
Repression/Depression of Conjugative Plasmids and
Their Influence on the Mutation-Selection Balance in
Static Environments
Yoav Raz*, Emmanuel David Tannenbaum

Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva, Israel

Abstract

We study the effect that conjugation-mediated Horizontal Gene Transfer (HGT) has on the mutation-selection balance of a
population in a static environment. We consider a model whereby a population of unicellular organisms, capable of
conjugation, comes to mutation-selection balance in the presence of an antibiotic, which induces a first-order death rate
constant kD for genomes that are not resistant. We explicitly take into consideration the repression/de-repression dynamics
of the conjugative plasmid, and assume that a de-repressed plasmid remains temporarily de-repressed after copying itself
into another cell. We assume that both repression and de-repression are characterized by first-order rate constants kz{and
k{z, respectively. We find that conjugation has a deleterious effect on the mean fitness of the population, suggesting that
HGT does not provide a selective advantage in a static environment, but is rather only useful for adapting to new
environments. This effect can be ameliorated by repression, suggesting that while HGT is not necessarily advantageous for a
population in a static environment, its deleterious effect on the mean fitness can be negated via repression. Therefore, it is
likely that HGT is much more advantageous in a dynamic landscape. Furthermore, in the limiting case of a vanishing
spontaneous de-repression rate constant, we find that the fraction of conjugators in the population undergoes a phase
transition as a function of population density. Below a critical population density, the fraction of conjugators is zero, while
above this critical population density the fraction of conjugators rises continuously to one. Our model for conjugation-
mediated HGT is related to models of infectious disease dynamics, where the conjugators play the role of the infected (I)
class, and the non-conjugators play the role of the susceptible (S) class.
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Introduction

Horizontal Gene Transfer (HGT) is defined as the transfer or

exchange of genetic information between two organisms, that does

not involve the transmission of genetic information from parent to

daughter as a result of replication, a process known as vertical

transmission of genetic information [1,2]. Since it was initially

characterized in the 1940s [3], it has gradually become evident

that HGT is one of the major sources of genomic change in

prokaryotes [2]. As a result of its recognized importance for

shaping the genomes of prokaryotes, a complete theory describing

the evolutionary dynamics of prokaryotes must take HGT into

account [2]. Further, the fact that HGT plays a major role in

shaping prokaryotic genomes means that HGT must be consid-

ered when reconstructing phylogenetic trees [1], which of course

complicates any effort to understand the evolutionary relationships

amongst bacterial strains, and to trace the evolutionary histories of

various genes. The existence of HGT also has consequences for

public health, since HGT is believed to be primarily responsible

for the rapid spread of antibiotic drug resistance in bacterial

populations [2,4–8].

Despite the large influence that HGT has on the evolutionary

dynamics of prokaryotic populations [2], with a few notable

exceptions [9–12], there has been relatively little theoretical work

attempting to incorporate HGT into evolutionary models. Indeed,

it is safe to say that the bulk of the work in evolutionary biology has

focused on point-mutations as the primary source of genetic

variation [13]. There are two main reasons for this: First of all, the

simplest evolutionary models are the ones that consider point-

mutations as the only source of genetic variation. Yet even these

models can exhibit fairly non-trivial behavior, and there is a wide

range of additional effects that may be considered within the

point-mutation framework (e.g., conservative versus semiconser-

vative replication, fitness landscapes, polysomic genomes, genetic

instability, genetic repair and mutators, finite-size effects [9,13–

21]). Thus, already at the simplest level of point-mutations, there is

a fairly large class of evolutionary models that may be analyzed.

Second, for quite some time in biology it was believed that point-

mutations are indeed the primary source of genetic change in

organisms. This assumption underlies the concept of the so-called

‘‘tree of life’’ that was used to organize phylogenetic data. With the

realization of the importance of HGT, there have been suggestions

to replace the tree analogy with that of a web or a ring [1,22–25].
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Bacterial genomes typically consist of a single, large, circular

chromosome, in addition to several smaller, circular chromosomes

known as plasmids. Bacterial plasmids can move between bacteria,

often between bacteria of different strains, via a process known as

conjugation.[26–29]. If these plasmids contain genes for an adaptive

trait such as antibiotic drug resistance, then conjugation can

significantly speed up the rate at which such an adaptive trait

spreads throughout a population.[30–33]. Conjugation is believed

to be one of the most important forms of HGT, so that both

phenomenological and quantitative models of processes such as

the emergence of antibiotic drug resistance will need to properly

account for this behavior.

