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Abstract

Genome-wide profiling of open chromatin regions using DNase I and high-throughput sequencing (DNase-seq) is an
increasingly popular approach for finding and studying regulatory elements. A variety of algorithms have been developed
to identify regions of open chromatin from raw sequence-tag data, which has motivated us to assess and compare their
performance. In this study, four published, publicly available peak calling algorithms used for DNase-seq data analysis (F-
seq, Hotspot, MACS and ZINBA) are assessed at a range of signal thresholds on two published DNase-seq datasets for three
cell types. The results were benchmarked against an independent dataset of regulatory regions derived from ENCODE in
vivo transcription factor binding data for each particular cell type. The level of overlap between peak regions reported by
each algorithm and this ENCODE-derived reference set was used to assess sensitivity and specificity of the algorithms. Our
study suggests that F-seq has a slightly higher sensitivity than the next best algorithms. Hotspot and the ChIP-seq oriented
method, MACS, both perform competitively when used with their default parameters. However the generic peak finder
ZINBA appears to be less sensitive than the other three. We also assess accuracy of each algorithm over a range of signal
thresholds. In particular, we show that the accuracy of F-Seq can be considerably improved by using a threshold setting that
is different from the default value.
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Introduction

Over the past decade, our ability to interrogate the features of

the chromatin state has benefitted greatly from high-throughput

sequencing (HTS) technologies. Genome-wide profiling of protein-

DNA interactions has been made possible by Chromatin

Immunoprecipitation coupled with high throughput sequencing

(ChIP-seq) for a remarkable number of protein targets [1–3].

Similarly, HTS can be combined with the established DNase I

hypersensitivity assay (DNase-seq) to profile open chromatin

regions [4–7]. This approach has led to the detection of a total

of nearly three million DNase I Hypersensitive Sites (DHS) across

the human genome in about 140 different cell type [3,8].

Probing the chromatin state using ChIP-seq and DNase-seq

requires sophisticated data analysis pipelines once the sequence

reads have been collected, but at their core, all analysis approaches

involve gauging the significance of enrichment of short read tags in

a given region relative to an expected background distribution.

Algorithms used for this purpose are generally known as peak

callers [6,9].

Analysis of ChIP-seq data has received a great deal of attention

and an enormous range of peak callers have been implemented

[6,10–14], benchmarked and extensively reviewed [2,9–11,15,16].

However, DNase-seq has thus far received less attention and to the

best of our knowledge there has been no systematic comparison of

the performance of algorithms for calling DHSs from DNase-seq

data. This places the end user in an uncertain situation, with little

evidence to base decisions on as to which tools to use and with

what parameter settings.

The properties of enriched regions vary greatly between

different HTS-based chromatin interrogation technologies. For

example, TF-ChIP experiments typically yield very sharp and

punctate signals, while histone-ChIP for modifications such as

H3K36me3 are much more broadly distributed. Signals from

DNase-seq data, in turn, appear neither as sharp as those in TFBS

ChIP-seq, nor as broad as in a typical histone modification ChIP

[17,18]. Therefore, peak callers that have been originally

developed with ChIP-seq data in mind are usually not recom-

mended for DNase-seq data, at least without additional parameter

tuning [19].

To address this problem, a number of approaches have been

presented. The Hotspot [7,18] and F-Seq tools [20] have been

implemented specifically for use with DNase-seq data (although F-

Seq has also been used for ChIP-seq and FAIRE-seq data [21]). In

contrast, Zero-Inflated Negative Bionomial Algorithm (ZINBA)

[17] has been proposed as a generic tool for handling a variety of

HTS data types including DNase-seq, FAIRE-seq, ChIP-seq and

RNA-seq. Finally, several published studies have used the Model-

based Analysis of ChIP-seq (MACS) peak caller [13] for the

analysis of DNase-seq data [22]. As we will see, these tools are

based on a diverse range of mathematical models, have different

parameter spaces, and deal differently with the problem of

background estimation.

