [10],

our results provide a quantitative and statistically robust analysis of

differences in genome structure (complexity) and suggest that a

first principle of genome architecture is a fundamental sequence

bias toward redundant amino acid motifs and domains (word-

sequence building blocks). This reveals a mechanistic constraint on

genomes in organisms that have specific lifestyles (free-living) and

tolerate specific environmental conditions (e.g., high temperature)

as has been recently shown for marine microbes that live in high-

and low-nutrient waters [15,26].

Analysis of amino acid word usage patterns can delineate more

refined functional groupings than just free-living vs. pathogenic

microbes. If environmental communication is an important

selection force differentiating free-living from pathogen microbes,

then we expect cell wall structure, biosynthesis and signaling

mechanisms to contribute toward overall fitness. Figure 7 presents

the further separation of free-living and pathogen bacteria into

gram positive and negative groups. There is remarkable separation

between free-living gram positive and negative groups compared

to each other and both groups of pathogens. Separation among

the gram positive and negative pathogens is less distinct. Metrics of

how word sequences are utilized within a genome may be able to

capture differences in higher-level fitness functions such as cell to

environment communication, or at least analyses such as this may

establish relevant hypotheses for further pursuit and validation. In

Figure 5, it is intriguing to ask if the selective value of a cell wall is

more positive (or negative) for free-living organisms compared to

pathogens. Forces of host and self-recognition may be common

evolutionary drivers across broad groups of pathogens. Delving

into word usage patterns among cell wall proteins, signal receptors

and signal transduction could be a fruitful informatic approach to

further understand this delineation.

As an example of the power of examining deviations in word

usage, and using this technique to better define the architecture of

Figure 7. Non-metric multidimensional scaling analysis of amino acid word usage in microbial genomes divided by lifestyle (free-
living vs. pathogenic) and gram-staining (+ vs 2). A linear discriminate analysis of the MDS coordinates was utilized for Monte Carlo, bootstrap
iterations (10,000) of the separation among group centroids when observations are randomly distributed among groups. Probability values indicate
the likelihood that the observed centroid separation could arise by random chance alone, and the (p,1e-06) values are indicated by the gray circles.
doi:10.1371/journal.pone.0096910.g007
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broad groups of organisms, we compared the shared amino acid

six-mer words between gram-positive free-living and gram-positive

pathogenic microbes. We calculated the average deviation of a six-

mer word’s expected probability from its observed frequency in

any genome and averaged across each genome in a group. The top

ten words shared in common with the greatest deviation in

occurrence between gram-positive pathogen and gram-positive

free-living organisms are presented in Table 2. These motifs that

are either retained more in pathogens or in free-living gram

positive genomes point to proteins that can be used to understand

differences in the groups. For example, the motif DLAGIG was

found far more frequently than expected in pathogen gram-

positive genomes. This motif is found in UDP-N-acetylmuramoyl-

L-alanyl-D-glutamate synthetase – an important contributor to

cell-wall synthesis. Mutations in this protein confer different

resistances to cell-wall targeted antibiotics in gram-positive

organisms [35,36]. This observation encompasses a broad set of

genomes. We have strong quantitative evidence that a DLAGIG

word in enzymes involved with polysaccharide synthesis is

significant in gram-positive pathogens. Thus, with this approach,

we can link specific amino acid words to specific proteins and then

to very specific, functional selection pressures. This information is

vital to developing potentially new ways to target pathogens –

especially those that are currently drug or multi-drug resistant.

Likewise, these motif statistics can be accumulated for select

groups of genomes for comparison. Figure 8 shows COG

functional category differences in the cumulative 6–8 mer motifs

that are most overrepresented between a group of 42 gram-

Table 2. Comparison of the shared amino acid 6-mer words with the greatest average sequence score among gram-positive free-
living (Free) and pathogenic (Path) microbes.