The best characterized bacterial conjugation system is the F+/

F2 system [28]. Here, a bacterium containing what is termed an

F-plasmid fuses with a bacterium lacking the F-plasmid. The

bacterium containing the F-plasmid is termed an F+ bacterium,

while the bacterium that does not contain this plasmid is termed

an F2 bacterium. When an F+ bacterium meets an F2 bacterium,

it transfers one of the strands of the F-plasmid to the F2 bacterium

via a pilus. Once a strand of the s F-plasmid has been transferred

from the F+ bacterium to the F2 bacterium, a copy of the plasmid

in both cells is produced by daughter strand synthesis using the

DNA template strands. The F2 bacterium then becomes an F+

bacterium that transcribes its own pilus, and is able to transfer the

F2plasmid to other bacteria in the population (Figure 1).

The F+/F2 system is in some ways atypical for bacterial

conjugation systems, due to its conjugative machinery being

chronically in a de-repressed state, while in nature most

conjugative plasmid systems are repressed via the expression of

T4SS modules [34,35]. Nevertheless, the F-plasmid system is still

one of the best characterized bacterial conjugation systems, and it

can be considered as broadly representative of all known bacterial

conjugation systems. Therefore, it makes sense to base mathe-

matical models of conjugation-mediated HGT on the F-plasmid

system.

In recent work [36], the authors developed mathematical

models describing the role that conjugation has on the mean

fitness of unicellular populations in static environments, and

found that conjugation-mediated HGT does not confer a

selective advantage to the bacterial population (indeed conjuga-

tion-mediated HGT was found to have a slightly deleterious

effect on the mean fitness of a population). However, in this

work, it was assumed that the conjugation machinery is

permanently de-repressed. Here, we extend our previous work

by introducing the repression/derepression mechanism into our

original model [13] of a bacterial population that transfers

genetic information among its members both vertically and

horizontally (Figure 2).

Results

1. Definition of the Model
Our model assumes a unicellular population of asexually

reproducing bacteria, where the bacterial genome consists of

two chromosomes. The first chromosome is the main circular

bacterial chromosome that transfers its genetic information via

vertical transmission (i.e. replication from one generation to the

next). The second chromosome is taken to be the much smaller

conjugative plasmid, which is assumed to consist of two regions:

(1) A ‘‘conjugation’’ region, comprising the various genes

necessary for bacterial conjugation. (2) An ‘‘antibiotic resis-

tance’’ region, comprising the genes necessary for conferring

resistance to a given antibiotic. Since each chromosome is

assumed to be a double-stranded, semiconservatively replicat-

ing DNA molecule, we define probabilities for the error-free

replication of a template strand from each of the various

regions of the bacterial genome. To this end, we let pv denote

the probability that a template strand from the main bacterial

chromosome produces a daughter chromosome without intro-

ducing any new point-mutations. We define pc and pr

analogously for the portions of the bacterial plasmid coding

for conjugation and antibiotic drug resistance. We assume that

there are master sequences for the main bacterial genome, the

conjugation and antibiotic drug resistance regions of the

plasmid. We assume that any mutation to these master

sequences renders the sequences non-functional. We further

assume that the bacterial genome controls viability, and so a

bacterium with a master, or wild-type, copy of its main

chromosome, has a normalized first-order growth rate constant

of 1, while a bacterium with a mutated main chromosome has a

first-order growth rate constant of 0. The assumption that a

single mutation renders the master sequence non-functional is

known as the single-fitness-peak approximation [13]. Although

it is an oversimplification of the true dependence of function-

ality on the gene sequence, it nevertheless captures the fact that

only a small fraction of sequences are likely to yield a gene that

encodes the desired function. As a result, this approximation

has been known to give quantitative results in certain cases

[37].

Given its simplicity, it therefore makes sense to start with this

assumption before moving on to more complicated fitness models.

We assume that a viable bacterium whose resistance region of the

plasmid corresponds to the wild-type is unaffected by the presence

of an antibiotic, while a viable bacterium with a mutated portion

of this resistance region is killed by the antibiotic at a rate

characterized by a first-order rate constant kD.

Bacterial conjugation is modeled as a second-order rate process

characterized by a rate constant c. We also assume that, as the

size of the bacterial population changes, the system volume

changes so as to maintain a constant population density r while

assuming that r remains constant. It should be noted that in this

context, the only bacteria whose population we are tracking are

Figure 1. The conjugation process for F+ bacterium with F-
bacterium as detailed in our model: 1. A de-repressed bacterium
comes within proximity of an F- bacterium/repressed F+ bacterium. 2.
The F+ bacterium’s pili interacts with the F- bacterium’s membrane. 3.
The F+ plasmid releases a strand of its DNA to the F- bacterium via
conjugation machinery. 4. A new de-repressed F+ bacterium is formed.
doi:10.1371/journal.pone.0096839.g001
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the viable ones. The idea behind this assumption is that the

bacteria each take up a certain amount of space, and so, as the

bacterial population grows, the total system volume must increase

as well. Bacterial conjugation can only occur between a viable

bacterium whose conjugation genes are de-repressed, and a

viable bacterium whose conjugation genes are repressed. The

repression/de-repression dynamics is assumed to be character-

ized by first-order rate constants kz{and k{z, respectively,

corresponding to transitions from the de-repressed to the

repressed state, and from the repressed state to the de-repressed

state, respectively. However, for the purposes of this paper, we

will assume that k{z~0, corresponding to the limit of weak de-

repression, which is believed to characterize the repression/de-

repression dynamics of actual systems [34,38].