In this paper, we compare the performance of the aforemen-

tioned four tools (all of which are open-sources and publicly
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available) on several DNase-seq datasets from the ENCODE

project. The analysis has been performed on the chromosome 22

of the human genome GRCh37 assembly. The key aim of our

analysis is to present a framework within which the user can decide

which peak caller is more applicable to their data and whether or

not the default signal threshold is appropriate in their case. In what

follows, we first provide the reader with a brief overview of each of

these peak callers and then present the results of our analyses.

Results

An Overview of Peak Callers
In this section we provide the reader with a brief description of

each of the four tools used for benchmarking. More specifics about

these algorithms including the version number, run time, the

language in which they have been implemented and their original

references are summarized in Table 1.

Hotspot. The Hotspot [7,8] algorithm is the underlying

algorithm used for the discovery of DHSs in the ENCODE

project. The idea behind Hotspot is to gauge the enrichment of

sequence tags in a region compared to the background distribu-

tion. Enrichment is measured as a Z{ score, taking the binomial

distribution of tag frequencies as the null model. Considering a

small window of length 250 bp centred in a larger window of

length 50 kb, the probability of each tag in the larger window

hitting the small window is denoted as p which is defined as the

ratio of the number of uniquely mappable tags in the smaller

window to those in the larger window. (Note that p may differ in

different regions because not all k{ mers in a window can be

aligned uniquely to the reference genome).

Assuming n tags hitting the smaller window and N tags hitting

the larger window, the expected number can be calculated as

m~Np, the standard deviation as s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np(1{p)

p
, and the Z{

score (that is then assigned to the small window) as z~ n{m
s . Using

this method, each tag is assigned a Z{ score which is equal to the

Z{ score of a small window centred at that tag position. Then a

‘‘hotspot’’ region is defined as a succession of tags having a Z{
score above a specific threshold (assumed to equal two by default).

Hotspot infers its final hotspots after two phases. Some highly

enriched regions are detected as the first phase hotspots and the

corresponding tags are filtered out from the set of short read tags.

In the second phase, Hotspot tries to discover weaker but

reproducible peaks that might have been overshadowed by the

most enriched regions. Finally, the results of these two phases are

combined and subjected to false discovery rate analysis. For this,

Hotspot generates a set of random tags that is uniformly

distributed over the mappable region of the genome. For a given

Z{ score threshold T , the FDR for the observed peaks centered

at each tag with a threshold greater than or equal to T is defined

as a ratio of the number of random tags with Z{ scores greater

than or equal to T to the number of observed tags falling within

the same score range.

Hotspot is mainly programmed in Czz, but the statistical

analyses have been implemented in R. Some parts of the algorithm

are also written in Python and as Unix shell scripts. The package

depends on BEDOPS [23] and BEDTools [24].

A new implementation of Hotspot named ‘‘Dnase2hotspots’’

has been reported by Baek et al. [18]. The key difference between

the two versions seems to be the merging of the two-pass detection

in the original Hotspot algorithm into a single pass. At the time of

our analyses, Dnase2hotspots required MATLAB for running, and

was therefore excluded from the benchmarking. However, as this

manuscript was at a late stage of revision, we learned that an

updated version of Dnase2hotspots became available that no
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longer requires MATLAB (http://sourceforge.net/projects/

dnase2hotspots/).

F-Seq. F-Seq [20] was developed with the aim of summarising

DNase-seq data over genomic regions. The authors identified

problems with histogram based-peak calling algorithms, in which

the enrichment of tags is measured across equal-sized bins. Such

algorithms suffer from boundary effects and difficulties in selecting

bin widths.

In F-Seq, it is assumed that n short tags fxig are independently

and identically distributed along the chromosome i.e. xi%p(x)
such that the probability density function is inferred as:

p̂p(x)~ 1
nb

Pn
i~1 K( x{xi

b
) in which b is the bandwidth parameter

to control the smoothness and K() is a Gaussian kernel function.

Although this algorithm was initially developed for DNase-seq

data, it has also been used for ChIP-seq peak detection [20].

ZINBA. ZINBA [17] is a generic algorithm for genome-wide

detection of enrichment in short-read data that was proposed for

the analysis of a broad range of genomic enrichment datasets.

