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Abstract

We derive the Iterative Confidence Enhancement of Tractography (ICE-T) framework to address the problem of path-length
dependency (PLD), the streamline dispersivity confound inherent to probabilistic tractography methods. We show that PLD
can arise as a non-linear effect, compounded by tissue complexity, and therefore cannot be handled using linear correction
methods. ICE-T is an easy-to-implement framework that acts as a wrapper around most probabilistic streamline
tractography methods, iteratively growing the tractography seed regions. Tract networks segmented with ICE-T can
subsequently be delineated with a global threshold, even from a single-voxel seed. We investigated ICE-T performance
using ex vivo pig-brain datasets where true positives were known via in vivo tracers, and applied the derived ICE-T
parameters to a human in vivo dataset. We examined the parameter space of ICE-T: the number of streamlines emitted per
voxel, and a threshold applied at each iteration. As few as 20 streamlines per seed-voxel, and a robust range of ICE-T
thresholds, were shown to sufficiently segment the desired tract network. Outside this range, the tract network either
approximated the complete white-matter compartment (too low threshold) or failed to propagate through complex regions
(too high threshold). The parameters were shown to be generalizable across seed regions. With ICE-T, the degree of both
near-seed flare due to false positives, and of distal false negatives, are decreased when compared with thresholded
probabilistic tractography without ICE-T. Since ICE-T only addresses PLD, the degree of remaining false-positives and false-
negatives will consequently be mainly attributable to the particular tractography method employed. Given the benefits
offered by ICE-T, we would suggest that future studies consider this or a similar approach when using tractography to
provide tract segmentations for tract based analysis, or for brain network analysis.
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Introduction

Diffusion weighted imaging (DWI) provides a novel and unique

method with which to study white-matter microstructure within

the brain (for an overview see [1] and [2]). In particular,

processing of DWI data can produce estimates of white matter

fibre directions ([3], [4], [5], [6]) from which voxelwise uncertainty

orientation distribution functions (uODFs) can be generated.

Probabilistic streamlining methods thereafter permit generation of

connection-confidence maps e.g. Probabilistic Index of Connec-

tivity (PICo) maps [9], by counting the relative propagating success

of streamlines from a given seed region ([7], [8] and [9]). Such

PICo maps can then be used to inform brain connectivity ([10],

[11], [12]).

However, several well-documented confounds and limitations

make it challenging to infer from such connection-confidence

maps. These include confounds such as Path-Length Dependency

(PLD) and the Partial Volume Effect (PVE), modelling limitations

in regions of crossing fibres, and data limitations due to an image

resolution that is far coarser than the axons themselves. These

issues hamper the inference of any robust form of true anatomical

connectivity (in terms of parallel associated axons) from these

connection-confidence maps ([13], [14]).

Furthermore, the application of tract-specific statistics, and

therefore also many forms of network analysis (e.g. [15]), relies

upon the correct segmentation of tracts from PICo-type maps,

usually by the application of a priori information in the form of

waypoints, followed by a global threshold. Due to the reasons

outlined above, this often proves to be problematic, and a single

global threshold is generally insufficient. The PLD confound is one

of the key obstacles to the application of global thresholding, and

its inherent presence in all probabilistic streamline tractography

methods ([9], [13]) imposes a great challenge to the segmentation

of any tract system from a relevant seed region.

The origin of the PLD effect lies in the mechanics of the

probabilistic streamline tractography method, and is simply due to

the step-wise dispersion of the propagating streamlines along the

length of a tract. Hence image resolution is also a contributory

factor. PLD is an inherent side-effect of the probabilistic approach

and is manifested as a monotonic, non-linear down-modulation of

the calculated probability as a function of the propagation distance

from the seed point ([9], [13]). Hence the resultant probability
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values produced per voxel represent only the chance that an

average streamline could propagate thereto from the seed region,

and cannot represent any anatomical connection strength of the

tract – see [13] for a discussion. The consequential decline in the

number of streamlines that manage to successfully propagate to

distal portions of a tract means that those that do are too few to

sufficiently sample uODFs therein.

The PLD effect is a well-known phenomenon and has been

previously reported in early tractographic human studies, [9]. The

problems related to PLD have since been demonstrated in a

validation study [16], where they observed long WM tracts

terminating arbitrarily depending upon the threshold chosen. The

consequences of PLD can therefore be significant modulation of

tractographic results, thereby also impacting upon subsequent

diagnostic interpretation. Nevertheless, PLD has so far received

little attention.