During bacterial conjugation, we assume that a template strand

of the plasmid from the de-repressed bacterium, which is labelled

the ‘‘+’’ bacterium, is transferred to the repressed, or ‘‘2’’,

bacterium, and that daughter strand synthesis occurs in both

bacteria to reconstitute the plasmids. We assume that the plasmid

transferred from the ‘‘+’’ bacterium replaces the plasmid in the ‘‘2

’’ bacterium, and inherits the de-repressed state of the parent

plasmid. The assumption of plasmid replacement is a simplifica-

tion that will need to be re-examined in future research, where we

anticipate developing more accurate models that allow for variable

plasmid numbers in the bacterial cell. The basis for this

assumption derives from the observation that plasmids of similar

compatibility classes cannot co-exist in the same cell [39,40], and

that bacteria can control the number of plasmids in the cell [40–

42]. While these observations do not directly translate into a

plasmid replacement model, we believe that they do provide some

justification for this assumption.

Finally, we assume that replication errors are due to mismatches

during daughter strand synthesis that are sub-sequentially fixed in

the genome. We let e denote the mismatch probability per base-

pair, so that e/2 is the probability of making a mismatch, which is

fixed as a mutation in the genome. If Lv,Lc,Lr denote the lengths

of the viability, conjugation, and resistance portions of the

genome, respectively, then we have that pv~(1{e=2)Lv ,

pc~(1{e=2)Lc and pr~(1{e=2)Lr .

Figure 2. Examples for vertical replication and horizontal gene transfer within the framework of our model and the consequential
propogation of mutations throughout the population: 1. Mutation-free vertical replication of the de-repressed, fully viable subpopulation that
is notated as xz

zz . 2. Vertical replication followed by a mutation to the conjugation and antibiotic resistance genes in the plasmid. 3. Mutation-free
bacterial conjugation between an F+ and an F- bacterium that leads to the formation of two antibiotic resistant, conjugation capable, derepressed
bacteria. 4. Horizontal transfer between an F+ and F- bacterium followed by a mutation to the antibiotic resistance gene of both conjugants, leading
to no drug resistance for these bacteria. pv,c,r respectively notate the probabilities for the bacterium replicating its viability, conjugation, and
resistance portions of the genome in an error-free manner while cr is the second order reaction parameter of the conjugation rate.
doi:10.1371/journal.pone.0096839.g002

Repression/De-Repression of Conjugative Plasmids

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e96839



Now, following the standard procedure in population genetics

and quasispecies models [13,19], we may allow the genome length

L~LvzLczLr to become very large while holding m~eL

constant. Defining av~Lv=L,ac~Lc=L,ar~Lr=L , we then ob-

tain,

pv,c,r~e{av,c,rm=2 ð1Þ

2. Evolutionary Dynamics Equations
Here, we define x

0

D% to be the fraction of the population

consisting of viable bacteria such that the conjugator region is of

type g, and the resistance region is of type %, where a type of ‘‘+’’

means that the given region is of the wild-type, while a type of ‘‘2’’

means that the given region differs from the wild-type. When

g = +, corresponding to a conjugator, then u= 6, corresponding

to the genes for conjugation being de-repressed (u= +) or repressed

(u= 2). Since we are only tracking viable bacteria, we should note

that xz
zzzx{

zzzxz
z{zx{

z{zx{zzx{{~x.

We define xc
z to be the total fraction of viable bacteria that are

conjugators, so that xc
z~xz

zzzxz
z{, and we define xc

{ to be the

total fraction of viable bacteria that are non-conjugators, so that

xc
{~x{

zzzx{
z{zx{zzx{{ : Therefore, allowing us to sum-

marize all of the processes that are relevant for each subpopulation

in our model into a generalized list of balance equations which are

described by Eq. (2):

error-free semi-conservative replication (vertical gene transfer) :

x+
++

2pvpj pk{1

xz
++zxz

++

non-plasmid-restricted mutation (as a result of vertical gene transfer) :

x+
++

2pvpj pk

xz�
++zxz�

++

error-free bacterial conjugation (horizontal gene trasnfer) :

xc
zzxc

{

cr(2pj pk{1)

xc
zzxc

z

plasmid-restricted mutation (as a result of bacterial conjugation) :

xc
zzxc

{

cr2pj pk

xc
{zxc

{

repression :

xz
++

kz{
x{
++

death by antibiotics :

x+
+{

kD
dead bacterium

ð2Þ

We note that pj denotes two possible values for the conjugation

gene - pc when the gene is copied or conjugated in an error-free

manner, or 1{pc when the gene is copied incorrectly. In a similar

manner, pk denotes two possible values for the antibiotics

resistance gene - pr or 1{pr.

