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Abstract

A central problem of computational structural biology is the refinement of modeled protein structures taken from either
comparative modeling or knowledge-based methods. Simulations are commonly used to achieve higher resolution of the
structures at the all-atom level, yet methodologies that consistently yield accurate results remain elusive. In this work, we
provide an assessment of an adaptive temperature-based replica exchange simulation method where the temperature
clients dynamically walk in temperature space to enrich their population and exchanges near steep energetic barriers. This
approach is compared to earlier work of applying the conventional method of static temperature clients to refine a dataset
of conformational decoys. Our results show that, while an adaptive method has many theoretical advantages over a static
distribution of client temperatures, only limited improvement was gained from this strategy in excursions of the downhill
refinement regime leading to an increase in the fraction of native contacts. To illustrate the sampling differences between
the two simulation methods, energy landscapes are presented along with their temperature client profiles.
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Introduction

The structure-based discovery of small-molecule protein inhib-

itors and protein-derived biopharmaceuticals requires the struc-

tural target to be of sufficient resolution to capture accurate

modeling details. For many druggable targets, the protein

structure is unknown and, depending on sequence similarity with

known crystallographic or NMR structures, can be anticipated by

comparative modeling methods. Where structural templates are

lacking for accurate sequence recognition and alignment, knowl-

edge-based simulation methods can provide good to moderate

resolution for particular classes of protein fold topologies [1,2]. In

either case, the protein models are decoys of the true native state

and thus require some level of structural refinement to extend their

all-atom resolution [3–14].

A common approach for the conformational sampling of decoy

structures is the application of molecular dynamics parallel

tempering, or commonly known as temperature-based replica

exchange (T-ReX) [15]. Unlike traditional molecular dynamics

simulations, T-ReX is a generalized ensemble method of applying

multiple parallel simulations in which each replica is executed at a

different temperature. In typical applications, the temperatures are

pre-determined by a fixed set of values that span a desired range.

While a fixed temperature distribution is thought to be ideal for

many applications [16], it becomes pathological for cases where a

sharp energy barrier separates conformational states [17]. The

incurred difficulty arises from insufficient exchanges among

nearest-neighbor replica clients at the so-called ‘‘phase transition’’

temperature. A sharp transition is common to modeling protein

folding-unfolding events [17], although in general a highly

frustrated energy landscape can hinder temperature swapping

among clients.

Recently, we implemented an adaptive T-ReX algorithm based

on the notion of enriching the population of clients and their

exchanges near a protein folding-unfolding transition temperature

by allowing the clients to dynamically walk in temperature space

[18]. The implemented algorithm was first developed by

Hansmann and coworkers [19], and Troyer and coworkers [20].

Our initial application of their method was modeling the folding-

unfolding of SH3, a 57-residue protein domain of alpha-spectrin

[18]. It was observed from our work that the adaptive T-ReX

simulation method yielded a significantly lower melting transition

temperature than the conventional static T-ReX approach,

leading to a better agreement with the experimental determina-

tion. Although the adaptive method did not achieved proper

thermodynamic coexistence between the folded and unfolded

states, the improvement is thought to be gained from more

extensive sampling of the transition state ensemble by allowing the

replicas to circulate in temperature space, whereby visiting both

low and high temperature extremes. An alternative adaptive

algorithm has been developed based on convective methods to

improve efficient sampling of energy basins that are limited by

conventional replica-exchange methods [21].
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While there are theoretical virtues and limitations of the

adaptive T-ReX method, we investigate in this work the practical

performance of the method applied to the structure refinement of

a dataset of protein conformational decoys [7,22]. Given the

success of the adaptive T-ReX simulations for modeling the sharp

energy differences between the folded and unfolded states of SH3

[18], it is of general interest to determine whether this approach is

beneficial in modeling less-cooperative transitions that are thought

to govern the structure refinement of decoys taken from either

comparative modeling or knowledge-based structure predictions.

We examine a set of protein targets that offers a challenging

benchmark of simulation methods for structure refinement [7,22].