Whilst few studies have looked into moderating PLD itself, some

attempts have been made to compensate for its effects. Normal-

isation by a distance-correction factor has been suggested ([17],

[18]), but due to tract specific differences (different routes, different

number of dispersions and anatomical complexities encountered)

this cannot guarantee the removal of all PLD effects.

To be able to delineate specific longer tracts, many studies use

constrained tractography (using a priori information such as

waypoints) to enable a global threshold. Although this does not

solve the PLD issue, the extra a priori info can help to delineate

specific tracts. This approach was used together with additional

heuristics by Sherbondy et al. [19] to counter the resistance to

conventional thresholding of specific tracts due to the effect of

PLD. It must be noted that such heuristics, together with the more

general and commonly-used approach of applying waypoints,

exclusion masks and termination regions, do not provide PICo

map outputs, nor attempt to remove PLD itself, but can be useful

to delineate specific tracts of interest.

Here, we visualise the PLD effect and its non-linear behaviour.

We propose a heuristic method, based upon probabilistic

tractography, to segment out a given tract system emanating from

a seed region, with minimal influence from PLD. Based upon a

region-growing approach, Iterative Confidence Enhancement for

Tractography (ICE-T) is an easy-to-implement framework that is

applicable as a wrapper function to most probabilistic streamline

tractography methods. This work introduces ICE-T, its modifiable

parameters (termed ICE-Tthreshold and ICE-Tstreams) and their

generalizability, and investigates the method’s parametric behav-

iour. We confirm both the applicability of our ICE-T method

against the results derived by [16], via the use of the same ex vivo

pig brain dataset that uniquely combined tractography with

invasive tracer studies, and also its reproducibility. Additionally we

demonstrate that, due to the non-linear nature of PLD, linear

compensation methods may not be sufficient. Finally, we

demonstrate the application of the ICE-T method to a human

in vivo dataset.

Theory

We define PLD as being the drop in connection confidence

along a tract due to a combination of effects caused by the stepwise

dispersion of streamlines, which is in turn due to the stepwise

sampling of the uODFs and the compounding effect of anatomical

complexities. ICE-T aims to significantly reduce PLD in existing

probabilistic streamline tractography methods. The underlying

principle of ICE-T is to ensure that the uODF of each voxel that is

determined as being connected to the seed is sufficiently sampled

by a suitably large number of streamlines. To achieve this we

apply ICE-T to conventional tractography in order to grow the

given seed region iteratively along its connections. This can be

viewed as a tract segmentation step via region-growing, using a

predicate of voxelwise connectivity determined by probabilistic

tractography. The resultant grown seed region thereby represents

the segmented tract system emanating from the given seed.

Hereafter one can either use the region for tract-based analysis, or

use it as a seed region for tractography. The outcome of the latter

will not be a PICo map, but instead a map describing how well

connected each voxel of the segmented tract is to all the other

voxels within the tract. This can therefore be considered as a tract-

based ACM [20], to which a global threshold can then be directly

applied without the need to compensate for bias introduced by

PLD.

Hereunder, we describe the mechanics of the ICE-T frame-

work.

ICE-T Framework
A tractography pipeline generally includes the following steps:

voxelwise fibre-reconstruction and generation of uODFs, followed

by the streamlining tracking process. ICE-T is a simple

modification of this, introducing a feedback loop around the

streamlining tracking process, and is described as pseudo-code in

Table 1. ICE-T utilises the same parameters as tractography, with

two exceptions: the number of streamlines generated per voxel is

modified (ICE-Tstreams), and the threshold applied to the end-of-

iteration connection-confidence map (ICE-Tthreshold).

The ICE-T framework consists of iteratively growing the seed

region-of-interest (ROI), ICE-T ROIi, (where ‘i’ indicates the

iteration count) along the tract branches it comes across, as

outlined in Table 1. At each step, a PICo map [9] is generated and

then thresholded at ICE-Tthreshold to produce ICE-T ROIi+1. This

ROI, if it has increased in size, is then fed back to the tracking step

where it is used as the updated seed region for the next iteration.