Putting everything together, we obtain that the evolutionary

dynamics of the bacterial population is governed by the following

system of equations:

dxz
zz

dt
~½2pvpcpr{1{kz{zcr(2pcpr{1)xc

{{�kk(t)�xz
zz

dx{
zz

dt
~½2pvpcpr{1{crxc

z{�kk(t)�x{
zzzkz{xz

zz

dxz
z{

dt
~½2pvpc{1{kD{kz{zcr(2pc{1)xc

{{�kk(t)�xz
z{z

2pc(1{pr)x
z
zz(pvzcrxc

{)

dx{
z{

dt
~½2pvpc{1{kD{crxc

z{�kk(t)�x{
z{z

kz{xz
z{z2pvpc(1{pr)x

{
zz

dx{z

dt
~½2pvpr{1{crxc

z{�kk(t)�x{zz

2pv(1{pc)pr(x
z
zzzx{

zz)

zcr½2(1{pc)pr�xz
zzxc

{

dx{{

dt
~½2pv{1{kD{crxc

z{�kk(t)�x{{z

2pv(1{pc)(1{pr)(x
z
zzzx{

zz)

z2pv(1{pc)(xz
z{zx{

z{)z2pv(1{pr)x{zz

cr½2(1{pc)�xc
{½(1{pr)x

z
zzzxz

z{�

ð3Þ

By summarizing all of these equations we get that

�kk(t)~2pv{1{kD(xz
z{zx{

z{zx{{) is the mean fitness of

the population, or the first-order growth rate constant of the

population as a whole. Finally, we’d also like to note that the form

of the equations detailed by Eq. (3) is identical to what would be

obtained if we made a more realistic assumption that the

population was growing in a chemostat. [13].

3. Mutation-selection Balance
We solve our system of equations for the mutation-selection

balance for the case when m is small enough so to allow us to avoid

the error-catastrophe region. This allows us to apply a first order

taylor expansion to Eq. (1), which gives us simpler terms for pv,pc

and pr which are pv~1{avm=2; pc~1{acm=2 and pr~1{arm=2
(the probabilities for an error-free replication of bacterium’s

chromosome, conjugation gene and resistance gene respectively).

Our first goal is to determine the initial conditions which will allow

our system to converge while maintaining physical context. We

proceed by considering a preliminary condition for the antibiotics-

related deathkD which must be greater then the value of zero

while denoting xz
0,zz,x{

0,zz,xz
0,z{,x{

0,z{,x0,{z,x0,{{ as the

m~0 values of xz
zz,x{

zz,xz
z{,x{

z{,x{z,x{{, respectively. We

show in sub-section A from the Materials and Methods that this

condition brings forth that there are no non-resistant organisms in

the system when m = 0 so that xz
0,z{~x{

0,z{~x0,{{~0. From

this point, we separate our analysis into two regions based on the

differences between the values ofcrand kz{. The first region

obeys the condition of crvkz{ and we have proved that for this

region xz
0,zz~x{

0,zz~0and x0,{z~1(sub-section B from the

Materials and methods). The second region obeys the condition of

crwkz{ and we proved that for this region

xz
0,zz~1{kz{=(cr),x{

0,zz~kz{=(cr),x0,{z~0 (sub-section

C of the Materials and methods). We applied these to Eq. (3) and

ð2Þ
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found two separate solutions for xz
z{,x{

z{,x{{ and consequent-

ly were able to compute the terms for the population mean fitness

for each of these regions (sub-section D in Materials and methods).

For crvkz{ , we have xz
0,zz~x{

0,zz~0,and x0,{z~1 while

xz
z{,x{

z{,x{{ have the following values:

xz
z{~0

x{
z{~0

x{{~
2 1{prð Þ

kD

ð4Þ

Therefore, in selection-mutation balance their population mean

fitness is:

�kk~1{(avzar)m ð5Þ

The second solution is for crwkz{ when

xz
0,zz~1{kz{=cr,x{

0,zz~kz{=cr and x0,{z~0 when we

obtain,

xz
z{~

2 1{prð Þ
kD

(1{
kz{

cr
)(1zkz{)

x{
z{~

2 1{prð Þ
kD

½kz{(cr{kz{)(1zkz{)zkz{kD

cr(kDzcr{kz{)
�

x{{~0

ð6Þ

from which we derive the selection-mutation balance mean

fitness of:

�kk~1{m avzar½(1{
kz{

cr
)(1zkz{)z

kz{
kD

(1{
kz{

cr )(1zkz{)z
kz{

cr

1{
kz{

kD
z cr

kD

�

0
@

1
A
ð7Þ

In order to analyze the effect of the conjugation rate cr on �kk we

took the first derivative with respect to cr, and observed that �kk is a

decreasing function of cr, going from 1{(avzar)m for cr~kz{

to 1{m½avzar(1zkz{)� as cr?? (Figure 3).