The targets are 49–92 residues in size and amenable to an analysis

by unrestrained all-atom simulation methods. Our simulation

protocol is identical to that applied in earlier studies of refinement

[7]. Computational sampling is conducted by combining the self-

guided Langevin dynamics (SGLD) simulation method with

replica-exchange simulations [23,24], and we provide a compar-

ison between the application of dynamic client walkers in

temperature space and that of using a static distribution of

temperatures. We also investigate four different energy functions

to rank order conformations from the simulations.

Methods

In conventional T-ReX simulations, the temperatures of the

replica clients are fixed at specific values during the simulations

and are typically geometrically spaced [16] by N-1 intervals from

the minimum temperature Tmin to the maximum Tmax

T1~Tmin

Tiz1~Ti
Tmax

Tmin

� � 1
N{1

� �
,

ð1Þ

where i = 1…N and the number of replica clients is given by N.

After a specified number of simulation integration time steps, the

neighboring replica clients, a and b, swap temperatures with a

probability given by the Metropolis energy criteria [25]

p a<bð Þ~ min 1,e ba{bbð Þ Eb{Eað Þ
h i

, ð2Þ

where ba = 1/kBTa, kB is Boltzmann’s constant, Ta is the

temperature of replica client a, and Ea is the potential energy of

client a.

In contrast to Eq. (1), the adaptive T-ReX attempts to maximize

the number of times that replica clients progress in round trips

from the temperature extremes of Tmin to Tmax. We define each

replica client as either ‘‘cold’’ or ‘‘hot’’ depending on the last

temperature extreme it visited [18]. Histograms over temperature

space, ncold Tð Þ and nhot Tð Þ, accumulate the number of cold and

hot clients, respectively, visiting each temperature window. The

fraction cold, f, of a client window at temperature T is the number

of cold clients visiting that temperature divided by the total

number of cold and hot client visits:

f Tð Þ~ ncold Tð Þ
ncold Tð Þznhot Tð Þ : ð3Þ

Using this fraction, we define a thermal current by [18]

j~D Tð Þg Tð Þ df

dT
, ð4Þ

where D Tð Þ is the diffusivity and g Tð Þ is the probability that any

client will reside at temperature T. The current can be maximized

by adjusting the temperatures such that f (Ti) increases linearly as a

function of temperature index, i (namely, the slope of f (Ti) as a

Figure 1. Comparison of adaptive and static T-ReX simulations
for the refinement of protein target decoys 1kviA, 1pgx,
1cy5A, 1shfA, 1r69, 1csp, 1ah9 and 1b72A. A bar graph is shown
of the computed fraction of native contacts for each detection method.
Conformers were culled from the ensemble of replica clients at a
temperature of 275 K. First-order rank detection is based on the energy
functions CHARMM22/GBMV2 (cyan-colored bar), GOAP (red bar),
dDFIRE (purple bar), and RWplus (green bar). For each target, the initial
unrefined decoy is the conformer with the highest fraction of native
contacts (grey bar). With the exception of GOAP scoring, refinement
results using the static method for 1kivA, 1pgx, 1cy5A, 1shfA, 1r69 and
1b72A were taken from an earlier reported study.5 Molecular models
are illustrated for the crystallographic structure and the top-ranked
conformers from the adaptive and static sampling methods.
doi:10.1371/journal.pone.0096638.g001
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function of client index is constant) [18]. Here, we interpolate a

continuous f Tð Þ from the computed values of f at the current set

of temperatures, Ti, and then search for the new temperatures

where f Tð Þ= i/(N21). The effect of this procedure is that many

temperatures will reside near a sharp energy barrier between

conformational states. To prevent all of the windows from

clustering around the same temperature and depleting exchanges

at the temperature extremes, we introduce a constraint such that

no neighboring temperatures can be more than two geometric

spacing units apart,

Tiz1

Ti

ƒ

Tmax

Tmin

� � 2
N{1

� �
, ð5Þ

with the lower and upper values of Ti set to Tmin and Tmax,

respectively.