By employing the connection-confidence value of a voxel as the

predicate, a connectivity constraint is automatically imposed upon

ICE-T ROIi and all its voxels are thereby classified as being highly

connected to one another and hence also to the original seed

region. In addition, the connectivity constraint is enhanced at each

iteration by the application of a streamline waypoint region

through which all streamlines are required to pass. The waypoint

region for iteration ‘i’ is defined as ICE-T ROIi-2 (equivalently the

seed region for iteration ‘i-1’). This guarantees that the original

seed region will be included in the final segmented tract. For

efficiency, the streamline computations are stored between

iterations meaning that at each iteration only streamlines from

the newly-included voxels need to be generated. The final grown

seed region ICE-T ROII (where ‘I’ represents the total number of

iterations performed), representing the segmented tract system

from the original seed, can then be used for tract-based analysis.

The resultant ICE-T ROII is not a PICo map, but instead each

voxel’s value represents an index of connection confidence with

every other voxel within the tract, and is hereby defined as the

Intra-Tract Confidence.

Methods

Ethics Statement
Animal data. All procedures followed ‘‘Guidelines for the

Care and Use of Experimental Animals’’ and were approved by

the Danish Animal Experiments Inspectorate.

Human data. The participant signed an informed consent

following the guidelines of the declaration of Helsinki. The study

protocol (KF 01 – 131/03) was approved by the local ethics
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committee (‘‘De Videnskabsetiske Komiteer for Københavns og

Frederiksberg Kommuner’’).

Data Acquisition and Pre-Processing
i) Ex-vivo pig brain. The data, including ground-truth seed

regions defined by tracer injection, from three young and normal

Göttingen mini pig brains (P1, P2 and P3), as used in [16], were

re-used here to permit comparison against the validated results

reported therein.

MRI data were acquired ex vivo on a 4.7T Varian MR scanner

using a pulse gradient spin echo (PGSE) sequence with single line

read-out using the following parameters: TR = 6500 ms,

TE = 67.1 ms; matrix = 1286128, in-plane resolution

= 0.5160.51 mm2. Diffusion sensitisation gradient duration

d= 27 ms, time between gradient-pulse onsets D= 33.5 ms,

gradient strength 56 mT/m. A slice thickness of 0.5 mm, gap

0.5 mm and two sets of 35 interleaved slices ensured whole brain

coverage. NEX = 2. The pig brain datasets consisted of 36b = 0 s/

mm2 and one b-value of 4009 s/mm2 (chosen as specified in [21]),

acquired in 61 non-collinear directions as available in Camino

[22]. Before MR scanning the tissue was temperature stabilised to

room temperature and a dummy run lasting 15 hours ensured that

no short-term instabilities were introduced into the final diffusion

MRI dataset [21].

The application of a spin-echo diffusion sequence, and the

absence of both physiological and subject-generated motion,

minimised the distortions in the ex vivo data. Visual inspection

confirmed that no additional processing of the ex vivo data was

required prior to tractography [21]. To limit subsequent analysis

to brain tissue only, a brain mask was generated via summation of

all diffusion images followed by application of a suitable threshold.

For tractography, we used the same hand-drawn seed regions as

defined in [16] based upon the following tracer injection sites:

right prefrontal cortex (PFC), right somatosensory cortex (SC) and

the left motor cortex (MC). The datasets, including the seed

regions, are freely available on (http://dig.drcmr.dk).

ii) In-vivo human brain. A single healthy volunteer (right-

handed female, age 21 years), with no history of neurological or

psychiatric disorders, or a family history thereof, nor hypertension,

was recruited.

An in-vivo diffusion MRI dataset was acquired on a 3T Trio

Siemens MR scanner with an eight-channel head coil (Invivo, FL,

USA) using a twice-refocused diffusion-weighted sequence to

minimise eddy current distortion [23] with the following

parameters: TR = 8200 ms, TE = 100 ms, matrix = 96696;

NEX = 1, GRAPPA acceleration factor = 2.5, number of refer-

ence lines = 48, isotropic 2.3 mm voxels and 61 slices (no gap)

ensuring whole brain coverage. Ten b = 0 s/mm2 and one b-value

of 1200 s/mm2 were acquired along the 61 non-collinear

directions available from Camino [22]. Additionally, a gradient-

echo-based field map sequence (TR = 530 ms, TE(1) = 5.19 ms,

TE(2) = 7.65 ms, FOV = 2566256 mm, matrix 1286128, 47

slices with no gap, voxel size 26263 mm, NEX = 1, acquisition

time = 2.18 min) was acquired to correct geometric distortions

caused by B0 magnetic field inhomogeneities, and a 3-D whole

brain T1-weighted magnetization prepared rapid acquisition

gradient echo (MPRAGE) scan (1 mm3 isotropic voxels, FOV

256 mm, matrix = 19262566256, TR = 1540 ms, TE = 3.93 ms,

TI = 800 ms, flip-angle = 9u) was acquired for the generation of

tissue segmentations and thereafter a brainmask.