We proceeded with a similar analysis for the repression rate

kz{ and calculated the first and second derivatives of the

population mean fitness�kk with respect to kz{. We found that

kz{~crzkD{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD(crzkD)

p
is a local minimum of �kk

(Figure 4). We can then take the limit of kz{?0, and find that

�kk~1{m(avzar) and that �kk is a decreasing function for

kz{vkz{,crit. We treat the limit of kz{?cr of �kk similarly

and find that at the range of kz{,critvkz{vcr,kz{ reaches the

exact same value of �kk as in the case of kz{?0 (Figure 4).

Discussion and Conclusions

We have solved our model for the limiting case of weak de-

repression k{z~0, and found a phase transition between a non-

conjugator and a conjugator regime (Figures 3, 5, and 6). In our

previous work [36], we found a similar phase transition in a

system, where all of its population was de-repressed. Such a

system, can also be considered as the strong de-repression limit for

our current model (kz{??, kz{~0). Nevertheless, a phase

transition that is related to the conjugation rate in both cases was

derived independently for each one of them. Therefore, we

conjecture that such a phase transition is ubiquitous whenever the

rate of repression is smaller than the rate of conjugation (i.e.

0vkz{vcr).

At first glance, the phase transition that we found for our

current model may seem somewhat counter-intuitive, since we

would expect no conjugators for all values of cr due to the effect of

repression. Nevertheless, we can explain the appearance of

conjugators from the transient de-repression of the ‘‘2’’ cell upon

conjugation. When we examine the trends of the population

fractions given in the model with respect to this transition, we

observe that when cr is sufficiently large compared to the

characteristic rate of repression, the transient de-repression results

in a chain reaction of conjugation-induced de-repressions

throughout the population, leading to a stable, and positive,

population fraction of conjugators. In other words, once the

conjugation rate cr crosses a certain threshold, the transient

production of conjugators becomes sufficiently large enough to

make the steady-state with no conjugators an unstable one. Any

perturbation away from this steady-state takes the system to a

steady-state where conjugators are present in the population.

Interestingly, we noted from Eq. (14) that the threshold value for

cr (the rate of conjugation) increases with kz{ (the rate of

repression) and decreases with kD (the antibiotics-induced death

rate), sub-section E in the Materials and Methods). This is

consistent with the idea, that in order to establish a stable

conjugators population, the rate of conjugation has to be slower

than the rate of death caused by the antibiotics, as to allow the

removal of the non conjugators population via mutation (due to

signal fitness peak landscape, this would effectively lead to the

removal of the non conjugators) while at the same time, the rate of

conjugation has to be significant enough to avoid its effective

cessation by repression.

When we introduced bacterial conjugation into our population,

the mean fitness of the population in our model has decreased.

This is in general agreement with previously published experi-

mental results [43], which attribute this fitness cost to its

maintenance by the bacteria. A similar effect was observed in

our previous work on the subject [36], although in that specific

case the mean fitness has decreased to a minimum for a critical

value of the conjugation rate cr, and asymptotically increased to

the value of �kk as cr?? (with respect to its value for �kk crcritð Þ).
However, in our current model we have found that, the mean

fitness decreases monotonically from 1{(avzar)m to

1{(avzar)m{kz{arm without any observed increase of the

mean fitness at the limit of cr??. We believe that this may imply

on an HGT- driven phase transition that resembles the error-

catastrophe phenomenon in viruses that could lead to a critical

decrease of the population’s mean fitness [44]. However, the scope

of such a phenomenon needs to be further investigated in further

theoretical as well as experimental studies.