The starting input structures for the protein targets were

obtained from the I-TASSER decoy set II of structurally non-

redundant targets [26]. Selected targets for refinement were 1kviA,

1pgx, 1cy5A, 1shfA, 1r69, 1csp, 1ah9 and 1b72A. For each target,

the I-TASSER decoys were ranked based on their calculated

energies using the random-walk statistical potential (RWplus)

developed by Zhang and Zhang [27]. The top-ranked 16 decoys

per target were selected and their side chains were replaced using

the SCWRL4 modeling program [28]. All selected decoys plus the

corresponding X-ray crystal structures were subjected to energy

minimization by the method of steepest descent minimization for

50 steps using the CHARMM22 force field with the CMAP

backbone dihedral cross-term extension potential [29]. Solvent

effects were modeled using the generalized Born (GBMV2)

implicit solvent model [30]. The GBMV2 parameters were set

to values of b= –12 and P3 = 0.65 to smooth the energy surface.

The hydrophobic cavitation term was modeled by applying the

solvent-exposed surface area of the protein solute with a surface

tension coefficient set to a value of 0.015 kcal/mol/Å2.

The SGLD simulations were carried out using the

CHARMM22+CMAP/GBMV2 potential energy function. With-

in the SGLD method, an ad hoc force term is computed as

momentum averaged over the adjoining protein conformational

space near the current conformation of the simulation trajectory.

In the formalism of Wu and Brooks [23], the SGLD equation of

motion is the following

_ppi~f i{cipizRizlgi, ð6Þ

where _ppi is the rate of change of the momentum of particle i, f i is

the force acting on the particle, ci is the friction constant, Ri

denotes the random force and gi is a memory function, which is

scaled by guiding factor l. The memory function gi is defined by

the moving average of the momentum seen by the system over an

interval of time, L:

gi~SpiTL, ð7Þ

where S . . .TL denotes a local average. The time interval is further

defined as L~tL=dt, where tL is the local averaging time and dt
the time step along the simulation trajectory.

An integration time step of 2 fs was used for all simulations.

SGLD parameters of the friction constant was set to c of 1 ps21 for

all heavy atoms, the guiding factor l set to a value of 1, and the

averaging time tL was set to 1 ps. Selection of these values was

taken from our previous studies of the SGLD model [7,22]. Non-

bonded interaction cutoff parameters for electrostatics and vdW
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terms were set at a radius of 22 Å with a 2-Å potential switching

function. Covalent bonds between the heavy atoms and hydrogen

atoms were constrained by the SHAKE algorithm [31]. All protein

targets during the simulations were unconstrained, freely to

reorganize from conformational sampling.

Replica-exchange simulations were performed using the

MMTSB [32] utilities and programming libraries for implement-

ing the CHARMM simulation program (version c33b2) [33].

Simulations were carried out using 16 replica clients and

frequency of exchanges was set to every 1 ps of simulation. As

with previous structure refinement studies [7], the lower and upper

bound temperatures were set at Tmin = 275 K and Tmax = 350 K.

Selection of Tmax was approximate of folding-unfolding transition

temperatures and limits the unproductive use of multiple replica

clients in oversampling the ensemble of unfolded states which

contribute little to refinement. The static distribution of temper-

atures was spaced geometrically between the lower and upper

limits. Each target was modeled for 20 ns of simulation time,

which was found to be adequate to allow for sampling

convergence of the decoys [7]. Conformational sampling results

using the static T-ReX method for targets1kviA, 1pgx, 1cy5A,

1shfA, 1r69, and 1b72A were taken from earlier work [7].

Figure 2. Determination by the adaptive and static T-ReX methods of an average Ca-RMSD excursion computed as a function of
client temperature for each protein target. The solid line denotes the adaptive sampling method and the dashed line represents the use of a
static distribution of client temperatures.
doi:10.1371/journal.pone.0096638.g002
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Four different energy functions were applied to select the top-

scoring conformers from the ensemble of decoys generated by the

SGLD/T-ReX simulation for each protein target. The first energy

function is identical to the force field (CHARMM22+CMAP with

the GBMV2 solvent model) used to generate conformational

decoys alternative to the starting ones. In addition, three statistical

potentials were applied to rank order the generated conformers

from the simulations. They included the RWplus energy function

[34], the dDFIRE potential developed by Yang and Zhou [33],

and the GOAP statistical potential developed by Zhou and

Skolnick [35].