ZINBA first divides each chromosome into small non-overlapping

windows (250 bp by default) based on the number of reads. These

read count values, alongside other covariates including G/C

content, mappablility scores, copy number variation and an

estimation of background distribution make up the parameters of a

mixture regression model. This model then assigns each region

into one of three classes: enriched, background, or zero (windows

for which no read is assigned due to insufficient sequencing

coverage). The relationship between the covariates and the signal

for various experimental data is then inferred through an

Expectation Maximisation-based implementation of a mixture

regression model. ZINBA is supplied as an R package.

MACS. MACS [13] is one of the most popular peak callers for

ChIP-seq data [14] that has recently been used for DNase-seq

[22]. As a ChIP-seq tool, MACS has been reviewed and

benchmarked in a number of studies [9,10,12]. The key advantage

of MACS compared to previous peak callers is that it models the

shift size of tags and can also allow for local biases in

sequencability and mappability through a dynamic Poisson

background model. MACS is written in Python and can be run

with or without an input control dataset. The only required input

for this model is a set of short read tag alignments.

The Sensitivity and Specificity of the Peak Callers
To systematically evaluate the performance of Hotspot, F-Seq,

MACS and ZINBA, we ran them on the publicly available DNase-

seq data sets for K562, GM12878 and HelaS3 cell type over

human chromosome 22 [8] (see Methods for the availability of

these data sets). A visual inspection of peaks generated by these

peak callers (Figure 1A) at their default signal threshold showed

that their were not fully consistent. In particular, it can be seen

that while some regions of strong enrichment were consistently

detected, there was a significant variation in the detection of

weaker regions, as well as in the sizes of the recovered DHS peaks.

To our surprise, only *11:5% of the reference set (at the base pair

level) were consistently detected by all four tools (8% in K562,

13% in GM12878 and 14% in HeLaS3, respectively). Overall,

peaks detected by at least one tool spanned on average 41% of the

reference set (30% in K562, 48% in GM12878 and 46% in

HeLaS3, respectively). This is likely due to a combination of

factors, including the genuine mapping of some TF binding sites in

the reference set outside of regions of increased chromatin

Figure 1. Comparison of the Four Peak Callers in a Representitive Genomic Region. (A) A screenshot from Dalliance [29] showing peaks
called by the four peak callers in about 400 kb of chromosome 22 in K562 cells. The first row in this figure labelled as ‘K562UW’ illustrates the
distribution of short read tags of K562 (replicate 1) from University of Washington (see Methods for full details). The following rows show the
statistically significant regions (peaks) according to each of the algorithms with their default signal thresholds. (B) Overlap between peaks called by
each algorithm. Venn diagrams showing the overlap between peaks called by each of the four algorithms using their default parameters in K562 cells
(left), GM12878 cells (middle) and HeLaS3 cells (right). The numbers correspond to the number of basepairs called.
doi:10.1371/journal.pone.0096303.g001
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accessibility, some ‘‘true’’ DHSs missed by the DNase-seq protocol

and the false-negative rates of the peak detection tools themselves.

The base-pair overlap of the peak regions detected by each

algorithm in the three cell lines is shown in Figure 1B. Significant

differences were also observed in the running times of the

algorithms, with ZINBA taking on average 3706 longer and using

4.56more memory than the rest (Table 1).

We then ran each of these four tools over a range of signal

thresholds and compared the peaks detected by each algorithm at

each threshold level to the ‘‘reference sets’’ of regulatory regions.

These sets were generated by pooling the ChIP binding profiles of

multiple transcription factors (TFs) in each of the three cell types

(the ChIP data was produced by ENCODE [15], see also

Supplementary Data S1 (Files GM12878, K562 and HeLaS3) for

the list of TFs used). Using TF-binding profiles to produce the

reference set has been motivated by the fact that the majority of

TF binding sites map to regions of increased chromatin

accessibility that are detectable as DNase hypersensitive sites

[5,8]. Although our reference set is inevitably incomplete, since the

ChIP data is only available for a subset of TFs, it still allows us to

robustly assess the relative performance of the DHS-calling

algorithms (as used previously in [25]).