Furthermore, we noticed that the difference in the values of

�kkincreases with the value of the repression rate kz{. This

dependency, implies on the complicated relationship among the

parameters cr, kz{ and �kkwhich we have further investigated by

differentiating �kk with respect to kz{ as well as by cr. From these

derivations we have found that as the conjugation rate is increased,

the value of the mean fitness decreases. However, this decrease can

be effectively nullified if the rate of repression is high enough. This

is the result of a local minimum for kz{ (the repression rate) that

occurs at a critical value, which we obtained from differentiating

Eq. (12) with respect to kz{ (the derivation of this value can be

ð7Þ
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Figure 3. A plot of �kk (the population mean fitness) versus cr (the second order reaction parameter of the conjugation rate).
Parameter values areav~0:8,ac~ar~0:1,kD~1:0,kz{~10:0,m~0:1(ac=ar=av are the ratio of the genome which is dedicated to conjugation/
resistance/organism viability respectively, kD is the first-order death rate constant of the population that is caused by antibiotics, kz{ is the first
order rate constant which describes the conjugators transition from the de-repressed to the repressed state and m describes the probability of
mutation for every replication of the entire genome). The solid line represents the analytical expression for k obtained in the small-m limit, while the
pluses represent the values for k obtained numerically. The numerical values for �kk were obtained using fourth-order Runge-Kutta integration of the
evolutionary dynamics equations. For crƒkz{, we used the initial condition x{z~1:0,xz

zz~x{
zz,~xz

z{~x{
z{~x{{~0:0, while for crwkz{

we used the initial condition xz
zz~1:0{kz{=(cr),x{

zz~kz{=(cr),xz
z{~x{

z{~x{z~x{{~0:0. We iterated for 100,000 time steps of size
0.001.
doi:10.1371/journal.pone.0096839.g003

Figure 4. A graphical solution for the population mean fitness k versus kz{ (the first order rate constant corresponding to the
transition from the de-repressed to the repressed state of the conjugators). The values of �kk were calculated from Eq. (12) with the
parameter values: av~0:8, ac~ar~0:1, kD~1:0, cr~10:0, m~0:1:
doi:10.1371/journal.pone.0096839.g004
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found in sub-section F in the Materials and Methods and is

illustrated by the graphical solution of �kkas a function of kz{ in

Figure 4). For kz{vkz{,crit the value of cr is big enough to

lower the population mean fitness while for kz{wkz{,crit the

rate of transition from the de-repressed state to the repressed state

is sufficiently large to decrease the difference in the mean fitness

caused directly by conjugation. We should note that both the

kz{?cr and kz{?0 limits of �kk give the same value of

�kk~1{m(avzar). Therefore, once the repression rate is greater

than the value of kz{,crit~crzkD{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD(crzkD)

p
, the decrease

to the mean fitness caused by conjugation is mitigated to the point

that it is effectively cancelled by repression.

Our study illustrates the critical role that repression is likely to

have on regulating the process of conjugation and how it can

Figure 5. A plot of population fraction of conjugators xc
z~xz

zzzxz
z{ versus the conjugation reaction parameter cr. Parameter values

are the same as those for figure 3, including the parameters for the Runge-Kutta integration. The solid line represents the zeroth-order analytical
expression for xc

z, while the pluses represent the values obtained numerically.
doi:10.1371/journal.pone.0096839.g005

Figure 6. A plot of the population fraction of the non conjugating, antibiotic resistant bacteria sub-population x{z versus the
conjugation reaction parameter. The parameter values are the same as those for figure 3, including the parameters for the Runge-Kutta
integration.
doi:10.1371/journal.pone.0096839.g006
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negate the deleterious effect on the fitness of a population.

Therefore, while conjugation is disadvantageous in a static

environment, its negative effect on the fitness of a population is

likely to become negligible if that population can sufficiently

repress the plasmid and consequently, restore itself to its original

fitness. This would suggest that the role of the bacteria in the

actual host-parasite dynamics between the bacteria and the

plasmid are much more complicated. While it is known that

bacteria can obtain various advantageous traits from plasmids

(including antibiotic resistance [3], degradation of unusual

substances such as xylene, toluene, napthtalene and phenanthrene

[45], resistance to heavy metals [46,47], and translation of Colicins

[48]), they are also required to pay a fitness cost for hosting the

plasmid in a static landscape. Previously, it was suggested that

repression could reduce the energy costs for the host bacteria [49].

However, experimental results suggested that the amelioration of

the fitness cost due to plasmid hosting was possible through

evolution of a bacterial population [50]. Based on our results, we

propose an alternative mechanism that allows bacteria to

ameliorate this fitness cost by repressing their propensity towards

conjugation and not only by vertical evolution. Interestingly, this

strategy is likely to allow bacterial populations a significantly faster

restoration pathway for their fitness loss (due to the maintenance

costs of antibiotic drug resistance) then vertical gene transfer (i.e.

evolution).

Our current model bears similarities to the Susceptible-Infected-

Susceptible (SIS) [51–53] class of infectious disease models, where

the ‘‘2’’ cells play the role of the Susceptibles (S) and the ‘‘+’’ cells

play the role of the Infected (I). If the contact frequency between

the S and the I population classes is sufficiently low, so that the I’s

revert back to the S state before having an opportunity to infect at

least one additional S, then the fraction of I’s in the population

drops to a negligible fraction of the population. Above a critical

contact frequency, however, the fraction of I’s rises to a finite

positive fraction of the population. Our model is in broad

agreement with the behavior of actual conjugative plasmid

systems, where it was observed that conjugative plasmids can

spread in an infectious manner above a critical population density

[38,54,55]. Typically this decrease in the population mean fitness

is explained by the presence of Male Specific Phages (MSPs) [56],

but in our model this factor is not accounted for, resulting in a

decrease of the mean fitness that is a direct result of mutations that

the plasmids go through when being replicated within the host

bacteria.