Generated conformers were analyzed in terms of their fraction

of native contacts (fN). For a given decoy structure, the native

contacts are identified as all side-chain center-of-mass pairs (i,j),

such that j.i and whose distances are less than a cutoff of 6.5 Å.

Using this approach for each decoy conformation, fN is the

number of native contacts in the decoy divided by the total

number in the X-ray crystal structure.

Results and Discussion

Table 1 presents the comparison between the adaptive and

static T-ReX simulations for refinement of eight protein targets.

Reported are the computed fN values for the top-scoring

conformations as detected by the four energy functions of

CHARMM22/GBMV2, GOAP, dDFIRE and RWplus. Also

included are fN values averaged over the top-scoring 16

conformations for each scoring function. While there are various

measures of rank order and similarity between conformers of a

generated ensemble (e.g, global distance test scores, etc.), we

selected to apply a straightforward approach based solely on the

scoring functions and their relevance to detect high fN. For

comparison purposes, the initial decoy set listed for each target is

the fN range for the starting 16 decoys. The simulation results are

Figure 3. Conformational sampling of decoys for the target
1kviA, using the adaptive and static T-ReX simulation meth-
ods. Figures 3a–d show population-density profiles culled at 275 K
from the trajectories generated by the two simulation methods. The
energy functions CHARMM22/GBMV2 and GOAP are plotted as a
relative change (DE) from a minimum value for each function versus the
computed fraction of native contacts (fN). Population-density contours
are displayed using a logarithmic distribution where the color range
denotes the free-energy scale from high probability (red color) to low
probability (blue color). Several highly populated energy basins are
labeled in the profiles with representative conformers. Figure 3e shows
the replica temperature windows (16 clients) as a function of the
computed temperature at the end of 20 ns simulation time. Results
from the adaptive method are shown as circle symbols and the static
(geometrically fixed) temperatures as diamonds. Figure 3f reports the
final replica exchange rate for each client pair i,j at 20 ns simulation
time. Symbols of Fig. 3f are the same as given in Fig. 3e. Several basins
highlighted in figures a-d are denoted by their client representation.
doi:10.1371/journal.pone.0096638.g003

Figure 4. Conformational sampling of protein target 1ah9,
comparing probability-density profiles computed by the
adaptive and static T-ReX simulation methods. Detail descrip-
tions of the plots are similar to those presented in Fig. 3.
doi:10.1371/journal.pone.0096638.g004
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also illustrated in Figure 1, with fN values that correspond to

molecular model representations for each target, showing the X-

ray crystallographic structure and the top-scoring conformers from

refinement of the original decoys. The structural models demon-

strate the diversity in the fold topologies among the set of targets

and their conformational scoring.

Of the multiple metrics to assess the accuracy of the simulations,

the fraction of native contacts is perhaps one of the more stringent

structural measures of native-like conformations. Quality assess-

ment of the modeled structures can be further evaluated by the

customary use of Ca root-mean-square deviation (RMSD);

however, conformers rank ordered by this measure may contain

poor side-chain packing. From the overall results, the adaptive T-

ReX simulations for the aggregate dataset gives an average fN
value of 0.62, computed as a statistical average over the four

energy methods using the top-scoring conformer detected by each

energy function. As a comparison, the T-ReX simulations using a

static temperature condition yielded a nearly equivalent average of

fN 0.60. The starting decoys for the targets prior to refinement

have an average fN of 0.51 for the top-ranked conformers using the

RWplus energy function to rank-order structures. The overall

range for the starting decoy set is a top value of fN 0.64 (target

1shfA) to a low value of 0.29 (1b72A).