Rank Word Score CDD1 DB2 Description E-value

PATHOGENS

1 DLAGIG 373.6 100866 PRK01390 UDP-N-acetylmuramoyl-L-alanyl-
D-glutamate
synthetase

26

2 PLADLL 255.0 118395 pfam09865 Predicted periplasmic
protein (DUF2092)

14

3 SGLGLY 246.6 115888 pfam07262 Protein of unknown function (DUF1436).
This family consists of several hypothetical
bacterial proteins

19

4 IPVDGE 241.4 88415 cd05798 Transaldolase (TAL)/
Phosphoglucose isomerase (PGI);
Involved with the the
microbial conversion of D-arabitol
to xylitol

7.9

5 IRDDLI 232.5 102253 PRK06207 Aspartate aminotransferase 4.4

6 MILLGI 228.3 110765 pfam01790 Prolipoprotein diacylglyceryl transferase 4.4

7 KQALKD 226.4 107063 PHA01750 Hypothetical protein 14

8 TVTADR 211.7 115489 pfam06835 Protein of unknown function (DUF1239).
This family consists of several hypothetical
bacterial proteins

14

9 RINELA 208.0 101064 PRK02539 Hypothetical protein 7.9

10 GHPDVF 204.6 31444 COG1252 NADH dehydrogenase, FAD-containing subunit 19

FREE-LIVING

1 TYAELD 437.3 103683 PRK09088 Acyl-CoA synthetase 5.9

2 GVLPRT 307.6 105426 PRK11824 Polynucleotide phosphorylase/polyadenylase 14

3 GASGFL 295.7 106095 PRK13114 Tryptophan synthase subunit alpha 34

4 PLSPAQ 295.0 112395 pfam03576 Peptidase family S58 14

5 DRPRPA 283.8 105673 PRK12467 Peptide synthase 5.9

6 IDTATN 271.4 33198 COG3391 Uncharacterized conserved protein
[function unknown]

11

7 AAPPPP 257.8 115804 pfam07174 Bacterial fibronectin-attachment
protein (FAP)

11

8 GTPVAG 254.3 104702 PRK10644 Arginine: agmatin antiporter 34

9 IAAGEK 244.1 103529 PRK08654 Pyruvate carboxylase subunit A 26

10 FSGGEK 240.9 104694 PRK10636 Putative ABC transporter ATP-binding protein 19

NOTE: The gram-positive FREE and PATH dictionaries used in the LDA analysis for Fig. 4 were merged into an ‘‘averaged’’ dictionary of 6-mer amino acid words that
were present in both groups. The common 6-mer words with the largest difference (expressed as a ratio) in selection scores between FREE and PATH word distance
were aligned against NCBI’s Conserved Domain Database to identify potential proteins in which these words appear.
(1) Conserved Domain Database: http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.
(2) Cross-referenced database entry within CDD.
doi:10.1371/journal.pone.0096910.t002

Protein Languages of Microbes

PLOS ONE | www.plosone.org 8 May 2014 | Volume 9 | Issue 5 | e96910

http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml


positive pathogens and a group of 42 gram-positive free-living

bacteria (Table 3). Here, overrepresented or highly selected motifs

appear more often in defense, intracellular and cell division related

proteins in gram-positive pathogens compared to proteins in

gram-positive free-living bacteria. Highly selected motifs in gram-

positive free-living bacteria are found in amino acid and secondary

metabolite biosynthesis. Both observations suggest specific hy-

potheses for further experimental validation based on metabolic

cost differences between the two groups and the constant need of

pathogens to defend against host immune response.

Our work to assess word usage diversity in proteomes parallels

other efforts to describe the potential diversity of protein folds. If

amino acid motifs contribute information to a discrete rule set for

guiding protein folding, then the finite set of structural folds

observed in proteins indicates that amino acid motif utilization is

constrained (repetitive) to generate an ‘‘ideal form’’ of a particular

protein [37]. Recent efforts to quantify the folding space of

proteins suggest the discovery rate of new structural folds is at a

plateau [38]. This idea that folding motifs are used over and over

again as structural building blocks of proteins implies that the

frequencies of amino acid word utilization in a proteome will have

some repetitive features related to protein structure/function and

lifestyle.

These types of analyses will inform the growing field of synthetic

biology [39,40]. The genetic code alone only scratches the surface

of complexity in the biological network of a living cell [41,42].