Intra-volume subject motion and the undesired stretching or

shearing caused by eddy-current build-up were simultaneously

corrected for by estimating a 12 parameter affine model [24] to co-

register the DWI images with the first b = 0 image of the sequence.

Field inhomogeneity distortions, causing a geometric displacement

of voxel intensities along the phase encode direction of the images,

Table 1. The ICE-T Framework as Pseudo-Code.

Stage Task Stage Inputs Stage Outputs

1 Start Iteration, i = 1

ICE-T_ROIi = original seed region

ICE-Tstreams parameter (e.g. 20)

ICE-Tthreshold parameter (e.g. 0.01)

Global Threshold Parameter (e.g. 0.005)

2 Perform streamlining from ICE-T_ROIi ICE-Tstreams PICo map

ICE-T_ROIi

Waypoint region: ICE-T ROIi-2

(Any other waypoint, exclusion or termination masks)

3 Threshold the streamlining result at ICE-Tthreshold PICo map (from Stage 2) New binary region ICE-T_ROI_i+1

ICE-Tthreshold

4 Check for continued growth of seed region: ICE-T_ROIi Growth flag

Is (ICE-T_ROIi+1) . (ICE-T_ROI_i)? ICE-T_ROIi+1 = 0 (no ROI growth)

= 1 (ROI growth)

5 If Growth flag = 1, then i = i+1 ICE-T_ROI_i

Goto Stage 2

6 Display resultant segmented tract ICE-T_ROI_I

ICE-Tthreshold: The level of ‘‘connection probability’’ (typically scaled between 0 and 1), above which a voxel must rise for it to be considered part of a significant
connection, and therefore to be appended to the seed region from which the streamlines were initiated. Applied at each iteration of the feedback loop.
ICE-Tstreams: The number of streamlines emitted from each voxel in the seed region during the region-growing steps.
ICE-Titerations, I: The number of times that the seed region is iteratively grown.
doi:10.1371/journal.pone.0096247.t001
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were addressed by acquisition of a field-map. The field-map

correction [25] shipped as part of SPM8 (www.fil.ion.ucl.ac.uk/

spm) was then used to estimate the voxel displacement map. The

DWI images were then re-sliced into the space of the first b = 0

image via cubic b-spline interpolation within SPM8, with voxel

intensities per volume scaled by the Jacobian determinant of the

calculated transformation matrix. Finally, the rotational part of the

affine model was applied to reorient the gradient directions [26].

A brain mask was generated in the diffusion image space using

the grey- and white-matter (GM & WM) segmentations generated

by SPM8 from the MPRAGE T1 scan.

For tractography, a cubic seed VOI was specified (by ML) using

Matlab, defined so as to approximate the left subcortical motor

area. The location and size of the VOI was defined following

tractography seeded in the brainstem.

Tractography
i) Probabilistic Tractography. For this work we chose, for

comparative purposes, to use the same probabilistic tractography

method as that was employed in Dyrby et al [16] i.e. the multi-

tensor fibre reconstruction algorithm [3], [8] implemented in the

Camino software package [22]. This comprised a voxel classifi-

cation procedure [27] to allocate the likely number of component

fibre directions within each voxel, followed by fitting of a multi-

tensor model using a maximum of two fibre directions per voxel.

This was then followed by streamline propagation from the centre

of every voxel, using the FACT streamlining method [28] (with an

inner-product threshold of 0.5, imposing a maximum within-voxel

curvature of 60 degrees) to generate PICo maps [9]. The number

of streamlines emitted from each voxel within the original seed

region was 64,000 [16], whilst 25,000 streamlines were employed

for the human in vivo data. These numbers are far greater than

those often employed (5,000–10,000) and were chosen so as to

ensure that resultant PICo values could not be attributed to poor

sampling of the proximal tract network. However, due to PLD,

poor sampling of the distal tract will occur even with this number

of streamlines [29]. Streamlining was restricted to brain-only

voxels via a brain-mask.