For each of the four algorithms, we estimated the sensitivity

(expressed in the terms of the True Positive Rate, TPR) and

specificity (expressed as 1{FDR, False Discovery Rate) from the

degree of the overlap (at base pair level) of their respective DNase I

peaks at each signal threshold with each of the reference sets. This

approach is presented in more detail in the Methods section. The

sensitivity-specificity analysis revealed further substantial differ-

ences between the peak finders (Figure 2). In particular, we found

ZINBA to underperform all other tested tools in terms of both

TPR and FDR. Its ‘‘narrow peaks’’ output (ZINBA N) showed the

lowest FDR among all algorithms, but also the lowest TPR,

meaning that ZINBA N may miss many true DHSs. On the other

hand, ZINBA’s ‘‘broad peaks’’ output (ZINBA B) still had a

relatively low TPR but also showed the highest FDR, meaning

that its broad peaks showed a poorer overlap with the reference set

compared to the other three peak callers.

Both the TPR and FDR of the other three peak callers

(Hotspot, F-Seq and MACS) segregated by nearly 10% on the data

from the GM12878 cell type. As we can see from Figure 2, in this

cell type, F-Seq showed the highest TPR and Hotspot showed the

best (lowest) FDR. More similar FDR and TPR values were

observed in the other two cell types, with both F-Seq and Hotspot

having only slightly lower TPR and higher FDR compared to

MACS (Figure 2).

We asked if the relative performance of the algorithms is

affected by the choice of a specific DNase-seq protocol. Currently,

there are two DNase-seq protocols commonly used by the

community: the ‘‘end capture’’ protocol [26] and the ‘‘double

hit’’ protocol [27]. While this study so far focused on the ‘‘double

hit’’ protocol, we also evaluated the performance of the algorithms

with the ‘‘end capture’’ protocol using the ENCODE data for the

K562 cell type [8]. However, we found the relative performance of

the algorithms to remain generally consistent across the two

protocols (Figure S1).

Overall these results suggest that F-Seq, Hotspot and MACS

generally outperform ZINBA with DNase-seq data in terms of

both specificity and sensitivity, with the F-Seq algorithm showing

the best performance of all four algorithms tested.

Comparison of the Summary Statistics of the Detected
Peaks

We next sought to evaluate how the differences in the

performance of the four algorithms are reflected in the summary

statistics of the respective peaks. As shown in Figures 3 and 4,

peaks detected by the four algorithms vary both in the total

number and their length distributions. In particular, MACS

produced the smallest number of peaks compared to the other

three algorithms, followed by ZINBA (for which the numbers of

broad and narrow peaks were equal). The peaks from F-Seq and

Hotspot outnumbered both MACS and ZINBA peaks, with either

F-Seq or Hotspot yielding the highest number depending on the

cell type.

ZINBA’s broad peaks were on average the longest compared to

all other datasets, ranging from 1 kb to 10 kb (Figure 4). These

were followed, sequentially, by MACS peaks (with a median of

around 2700 bp over all three cell type), ZINBA narrow peaks and

Hotspot peaks (median length 2.5 kb). F-Seq peaks were on

average the shortest, with a median of 2 kb but notably, they

showed a considerably higher variance of peak lengths (Figure 4).

These differences prompted us to look at the overall peak

coverage produced by each algorithm, which we defined as the

ratio of the number of base pairs covered by the peaks to the

length of the chromosome. Note that chromosome 22 has an

active arm of about 35 Mb. It can be seen from Figure 5, with the

exception of ZINBA.B (broad) peaks showing an appreciably

higher coverage than the rest, the peaks from all four algorithms

(including ZINBA’s narrow peaks) showed a comparable coverage.

On average, MACS showed the lowest coverage and ZINBA.N

showed the greatest coverage among the narrow peaks of

algorithms. The highest spread of coverage (1:35%) was observed

in GM12878 cells, between ZINBA.N (3:88%) and MACS

(2:53%). The lowest spread of 0:6% was observed in K562 cells.

The similarity in the peak coverage produced by the four

algorithms at their respective default parameter settings suggests

that these settings were generally appropriate for a relative

evaluation of the tools’ performance.

Effects of Algorithm-specific Parameters
So far, we have compared the algorithms’ performance across

the range of a single parameter that was common to all four peak

callers: the overall signal threshold for making a peak call.