We would like to also note recent studies that have suggested

bacterial conjugation as a platform for the development of

conjugation-based antibiotics [57]. In light of these studies, our

results may have implications about the pharmaceutical limits that

need to be considered for such antibiotic agents.

Finally, we believe that developing mathematical models that

can correlate known data is important, as it indicates that the basic

mathematical framework is reasonable, and may therefore serve as

a foundation for building more sophisticated quantitative and

predictive models. For future work, we will need to take into

account more biological features of conjugation, such as regulation

of plasmid copy number, MSPs and plasmid compatibility classes.

Furthermore, we will need to move away from static landscapes

and consider the role that conjugation has in allowing a population

to adapt to new environments.

Materials and Methods

A. Proof That There Are No Non-resistant Organisms for
m~0,kDw0

If we define xr
zto be the total fraction of resistant organisms,

and xr
{to be the total fraction of non-resistant organisms, then we

have xr
z~xz

zzzx{
zzzx{z and xr

{~xz
z{zx{

z{zx{{. We

then have that m~0,

dxz
zz

dt
~½1{kz{zcrxc

{{k(t)�xz
zz

dx{
zz

dt
~½1{crxc

z{k(t)�x{
zzzkz{xz

zz

dxz
z{

dt
~½1{kD{kz{zcrxc

{{k(t)�xz
z{

dx{
z{

dt
~½1{kD{crxc

z{k(t)�x{
z{zkz{xz

z{

dx{z

dt
~½1{crxc

z{k(t)�x{z

dx{{

dt
~½1{kD{crxc

z{k(t)�x{{

ð8Þ

If we assume that the system converges to a stable steady-state,

then we must have that k(t)w1{kz{zcrxc
{,1{crxc

z. If, for

kDw0 there are non-resistant organisms in the population, then

either xz
z{,x{

z{ or x{{ are strictly positive. If xz
z{w0, then we

have k~1{kD{kz{zcrxc
{v1{kz{zcrxc

{[Z: There-

fore, xz
z{~0, so either x{

z{ or x{{are .0, which gives

k~1{kD{crxc
{v1{crxc

{[Z:Thus, there are no non-resis-

tant organisms in the population at steady-state for m = 0.

B. Proof That xz
0,zz~x{

0,zz~0,x0,{z~1 for crvkz{

Let us suppose that xz
zzw0 for somecrvkz{,m. Then the first

line in Eq. (3) gives k~2pvpcpr{1{kz{zcr(2pcpr{1)xc
{. Now,

assuming that our system converges to a stable steady-state, we also

have from the the fifth line in Eq. (3) thatk§2pvpr{1{crxc
z, and

so cr{kz{§cr½xc
zz(2pcpr{1)xc

{�{kz{§2pvpr(1{pc)§

0[Z. Therefore, xz
zz~0 for crvkz{,m, which implies that

xz
0,zz~0.

Suppose then that, x{
zzw0for crvkz{,mw0. Then from Eq.

(3) we havek~2pvpcpr{1{crxc
zv2pvpr{1{crxc

z[Z,

hence x{
zz~0 for crvkz{,mw0.

Taking the limit as m?0, we obtain x{
0,zz~0for crvkz{.

Now, when m~0, we have xz
0,zzzx{

0,zzzx0,{z~1, and so for

we obtain x0,{z~1.

C. Proof That xz
0,zz~ 1{kz{=(cr),x{

0,zz~ kz{=(cr),

x0,{z~0 for crwkz{

Given some crwkz{, suppose that xz
0,zz~0. Then since that

are no non-resistant organisms form~0, we have that xc
0,z~

xc
0,zz~0 and xc

0,{~1. This implies thatk§1{kz{zcrw

1[Z, and so we must have that xz
0,zzw0. This gives, 1~k~

1{kz{zcr(x{
0,zzzx0,{z)[x{

0,zzzx0,{z~kz{=(cr), and

so x{
0,zz~1{kz{=(cr).
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Now, the fifth line of Eq. (3) gives,

0~{crxz
0,zzx0,{z ð9Þ

from which it follows that x0,{z~0, and so

x{
0,zz~kz{=(cr).