For comparison, results from tractography were subjected to a

linear correction for PLD as described in [18]. Here the PICo

values obtained from tracking along a given tract of interest are

multiplied by their voxel distance from the seed region.

ii) Probabilistic Tractography With ICE-T. For the ICE-

T Framework, we employ the same setup and parameters for

probabilistic tractography as described above, with the exceptions

that the number of streamlines was defined by the ICE-Tstreams

parameter, and with the addition of the ICE-Tthreshold parameter,

as described in Table 1.

The ICE-T Framework was implemented in Matlab (Math-

works Inc.) as a data-flow wrapper, handling file management and

with calls to the required tractography functions from the Camino

package [22].

An initial experiment was performed to empirically investigate

the combined impact of both ICE-T parameters, ICE-Tthreshold

and ICE-Tstreams, using a single pig-brain dataset (P1) and

sampling the following values:

ICE-Tthreshold: [0.001, 0.005, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25,

0.30]

ICE-Tstreams: [1, 3, 5, 10, 20, 25, 50, 100, 250, 500].

To reduce processing time and storage demands when

investigating the ICE-T parameter space, a file repository of 500

projection streamlines per voxel for dataset P1 was generated a

priori, from which streamline samples could be randomly drawn as

required. This experiment permitted the derivation of a single

value for the ICE-Tstreams parameter, one which could then be

employed for all three pig-brain datasets.

Subsequently, the impact of the ICE-Tthreshold parameter was

investigated using this fixed value of ICE-Tstreams on all three pig-

brain datasets, with the following values:

ICE-Tthreshold: [0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035,

0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14,

0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25]

Analysis
To assess the degree of PLD along a selected tract, we select a

line-of-interest (LOI) along its midline (see below). To delineate the

LOI, we determined the most-likely pathway by selecting the

canonical streamline, Scanonical, from a collection propagated from

the seed region to a waypoint. The canonical streamline, Scanonical,

was estimated as that which had the greatest number of points of

agreement with all other streamlines. For this we used the first 100

successful streamlines. For analysis and subsequent comparison of

connection-confidence values produced with and without ICE-T,

Scanonical was then employed as the LOI to extract the tract

midline data.

In the pig-brain datasets, Scanonical was derived from validated

pathways described in [16], using the seed regions and waypoints

specified therein. The LOI emanating from the SC region was

chosen as an example due to its length and its passage through the

complex region comprising the substantia nigra.

Results

ICE-T Parameter Selection
i) ICE-Tstreams Parameter. The first experiment investigat-

ed the combined impact of both ICE-T parameters. Figure 1

shows that the ICE-Tstreams parameter has no global effect upon

the size of ICE-T ROII, however the latter does decrease with

increasing ICE-Tthreshold. A slight variation in the size of the ICE-

T ROII can be observed in the PFC and MC between 5 and 10

streamlines. An outlier is noted at a single point for the PFC at

ICE-Tstreams 100 and ICE-Tthreshold 0.25. For the remaining

experiments, we fixed the ICE-Tstreams at 20 streamlines, as a

compromise between having a sufficient number of streamlines

whilst minimising computational resources.

ii) ICE-Tthreshold Parameter. For any seed region, the ICE-

Tthreshold parameter significantly impacts the size of the ICE-T

ROII as shown in Figure 2. The size of ICE-T ROII increases

linearly as the ICE-Tthreshold is reduced, down to around ICE-

Tthreshold = 0.025. Below this threshold, the increase is greater and

non-linear, most likely due to the incorporation of adjacent tract

networks into the segmented network along with a consequential

increase in the number of false positives. For very low ICE-

Tthreshold (approx. ,0.001), ICE-T ROIi always grows at each

iteration, and hence never generates a specific segmented tract

network (results not shown). However, as shown in Figure 3 for the

MC seed, selecting an ICE-Tthreshold above 0.005 results in a stable

ICE-T ROII. Figure 3 also shows the general decrease in the

number of iterations required to reach stability as ICE-Tthreshold is

increased. Further iterations provide no additional change, and

the ICE-T halts at this point. The resultant ICE-T ROII therefore

represents a segmented tract system emanating from the seed.