Although a number of additional, mostly algorithm-specific,

parameters exist, we kept them at their default values. A

comprehensive evaluation of the peak callers over their full

parameter spaces is challenging due to the algorithm-specificity of

some parameters and also to the extensive number of parameter

combinations. Some of these parameters, however, are unlikely to

affect the sensitivity or specificity of the algorithms, as they are

concerned either with other data types (eg ChIP-seq) and/or file

formats. For example, in MACS one may see ‘‘–broad’’ and ‘‘–

call-summits’’ for data type, ‘‘-g’’ for genome size and ‘‘-f’’ for file

format. However, a number of tunable parameters, in particular in

Hotspot and ZINBA seemed to affect the key parts of the

respective algorithms, prompting us to ask whether they have a

significant effect on the results.

For Hotspot, we evaluated the effects of the z{ score and the

merging size threshold. As shown in Figure S3, the distribution of

peaks’ lengths is nearly indistinguishable when merging peaks

closer than 150 bp (default) or not merging them at all. Similarly,

we found that the performance of the Hotspot remains almost

invariable at a range of z{ scores (z~1,2,3,4; Figure S4).

For ZINBA, we assessed the effect of the number of hits per

read allowed during mapping process (‘‘athreshold’’), and of

Performance of DNase I peak callers
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average fragment library length (‘‘extension’’) on its performance.

As can be seen from Figure S5, peak coverage remained insensitive

to varying the ‘‘athreshold’’ parameter. In contrast, increasing the

‘‘extension’’ parameter from the default resulted in the peak

coverage increasing beyond the range observed for all other peak

callers.

In conclusion, we found no evidence that adjusting the

algorithm-specific parameters of Hotspot and ZINBA leads to

improved performance compared to their default parameter

settings.

Adjusting the Default Signal Threshold Setting Improves
the Performance of F-Seq

As a final step in our analyses, we set out to determine the peak

signal threshold settings that ensure an optimal tradeoff between

sensitivity and specificity. To this end, we expressed the sensitivity

and specificity data for each peak caller generated over a range of

signal thresholds (described above and shown in Figure 2) in terms

of the F{ score metric which is commonly used in information

retrieval. The F{ score combines both the sensitivity and

specificity such that the higher F{ score values indicate a more

Figure 2. Comparison of the Peak Calling Algorithms Based on Estimated True Positive and False Discovery Rates. Each algorithm was
run over 13 values of a parameter that controls the false discovery. These values for Hotspot, MACS and ZINBA range from 0.001 to 0.2 and for F-Seq
it ranges from 0.001 up to 6 (see methods for more details). For each value the overlap between the calls and the ‘‘reference set of regulatory
regions’’ for that cell type was measured. The black dots show the default value for each algorithm.
doi:10.1371/journal.pone.0096303.g002
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optimal performance (see Methods and also [25]). The relative

contribution of sensitivity and specificity is weighted by the b
parameter that we assumed to be 0:5 to place a higher emphasis

on specificity over sensitivity (see Methods for more detail).

In Figure 6, we plotted the F{ scores corresponding to a range

of peak thresholds for each of the tools. As can be seen, F-Seq

showed an improved performance when its signal threshold

(defined by the ‘‘standard deviation threshold’’ parameter) was

reduced from the default value of 4 to a value between 2 and 3. In

contrast, Hotspot performance remained largely unchanged over

the range of its threshold parameter. For MACS, the default

threshold settings seemed optimal. ZINBA on the other hand,

showed continuously decreasing F{ scores with increasing

threshold, suggesting no clear-cut optimal threshold setting.

In conclusion, while Hotspot and MACS showed a near-

optimal performance at the default signal threshold settings, the

performance of F-Seq can be further improved by reducing the

threshold parameter.

Discussion

In this study, four open-source peak callers proposed for the

analysis of DNase-seq data were benchmarked and briefly

reviewed. Our results showed that there is, in fact, a considerable

discrepancy in the tools’ performance. Of the four peak callers, F-

Seq showed the best performance with DNase-seq data, partic-

ularly when run with a signal threshold level slightly lower than

default. Both Hotspot and MACS also showed appreciable

performance, only slightly lagging behind F-Seq in both sensitivity

and specificity. In contrast, and despite its reported performance

with RNA-seq, ChIP-seq and FAIRE-seq data [17], ZINBA

showed to be less suitable for DNase-seq data analysis, both in

terms of specificity, sensitivity and the computational time. To the

best of our knowledge, this peak caller has not been used with

DNase-seq in any published studies.