Among the energy functions, no single function consistently

outperformed the others for all targets in detecting conformers

with the highest fN. Nevertheless, for both the adaptive and static

T-ReX simulations, RWplus yielded the highest average fN of

roughly 0.63, while the lowest is given by CHARMM22/GBMV2

with a value of 0.60. The average maximum fN sampled from the

simulations of all targets is 0.74 for the adaptive T-ReX and 0.72

for the static method. While these sampling excursions seem to

approach the downhill refinement regime on the force-field

potential energy landscape for both methods [7,22], the confor-

mational populations of these basins and their detection from the

energy functions were disappointedly poor.

Using the alternative RMSD metric to assess refinement, the

overall trend from the energy functions is similar to that of fN. The

RWplus yielded the lowest-average Ca RMSD decoy detection of

2.6 Å for the adaptive T-ReX sampling and 2.2 Å for the static

method. The lowest-RMSD values sampled overall from the

simulations were 1.7 Å using the adaptive method and 1.6 Å for

the static method. The starting decoy set of 16 conformers per

target exhibited a net average Ca RMSD of 3.5 Å, with values

ranging from 1.4 Å (target 1kviA) to 10.7 Å (1shfA). Collectively,

the static method achieved lower RMSD values for the combined

energy functions and, as illustrated below, this is related to the

dynamics of heating and cooling clients by the adaptive method

driven by the topology of the CHARMM22/GBMV2 energy

landscape.

To better understand the effects of temperature exchanges on

conformational excursions, Fig. 2 shows a comparison between the

adaptive and static T-ReX simulations in sampling Ca-RMSD

space as a function of client temperature. Since the adaptive

method dynamically walks in temperature space, we selected to

apply the final converged temperature set as an approximate of

histograms over the evolved temperature path. The comparison of

Figure 5. Dynamic temperature profiles for targets 1pgx, 1r69, 1csp and 1b72A. The color scheme represents simulation data taken from
the trajectories at times of 5 ns (blue line), 10 ns (green line), 15 ns (red line) and the final 20 ns (black line with symbols for each client).
doi:10.1371/journal.pone.0096638.g005
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the two T-ReX methods shows in general the adaptive method

produces a lower average Ca-RMSD exploration and thus

indicates less diverse sampling. Overall statistical fluctuations in

the averages between the two methods are comparable (data not

shown). Difference in excurions result follows from the diffusive

flow of clients between the two temperature extremes and the

enrichment of client populations near energetic barriers. Taken

together, the adaptive method keeps structures near their starting

decoys and leads to greater local optimization of conformational

reorganization, rather than a more expanded search that is

observed for the static method. Although there are undoubtedly

pluses and negatives to a restricted local sampling, the escape from

kinetic traps formed by misfolded side-chain packing may require

more extensive excursions by way of unraveling the protein fold to

achieve better results. While several targets show sharp funnels to

lower RMSD values, many are gradual or, in the case of 1cy5A,

nearly flat in the slope. The lack of steep funnels to low-RMSD

values at Tmin suggests difficulty in the force-field resolution to

capture the downhill refinement regime.

One of the many factors that contribute to the resolution of the

potential energy surface in sampling conformational space is the

implicit solvent model. Depending on the protein target topology

and the accuracy of the generalized Born model description,

distortions in the population distributions have been noted,

particularly for b-stranded proteins; see, e.g., [36,37]. While

generally an explicit solvent representation improves the sampling

distributions for problematic cases using single-temperature

simulations, challenges remain on implementation of a computa-

tionally efficient method for explicit solvent in replica-exchange

simulations. To circumvent this problem, a hybrid explicit/

implicit solvent model has been developed based on the idea of

replacing the contribution of explicit solvent energies in the

Metropolis exchanges with those of the GBMV2 model [7,38].

This allows the number of replica clients in explicit solvent

calculations to be the same as in the implicit solvent SGLD/T-

ReX simulations while capturing the accuracy of conformational

sampling on an explicit solvent landscape. Application of the

hybrid solvent scheme with the static T-ReX method has been

reported for the structure refinement of 1b72A and showed

modest improvement over the implicit solvent model in obtaining

a sharper funnel to low-energy native states [7]. Even with the

improvement, detection remained roughly identical between the

implicit and hybrid solvent simulation methods.