Similar results are obtained for SC and PFC (results not shown). In

the following experiments the number of ICE-T iterations is

automatically limited, determined by the point at which the ICE-T

ROIi and ROIi-1 show no size differences, and hence the number

of iterations is not a parameter in itself.
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The spatial growth of the ICE-T ROII from the SC seed region

along the canonical streamline of the corticonigral tract that

projects through a complex crossing fibre region (centrum

semiovale) is illustrated in Figure 4. With this seed region,

selection of ICE-Tthreshold.0.015 causes the region growing to halt

at this complex region. However, ICE-Tthreshold values below this

level permit the ICE-T ROII to grow along the entire canonical

streamline. Similar ICE-Tthreshold values were also found for this

seed region in the P2 & P3 datasets (results not shown).

Tract Segmentation
Figure 5 shows tractography performed using only the seed

ROI versus using the ICE-T_ROII, thresholded at different levels.

In order to extract the entire tract without using ICE-T i.e. using

seed ROI (left column), thresholding of the obtained results would

require application of a very low global threshold (,0.010). Using

the seed ROI, the effect of low thresholding produces a near-seed

flare, reflecting the high proportion of false positive connections

found close to the seed, where the sampling is still sufficient (green

Figure 1. The impact of the ICE-Tstreams parameter. Curves show the parameter’s effect upon the size of ICE-T_ROII for various choices of the
ICE-Tthreshold parameter and seed regions (detailed in the legend). Seed regions are labelled as MC (motor cortex), SC (somatosensory cortex) or PFC
(prefrontal cortex).
doi:10.1371/journal.pone.0096247.g001

Figure 2. The impact of the ICE-Tthreshold parameter. Curves show the parameter’s effect upon the size of ICE-T_ROII with the ICE-Tstreams

parameter fixed at 20 streamlines, shown for each of the three ROIs (MC, PFC and SC) in each of the three ex-vivo datasets (P1, P2 and P3).
doi:10.1371/journal.pone.0096247.g002
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arrows, Figure 5). Distally, due to the PLD effect, the false

negatives become dominant, as evidenced by the sudden

termination in white matter of those tracts that survive the

thresholding (red arrows, Figure 5). In contrast, the results after

application of ICE-T do not show such behaviour, and instead

generate a segmentation of the tract network at each threshold.

Notably, because a grown ICE-T ROII is used for tracking, then

lowering the subsequent global threshold just broadens the cross-

sectional area of the tract system. Near-seed flare effects are not

present, and no sudden termination of tracts in white-matter are

seen, indicating a reduction in the PLD effect.

This demonstrates the potential for a common ICE-Tthreshold

which can be used across different subjects and seed regions, as

illustrated in Figure 6 for an ICE-Tthreshold of 0.005. Here an

extensive tract network is segmented for all 3 seed regions and

shows similar, though not identical, structures across all datasets

(P1, P2, P3). Exceptions can be seen in, for example, the

projections from the PFC seeds towards substantia nigra in P1

Figure 3. The impact of the number of ICE-T iterations performed. Curves show the effect of iteration number upon the size of ICE-T_ROII for
dataset P1, using the MC seed region, and for various values of the ICE-Tthreshold parameter. For clarity, a log scale has been employed for the vertical
axis.
doi:10.1371/journal.pone.0096247.g003

Figure 4. Illustration of the ability of ICE-T to penetrate through a complex region. The figure shows how ICE-T successfully propagates
through a known crossing-fibre region (centrum semi-ovale, light blue dotted circle, upper left panel) when seeded from the SC region (green region,
upper left panel) of dataset P1. The dark blue region (upper left panel) shows the results using ICE-Tthreshold of 0.02, and the red region (upper left
panel) for ICE-Tthreshold of 0.015. The graph (lower panel) shows the spatial extent of the ICE-T_ROII, sampled along the canonical streamline, from the
seed region (defined as Distance = 0) as a function of both distance from the seed region, and of the value of the ICE-Tthreshold parameter. Here a
coloured voxel represents that the segmented ROI was present at the given threshold and distance from the seed. Each threshold level is coloured
differently for clarity. Once the ICE-Tthreshold parameter falls to 0.015 and below (lower three rows), the region-growing penetrates past the complexity
and continues on to extract the distal portion of the tract. The 3D rendering (upper right panel) shows the ICE-T results at the same two thresholds
(0.02 in blue and 0.015 in orange). The seed region is located at the site of the green arrow (upper right panel).
doi:10.1371/journal.pone.0096247.g004
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vs those from P2 and P3 (Figure 6, red arrows). Importantly,

however, the cross-sectional sizes of the longer tracts appear

consistent along their length, inferring an independence of the

results to path length.