Although both ChIP-seq and DNase-seq experiments generate

short-read tags, there exist a number of differences between these

data types that caution against the application of ChIP-seq peak

callers to DNase-seq data, at least without re-tuning their

Figure 3. Number of Peaks Detected by Each Peak Caller Using Their Default Parameters. The number of peaks obtained by each
algorithm at their default signal threshold.
doi:10.1371/journal.pone.0096303.g003
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parameters. The key differences include: a) ChIP-seq data usually

shows a higher signal-to-noise ratio compared to DNase-seq,

making ChIP-seq peaks easier to detect; b) ChIP-seq data, unlike

DNase-seq data, are strand-specific with a shift in the signal

between strands; c) as the general hallmarks of open chromatin

regions, DHSs may cover wider regions, spanning the binding

positions of different regulators and differentially modified

histones; therefore DHSs vary more broadly in length compared

to typical ChIP-seq peaks [9,19]. Taking these differences into

account, one may conclude that the ChIP-seq-oriented peak caller

MACS performs relatively well for DNase-seq data.

In our analyses we benchmarked the performance of each

algorithm against a ‘‘reference set’’ of regulatory regions,

generated from the union of multiple TF-binding profiles from

ENCODE. This allowed us to compare the results of the peak

callers with a ‘‘standard’’ that is based on a different type of

experimental data and that is analysed using a different set of tools.

It must be noted that, despite the large number of TFs used, our

‘‘reference set’’ is necessarily incomplete and may have its own

inherent biases. It seems unlikely that these biases would selectively

favour the performance of some DNase-seq algorithms over

others. The continued expansion of the range of TFs profiled by

ChIP will make it possible to further improve the precision of such

reference sets in the future.

Furthermore, we recently showed that DNase I has DNA

binding preferences [25] that potentially present a source of bias in

DHS detection. This largely unexpected property of the DNase I

enzyme is currently unaccounted for by any peak caller. There

may therefore be scope for a new generation of DHS peak calling

algorithms taking this factor into account.

Primarily due to ZINBA’s extended run time (see Table 1),

benchmarking was limited to chromosome 22. To the best our

knowledge, chromosome 22 is a representative part of the human

genome, at least with respect to the density and distribution of TF

ChIP peaks and DHSs. It is therefore expected that the

benchmarking results obtained on chromosome 22 are applicable

genome-wide.

Figure 4. Distribution of Lengths Depending on Peak Callers and Their Parameter Settings. Distribution of peak lengths found by each of
the algorithms, when ran with their default parameters, are compared between cell types. ZINBA.N and ZINBA.B represent narrow peaks and broad
peaks (respectively) obtained from ZINBA.
doi:10.1371/journal.pone.0096303.g004
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Finally, it is worth mentioning that in addition to the quality of

peak calling per se, factors such as documentation and the overall

user friendliness may play a role in the choice of DNase-seq

analysis software, particularly by experimental biologists. To this

end, F-Seq, MACS and ZINBA are published and well-

documented (see [20], [13] and [17]). Hotspot has been partly

described in [7], but its source code and some more documen-

tation are available at http://www.uwencode.org/proj/hotspot-

ptih/.

DNase-seq is gaining popularity as a genome-wide chromatin

accessibility analysis method, and its applications have led to new

insights into genome function and variation [8,28]. Robust peak

detection on these data is therefore instrumental to the research

community, particularly when it is provided by publicly available,

well-documented and user-friendly software that can be easily used

in any lab.