We next examine two targets in detail that illustrate the range of

results from the adaptive T-ReX simulation method and its

comparison with the static approach. Selection of these targets

includes one where the adaptive method yields more accurate

refinement and the other favors the static client approach. While

these two test cases may appear anecdotal, they encompass a range

of results that likely reflect a consensus from a much larger dataset

in applying an adaptive scheme for temperature clients during a

simulation trajectory.

The first example given in Fig. 3 is the target 1kviA, which is a

protein with a 2-layer ab fold topology. Population-density profiles

at 275 K are reported as a two-variable distribution of the

conformational energy using the CHARMM22/GBMV2 function

and the corresponding values of fN. In addition, the potential

energies for both the adaptive and static methods are contrasted

with GOAP scoring of conformers. It is observed that for this

target, the adaptive T-ReX performed better at sampling the

transitions between multiple energy basins (illustrated as basins A

and B in Fig. 3a) than the static method of populating extensively

one basin (labeled as C in Fig. 3b). Of the adaptive sampling

method, CHARMM22/GBMV2 identified a conformer with a fN
of 0.74 (RMSD 1.8 Å) and GOAP a value of 0.78 (RMSD 1.7 Å),

while for static method, the corresponding fN values are 0.66

(RMSD 2.0 Å) and 0.51 (RMSD 2.0 Å), respectively. The top-

ranked starting decoy had a value of fN 0.60 (RMSD 2.2 Å).

Figures 3e and 3f illustrate the final temperature profiles of the

adaptive and static T-ReX simulations after 20 ns for the target

Figure 6. Energies and fraction of native contacts displayed as a function of the simulation time for targets 1pgx and 1r69. Shown
are the computed energies from the CHARMM22/GBMV2 and GOAP potential energy functions, applied to scoring conformations extracted from the
trajectory exchanged to the replica client at 275 K. The black colored line denotes results obtained from the adaptive replica-exchange method and
the red line denotes simulations using the static temperature distribution. Data shown are running averages over 100–200 frames after the initial
equilibration phase.
doi:10.1371/journal.pone.0096638.g006
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1kviA. In comparison to the geometrically spaced fixed replica

clients, the results of Fig. 3e show the dynamic walk in temperature

space produces a sharp increase in the temperature at the lower

end followed by smaller incremental changes in temperatures until

reaching the upper end point. Whereas the geometrically spaced

clients have exchanges in the range of 60% across the spectrum of

nearest-neighbor clients and show no sharp unbalance, the

adaptive method finds regions of energetic transitions to cluster

clients to yield a significantly different profile. The range of

temperatures from approximately 317 K to 330 K provides a

thermal bath that allows the enrichment of nearest-neighbor client

exchanges of roughly 80% (Fig. 3f), while both ends of the

temperature condition drop off to roughly 30%. For this particular

target, having a condition of high thermal convection among

the clients leads to more efficient sampling of A'B transition

separated at fN ,0.6 (Fig. 3a), whereas the static method

becomes kinetically trapped. Figure 3f illustrates which clients

are representative of basins A and B and their location on high-

exchange manifold.

The next target to illustrate is the protein 1ah9, an all-b protein

of the OB-fold family. Unlike that of modeling 1kviA, the

temperatures from adaptive sampling are generally lower than that

applied through the static method (Fig. 4). This reduction in

overall temperatures is comparable to that observed in the

modeling study of SH3 [18] and is driven by the energetic and

topological frustration of the CHARMM22/GBMV2 function in

sampling structural reorganization of 1ah9. The cooler tempera-

tures promote local optimization and falsely overpopulate the

transition between A and B near-native basins (Fig. 4a), while in

contrast the static method samples alternative states that are

missing in the adaptive sampling (primarily basin C). Nevertheless,

scoring structures by the CHARMM22/GBMV2 function yields

similar conformers for the two sampling methods, namely the

adaptive method identifies a fN of 0.67 with a RMSD of 3.7 Å,

and the static method yields fN of 0.63 with a RMSD of 3.4 Å.