Metrics of genome complexity, redundancy, and degeneracy need

to be utilized in synthetic biology and in developing new ways to

target pathogens. Linkages between a genome and the environ-

ment that have shaped its function must be better understood if we

are to engineer new genomes to accomplish specific anthropogenic

goals with the same efficiency of natural genomes that have been

subjected to millions of years of evolutionary selection.

Materials and Methods

Data Acquisition and Preliminary Processing
Whole genome sequences were downloaded from the NCBI

(www.ncbi.nlm.nih.gov). All genome sequences were clustered at

95% amino acid identity using the program CD-HIT to remove

duplicate sequences [43,44]. Table S1 lists the genomes that were

used in this study with additional information regarding their

classification as free-living or pathogenic bacteria. A copy of each

genome fasta file was randomized by stringing all the AA residues

together, then employing a Fisher-Yates shuffling algorithm to

randomize the total AA sequence for 10 successive iterations and

then re-dividing the total string back into the number and length

of the original ORFs. The randomized genome contained the

identical number of genes, gene lengths and amino acid usages as

the native genome; the only difference was the amino acid order

was randomized.

Amino Acid Usage
A comparison of amino acid frequencies in whole genome

sequences between the two groups was performed. A Welsh’s two-

sample t-test was used to compare the mean frequencies and test

the likelihood that the difference among FREE and PATH

observations was not zero. This statistic establishes a 95%

confidence interval around the difference means and assigns

significance based on how far the observed arithmetic difference is

from zero.

Figure 8. Distribution of overrepresented words (averaged 6–8 mers) in free-living gram-positive compared to pathogenic gram-
positive bacteria. Each bar represents words overrepresented in free-living (negative) or pathogenic (positive) gram-positive genomes. Genomes
utilized in the analysis are listed in Table 3.
doi:10.1371/journal.pone.0096910.g008
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Table 3. List of organisms used in the analysis presented in Figure 8.

Free-living gram positive organisms GenBank PID

Acidothermus cellulolyticus 11B 16097

Anoxybacillus flavithermus WK1 28245

Arthrobacter aurescens TC1 12512

Arthrobacter chlorophenolicus A6 20011

Candidatus Desulforudis audaxviator MP104C 21047

Clostridium acetobutylicum 77

Clostridium cellulolyticum H10 17419

Clostridium novyi NT 16820

Clostridium thermocellum ATCC 27405 314

Corynebacterium efficiens YS-314 305

Corynebacterium glutamicum R 19193

Corynebacterium jeikeium K411 13967

Dehalococcoides BAV1 15770

Dehalococcoides ethenogenes 195 214

Deinococcus geothermalis DSM 11300 13423

Deinococcus radiodurans 65

Dictyoglomus turgidum DSM 6724 29175

Geobacillus kaustophilus HTA426 13233

Geobacillus thermodenitrificans NG80-2 18655

Lactobacillus acidophilus NCFM 82

Lactobacillus delbrueckii bulgaricus 16871

Lactobacillus fermentum IFO 3956 18979

Lactobacillus sakei 23K 13435

Listeria innocua 86

Listeria welshimeri serovar 6b SLCC5334 13443

Mycobacterium JLS 16079

Mycobacterium KMS 16081

Salinispora arenicola CNS-205 17109

Salinispora tropica CNB-440 16342

Streptomyces avermitilis 189

Streptomyces coelicolor 242

Streptomyces griseus NBRC 13350 20085

Symbiobacterium thermophilum IAM14863 12994

Thermoanaerobacter pseudethanolicus ATCC 33223 13901

Pathogenic gram positive organisms GenBank PID

Bacillus anthracis Ames 0581 10784

Bacillus cereus B4264 17731

Bacillus thuringiensis Al Hakam 18255

Bacillus weihenstephanensis KBAB4 13623

Bacteroides vulgatus ATCC 8482 13378

Clavibacter michiganensis NCPPB 382 19643

Clostridium botulinum E3 Alaska E43 28855

Clostridium difficile 630 78

Clostridium perfringens 79

Clostridium tetani E88 81

Corynebacterium diphtheriae 87

Corynebacterium urealyticum DSM 7109 29211

Enterococcus faecalis V583 70

Listeria monocytogenes HCC23 29409
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Dictionary Processing
For each dictionary (both native and randomized), amino acids