Materials and Methods

The performance of four peak calling algorithms was compared

over a range of the false discovery rate thresholds for Hotspot,

MACS and ZINBA and a range of the standard deviation

threshold for F-Seq. Each of the methods was used on the DNase-

seq short-read data from three cell type (K562, GM12878 and

HelaS3) that was obtained from the ENCODE project [8,26]. We

assessed the performance of these methods by comparing the

peaks reported from each of these algorithms to the ‘‘reference sets

of regulatory regions’’ generated from a union of peaks from a set

of transcription-factor binding ChIP experiments for each of the

three cell type. Our analyses were restricted to chromosome 22,

primarily due to the very significant compute times taken by

ZINBA. All data in this study was mapped to the GRCh37 (hg19)

human genome assembly. All computations were run on an

Intel(R) Xeon(R) CPU E5440 @ 2:83GHz, with 6GiB of RAM.

Our experimental design was as follows:

Step 1: Input files
We downloaded University of Washington DNase I short read

tags for K562, GM12878 and HelaS3 from http://hgdownload.cse.

ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/

and for Duke University from http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/ as

BAM files which are labeled as wgEncodeUwDnaseK562AlnRep1.

bam, wgEncodeUwDnaseGm12878AlnRep1.bam and wgEnco-

deUwDnaseHelas3AlnRep1.bam. The number of short read tags

mapped to chromosome 22 were 434301, 426770 and 255489
respectively for K562, GM12878 and HelaS3.

Step 2: Running peak callers at different thresholds
We ran Hotspot, F-Seq, ZINBA and MACS with the aligned

datasets listed above (either directly from the BAM files or

converted to BED format if required) with the following

thresholds:

Hotspot. Keeping all other parameters in Hotspot as their

defaults, we tried the FDR threshold with values equal to 0:001,
0:005, 0:01, 0:02, 0:03, 0:04, 0:05, 0:06, 0:07, 0:08, 0:09, 0:1, 
0:2, 0:3.

Figure 5. Coverage of Peaks Detected by Each Peak Caller Using Their Default Parameters. Illustrated here is the percentage of
chromosome 22 covered by peaks from each peak caller over three cell type.
doi:10.1371/journal.pone.0096303.g005
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F-Seq. Although there isn’t a parameter defined in F-Seq to

directly control FDR, the standard deviation threshold t defined in

F-Seq has an inverse correlation with FDR [20]. The default t in

F-Seq is equal to 4. In this analysis we therefore ran it with an t
equal to 0:001, 0:005, 0:05, 0:1, 0:5, 1, 1:5, 2, 2:5, 3, 3:5, 4, 
4:5, 6.

The feature length parameter (representing the bandwidth) was

equal to 600 bp by default.

MACS. The parameter controlling the FDR in MACS is

called q-value and its default is 0:05. In our analysis we ran it with

a q equal to 0:001, 0:005, 0:01, 0:02, 0:03, 0:04, 0:05, 0:06, 
0:07

, 

0:08

, 

0:09

,

0:1, 0:2, 0:3.

.

ZINBA. In ZINBA the signal threshold controlling the FDR is

called ‘‘threshold’’, with a default value of 0:05. In this study we

ran it with thresholds of 0:001, 0:005, 0:01, 0:02, 0:03, 0:04,

 
0:05, 0:06, 0:07, 0:08, 0:09, 0:1, 0:1, 0:2, 0:3 Inspired by the

developers’ demonstration for the FAIRE-seq data, we set

numProc~5 and extension~150.

Step 3: Making a reference set of regulatory regions
For each of the cell types K562, GM12878 and HelaS3, we

downloaded the narrow peaks of 99, 53 and 56 TFBSs respectively

from the ENCODE project repository at http://hgdownload.cse.

ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/

(these were all the available TFBSs as SydhTfbs for these three cell

type) See Files S1, S2 and S3). Then we computed the union of

TFBSs (using [23]) at each cell type and took it as our reference set

of regulatory regions specific for that cell type.