D. Derivation of the Small-m Expressions for x+
z{,x{{

For small m, we may write the first-order expressions for

dx+
z{=dt and dx{{=dt. We obtain,

0~½{kD{kz{zcr(x{
0,zzzx0,{z)�xz

z{

z2(1{pr)x
z
0,zz(1zcr(x{

0,zzzx0,{z))

0~{½kDzcrxz
0,zz�x{

z{zkz{xz
z{z2(1{pr)x

{
0,zz

0~{½kDzcrxz
0,zz�x{{z2(1{pr)x0,{z

ð10Þ

For crvkz{ ,we have xz
0,zz~x{

0,zz~0,and x0,{z~1,

which implies xz
z{~x{

z{~0, and.

x{{~xr
{~2(1{pr)=kD, thus �kk~2pv{1{kDxr

{~2pv{1{

2(1{pr)~1{(avzar)m.

For crwkz{we have xz
0,zz~1{kz{=cr,x{

0,zz~kz{=cr,

and x0,{z~0. This gives,

xz
z{~

2(1{pr)

kD

(1{
kz{

cr
)(1zkz{)

x{
z{~

2(1{pr)

kD

kz{
kD

(1{
kz{

cr )(1zkz{)z
kz{

cr

1{
kz{

kD
z cr

kD

x{{~0,

ð11Þ

and so the mean fitness at steady-state is given by,

�kk~1{m avzar½(1{
kz{

cr )(1zkz{)z

kz{
kD

(1{
kz{

cr )(1zkz{)z
kz{

cr

1{
kz{

kD
z

cr
kD

�
 !

ð12Þ

E. Derivation of (cr)crit for crwkz{

In order to find the critical value of cr, we compute the

derivative of Eq. (12) with respect tocroand derive the following

expression:

d�kk

d crð Þ~
d

d(cr)
1{m(avzar

kz{
kD

(1{
kz{

cr )(1zkz{)z
kz{

cr

1{
kz{

kD
z cr

kD

2
4

3
5)

8<
:

9=
;~

{mar

kDkz{
2(2crzkD{kz{)

crð Þ2(crzkD{kz{)2

ð13Þ

Equating this term to zero allows us to find (cr)crit:

d�kk

d crð Þ~{mar
kDkz{

2(2crzkD{kz{)

crð Þ2(crzkD{kz{)2
~0

?2crzkD{kz{~0

? crð Þcrit~
1

2
kz{{kDð Þ

ð14Þ

F. Derivation of kz{,crit

In order to find the critical value of kz{we take the derivative

of Eq. (12) with respect to kz{oand get the following expression:

d�kk

dkz{

~
d

dkz{

1{m(avzar (1{
kz{

cr
)(1zkz{)z

kz{
kD

(1{
kz{

cr )(1zkz{)z
kz{

cr

1{
kz{

kD
z cr

kD

2
4

3
5)

8<
:

9=
;

~{
arm(crzkD) (cr)2zcr(kD{2kz{){kz{(2kD{kz{)

� �
cr(crzkD{kz{)2 ð15Þ

By equating this expression to zero we get the following

quadratic equation for kz{:

arm(crzkD) (cr)2zcr(kD{2kz{){kz{(2kD{kz{)
� �

~0

(cr)2zcr(kD{2kz{){kz{(2kD{kz{)~0

crkD{2crkz{{2kDkz{zkz{
2z(cr)2~0

kz{
2{kz{(2crz2kD)zcr(crzkD)~0,

ð16Þ

which allows us to find the values for kz{ that solve the

aforementioned equation:

kz{~
2crz2kD+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
({2cr{2kD)2{4:1:cr(crzkD)

q
2:1

~

2crz2kD+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cr2z8cr:kDz4kD

2{4cr2{4cr:kD

p
2

~

crzkD+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD(crzkD)

p
ð17Þ

Once we take into account the singularity of �kk at 1{ kz{

kD
z cr

kD

we are left only with the following:

kz{,crit~crzkD{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD(crzkD)

p
ð18Þ

ð13Þ

ð15Þ
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Note that one can compute that.

d2�kk

dk2
z{

~
2ar

:kD
:m(crzkD)2

cr(crzkD{kz{)3

d2�kk crzkD{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD(crzkD)

p� �
dkz{

2
~

2ar
:kD

:m(crzkD)2

cr(crzkD{kz{)3

~
2ar

:kD
:m(crzkD)2

cr(crzkD{ crzkD{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD(crzkD)

p� �
)3

~

2ar
:kD

:m(crzkD)2

cr(crzkD{cr{kDz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD(crzkD)

p
)3

~
2ar

:kD
:m(crzkD)2

cr(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD(crzkD)

p
)3

ð19Þ

If we take into account the positivity of cr,kD,ar,m, we see that

2ar
:kD

:m(crzkD)2

cr(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD(crzkD)

p
)3

w0, and so the critical value

crzkD{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD(crzkD)

p
is indeed a (local) minimum value of �kk.
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