words from 2-to-12 mers were counted and retained if a word

were repeated at least twice. We calculated an ‘‘expected’’ count

for each word as the average probability of randomly combining

the N–1 submers (based on observed frequency of the N–1

submer) with the terminal amino acid residue (based on observed

amino acid composition). These are similar methods to those

published previously [28,33]. We calculated the deviation between

observed and expected counts within a dictionary as a residual

distance (for each word in each genome, the perpendicular

distance of the OBS and EXP values from a null selection line of a

1:1 equilibrium). As an example, these observed counts and

residual distances are plotted in Figure 1 for E. coli O157. A

genome-wide statistic for summarizing total departure between

observed and expected word counts was calculated as a

summation of all the individual word residual distances. The

residual distance is defined as:

di~(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2|(ln(OBSi){ln(EXPi))

2
q

2
)2 ð1Þ

From this, the summation of all the individual word residual

distances for words of length i = 1 to N follows as:

WordD~
XN

i~1

di

N
ð2Þ

Repeat counts in Figure 4 were derived from observed counts

in the 2-to-12 mer dictionaries. Observed counts were parsed into i

bins, where the value in each bin represents the number of unique

words repeated i times (e.g., the 10th bin contains the number of

words in a dictionary [across all N-mers] that were repeated 10

times). This approach reduced the typical dictionary size from

500,000 words to a 30,000 element vector. More importantly, this

vectorization allowed a direct comparison between all genomes,

which would be extremely complex with the raw dictionaries. Bin

counts were then normalized to the number of total amino acids

present in the non-redundant fasta file. The Fmean and Pmean

vectors were calculated as the simple mean of each bin position for

all FREE and PATH genomes, respectively. The linear discrim-

inant analyses using the normalized repeat count vectors (Figures 4

and 5) were run with two different MDS-LDA approaches: 1) a

custom script in MatLab using the ‘‘Statistical Pattern Recognition

Tools’’ package (STPRTool; http://cmp.felk.cvut.cz/cmp/

software/stprtool/), and 2) the ‘‘Multiple Response Permutation

Procedure’’ (MRPP) in the VEGAN package for R Statistics. Both

approaches provided nearly identical results. In both MatLab and

R, we added an iterative (10 k), Monte Carlo randomization to

each script to define the distribution in the random separation

between group centroids (Figure 6). To ensure that there were no

effects related to chromosome number, pathogenicity islands or

plasmids with high concentration of genes from specific functional

categories, we repeated the entire analysis on genomes with only

one chromosome and no plasmids. The results were similar to

Figure 6 and are not shown. This subset contained 482 genomes

with 243 free-living and 239 pathogens. The overall variance in

word usage data was less variable within this smaller group, and

consequently the MDS-LDA analyses revealed differences be-

tween the groups that were more statistically significant, although

we only report significance here at the p,1e–06 level.

Table 3. Cont.

Pathogenic gram positive organisms GenBank PID

Lysinibacillus sphaericus C3 41 19619

Mycobacterium abscessus ATCC 19977T 15691

Mycobacterium bovis 89

Mycobacterium marinum M 16725

Mycobacterium smegmatis MC2-155 92

Parabacteroides distasonis ATCC 8503 13485

Propionibacterium acnes KPA171202 12460

Renibacterium salmoninarum ATCC 33209 19227

Staphylococcus aureus RF122 63

Staphylococcus eermidis RP62A 64

Staphylococcus haemolyticus 12508

Staphylococcus saprophyticus 15596

Streptococcus gordonii Challis substr CH1 66

Streptococcus sanguinis SK36 13942

Streptococcus suis 98HAH33 17155

Streptococcus uberis 0140J 353

Thermobifida fusca YX 94

Tropheryma whipplei Twist 95

Ureaplasma parvum serovar 3 ATCC 27815 19087

Ureaplasma urealyticum 1

doi:10.1371/journal.pone.0096910.t003
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