Figure 6. F Scores of Algorithms Over Three Cell Types from the ‘‘Double Hit’’ Protocol. Each algorithm was evaluated to gauge the
enrichment of short read tags in each of the three cell types obtained from University of Washington ‘‘double hit’’ protocol [27]. The overlap of peaks
from each of the cell types was measured against the cell type’s ‘‘reference set of regulatory regions’’. The accuracy of each algorithm was defined as
the value of the F score (see Methods for more details) by running it over a range of thresholds. The dashed vertical grey line depicts the value of F
score when the algorithm is run with its default parameter. Note that Hotspot failed when ran with FDR = 0.3 for HelaS3 cell type and therefore its
corresponding curve is shorter by one data point.
doi:10.1371/journal.pone.0096303.g006
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Step 4: Measuring the performance of the algorithms
We defined the overlap (at base pair level) between peak calls of

each algorithm at each threshold and our reference set of

regulatory regions as a metric for measuring the performance of

each of the algorithms. More precisely, for each algorithm and for

each threshold, the True Positive Rate (also known as sensitivity)

was defined as TPR~ TP
TPzFN

which is in fact the ratio of the

number of correctly predicted base pairs to the number of base

pairs in the union of TF set. Similarly, the False Discovery Rate

was defined as FDR~ FP
TPzFP

, which is the ratio of the number of

falsely found bases as peaks to the whole set of peaks found. The

reader should take care to distinguish between the FDR that we

have defined here and the false discovery threshold parameter

defined in each of Hotspot, MACS and ZINBA algorithms.

The specificity (or precision) in this context was defined as

Spec~ TP
TPzFP

and the sensitivity was defined as Sen~ TP
TPzFN

,

which is sometimes called ‘‘recall’’. For each experiment the TPR
was plotted against FDR.

Common to information retrieval, the overall performance of

algorithms was defined as an F{ measure:

Fb~(1zb2)
Spec:Sen

b2SpeczSen
ð1Þ

As can be seen from this equation, Fb assigns b times as much

weight (or importance) to sensitivity as specificity. Normally, in

situations where both specificity and sensitivity are of equal

importance, b is set to 1, and the score is known as F1 or as the

‘‘harmonic mean’’. In our analysis, however, because of incom-

pleteness of our reference data set (TFs), we used F0:5 to put more

emphasis on specificity than sensitivity. Our choice of b reflects

our prior belief about the incompleteness of the reference set.

Using other reasonable values of b does not significantly affect our

conclusions about the relative performance of the algorithms. For

example, Figure S6 shows the results from Figure 6, but assuming

b~1 (i.e. an equal emphasis on specificity and sensitivity), instead

of b~0:5.

Supporting Information

Figure S1 Performance of Algorithms Over One Cell
Type From the ‘‘End Capture’’ Protocol. Similar to

Figure 6, the performance of each algorithm was evaluated using

GM12878 cell type obtained from Duke University ‘‘end capture’’

protocol [26].

(TIFF)

Figure S2 Comparison of TPR and FDR of Peak Callers
with ‘‘End Capture’’ Data. Depicted here is the result of our

TPR{FDR comparison of four algorithms over data obtained

from Duke University end capture protocol.

(TIFF)

Figure S3 Effect of Hotspot ‘‘merge’’ Parameter on the
Distribution of Peak Lengths. Distribution of Hotspot peak

length merged (default: peaks closer than 150 bp are merged)

versus not merged in UW K562 cells.

(TIFF)

Figure S4 Effect of Hotspot ‘‘zscore’’ Parameter on its
Performance. Hotspot was run at a range of z-score threshold

ranging from 0:5 to 4 and all other parameters were kept as

default. The other three algorithms were also run at a range of

signal threshold (as described in main text).

(TIFF)

Figure S5 Effect of the Number of Hits and Extension on
ZINBA Coverage. Depicted here is the coverage (as defined in

main text) of ZINBA when run at various combinations of number

of hits per read known as ‘‘athreshold’’(run at values equal to 1,

2, 3, 4) and the average of fragment lengths known as

‘‘extension’’(run at values equal to 135, 200 and 300 bp).

(TIFF)

Figure S6 The F-scores of the Algorithms Across the
Three Cell Types Assuming .b~1 Illustrated here is the data

shown in Figure 6, but computed assuming the b parameter equal

to 1, which corresponds to same weight associated with both

sensitivity and specificity. The vertical dash lines show the default

threshold values in each algorithm.

(TIFF)

Supplementary Data S1 Data S1, S2 and S3 are list of
transcription factor names used in this study from
GM12878, K562 and HeLaS3 cells, respectively.
(ZIP)
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