As for overall excursions, the static method was able to sample a

high fN value of 0.82, while the adaptive approach was limited

to fN of 0.71. The lack of improvement in basin sampling from

client exchanges evolving based on the energetic topology suggests

that increasing temperature diffusion on a local transition

identified to be overly favorable by the adaptive method can

hinder the achievement of consistent results. In more broad terms,

the bottleneck in the performance of adaptive temperature-based

sampling is the limited large-scale structural reorganization, which

is typically much slower than the rate of client exchanges that

govern convection among the replicas [39].

The difference between the adaptive T-ReX and the static

method for target 1ah9 is more pronounced when applying the

GOAP energy function (Figs. 4c and d). The GOAP energy

landscape for the static method shows a downhill refinement

funnel that likely represents the all-atom resolution of the force

field in sampling conformational space [7,22], whereas the

adaptive T-ReX reveals a landscape that favors a non-native

collapsed basin. For the adaptive method, GOAP identified a

conformer of fN 0.52 (RMSD 5.6 Å), while the static T-ReX

method detected fN 0.71 (RMSD 1.7 Å). In comparison using the

RWplus energy function, the adaptive and static methods

differentiated fN 0.67 (RMSD 3.7 Å) and fN 0.75 (RMSD 1.6 Å),

respectively. While the latter is significant refinement of the

starting decoys that exhibited fN of 0.57 as ranked by RWplus and

consisted of RMSD values that ranged from 2.1 Å to 10.7 Å, there

is a misfolded short helix in the topology identified by RWplus

(Figs. 1 and 4).

One of the concerns about allowing the clients to dynamically

walk in temperature space is the possibility of erratic tempering

during the simulation trajectory. This is particularly important of a

modeling approach that combines an adaptive scheme with the

SGLD method of accelerating trajectories. Figure 5 shows

snapshots of the temperature profiles in increments of 5 ns for

targets 1pgx, 1r69, 1csp and 1b72A. We find that the clients evolve

smoothly and there are no instabilities due to the SGLD method.

Each profile is generally unique and the walkers in temperature

space reflect the SGLD sampling of the protein conformational

energy surface.

Related to issues of tempering stability is the concern of

sampling exhaustiveness. Figure 6 shows the evaluation of three

measures extracted from the replica client culled at 275 K along

the simulation trajectory for targets 1pgx and 1r69. The measures

are the CHARMM22/GBMV2 potential energy, the GOAP

scoring of conformations and values of fN. As expected, values of

CHARMM22/GBMV2 appear to gradually decrease due to

continued optimization of bonded and non-bonded interactions

during the simulations. In contrast, the character of the GAOP

function varies widely among the simulation models and targets.

In either model system, the simulations for 1pgx show slight

optimization in fN along the trajectory and suggests that

refinement of the decoys is hindered by considerable frustration

on the CHARMM22/GBMV2 potential energy surface. Con-

versely, the adaptive method for 1r69 finds the downhill

refinement regime within roughly 7 ns and achieves rank-order

uniformity in fN, even though the energies continue to evolve

toward the optimization of structures in a native-like funnel. The

final refinement for 1r69 clearly illustrates the potential advantage

of the adaptive method.

Conclusions

This work presented an assessment of an adaptive temperature-

based replica exchange method for the structure refinement of a

set of protein decoys. The difference between the conventional

method of a static set of thermal clients and the adaptive method is

that the latter allows clients to dynamically walk in temperature

space near sharp energetic barriers that separate conformational

basins. Unlike what is typically observed in protein folding-

unfolding transitions, the energetic pathways between basins for

structure refinement are less cooperative and show a reduced

dimensionality in sampling the energy landscape given a starting

decoy model with a near-native folded topology. It is of general

interest to determine whether an adaptive T-ReX scheme provides

any computational advantage in obtaining greater accuracy of

refinement. Our study showed the adaptive method provided only

minor improvement for refinement of protein models over the

static approach in the sampling of basins composed of native-like

side-chain contacts. The results also showed the need for

improvement in the development of more accurate statistical

potentials for detection of refinement extracted from all-atom

simulations.
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