However, deviations from expected results do occur around

complex regions. For example from the MC and SC seeds, false

positive contralateral projections towards the internal capsule are

observed, and when this is the case, they mirror completely the

ipsilateral tract network (green arrows, Figure 6). As could be

expected, the incorporation of just a portion of any false positive

branch leads its extraction up to a cortical region.

Tractography
The following compares the tractography results from the

original seed regions (SC, PFC and MC) with those derived from a

seed defined by the segmented tracts provided by ICE-T with an

ICE-Tthreshold of 0.005.

The tractography PICo values in Figure 7 show a substantial

drop in the area of the centrum semiovale, located at tract distance

of 40 voxels from the seed, and subsequently show a continuing

decrease towards the projection site, indicating the presence of

PLD. It is also apparent how the combined effect of PLD and

anatomically-related obstacles impose a non-linear behaviour

upon the PICo values as a function of distance from the seed.

Although the linear compensation factor is initially able to correct

for distance after the seed region (approximate distance: 25–35

voxels), it is unable to compensate for the non-linear PLD effect

introduced in the centrum semiovale and the values on the distal

side remain low. In contrast, although the ICE-T results show

variations along the length of the canonical streamline, there is no

overall drop in Intra-Tract Confidence values related to such

underlying complex regions.

In-vivo human brain
Results from the application of ICE-T to the in vivo human

dataset are shown in Figure 8, using parameters within the same

range as those determined to be applicable to the ex vivo dataset

(ICE-Tthreshold = 0.01 and ICE-Tstreams = 20). Tractography with-

out ICE-T employed the seed ROI, whereas that with ICE-T used

the ICE-T ROII as seed. The ICE-T tracts show, as in the ex vivo

data, a uniform cross-sectional size along their length as a function

of threshold. In contrast, such features are not seen in the tracts

generated from probabilistic tractography without ICE-T due to

the effects of PLD, as was also observed in the ex vivo pig brain. A

possible false positive can be observed in the ICE-T results, seen as

a descending tract in the region of the contra lateral capsula

interna (red arrow, Figure 8). Just as in tractography, we can

explicitly remove false positives by using exclusive ROIs. After

placing an exclusive ROI (small dark yellow region in Figure 8)

contra-laterally, superior to the capsula interna region, the false

positive projection can be removed.

Figure 9 illustrates the impact of the seed region specificity and

size on the tractography results for the human in vivo data. The

global thresholds for these results were chosen so as to match the

segmented tracts for their distal propagation into the contralateral

ascending portion of the cortical spinal tract (CST). The top row

shows the results using the same cubic seed region as used in the

Figure 8 – a cubic area centred approximately over the left motor

cortex. The lower row shows the results using only a single voxel

seed, chosen from within the cubic seed. Whilst the ICE-T results

show minor impact of the choice of seed used, those of the

probabilistic tractography without ICE-T demonstrate several

differences (Figure 9). Firstly, with the cubic seed, the degree of

near-seed flare is substantially greater than that after ICE-T

(Figure 9(a) vs. 9(c). Note that the green seed region is enveloped

by the tract in 9(a) but not in 9(c)). Secondly, the PLD effect is

greater when using the single-voxel seed (Figure 9(a) vs. 9(d)).

Thirdly, the segmented tracts differ slightly in both shape and

extent for the two seed regions (Figure 9b). Using the cubic seed

produced a lateral cortical branch not seen for the single-voxel

seed (Figure 9(a)(b) vs. 9(d)(e), green arrows). In contrast, the single-

voxel seed produced an ipsilateral medial branch (Figure 9(d)(e),

red arrows) that appears to divert from the CST around the level

of the corpus callosum (Figure 9(d)(e), yellow arrows) and instead

follow the anterior thalamic radiation. Inferiorly, the descending

portion (Figure 9(d)(e), orange arrows) also appears to follow a

different route than the CST, before terminating prematurely.

Discussion

We have shown that PLD can arise as a non-linear effect

modulated by tissue complexity, and that some of the effects

imposed by PLD upon probabilistic tractography are the near-

seed flare (false positives), and reduced distal propagation (false

negatives), confounds which have been speculated to bias

structural connectivity analysis ([13], [30]). We have introduced

Figure 5. Comparison of tractography with and without ICE-T.
Tractography is seeded from both the MC & PFC seeds (shown in green)
of dataset P1.(Left Panel) Tractography without ICE-T (i.e. directly with
the seed ROI) using N = 64000 streamlines per voxel and then visualised
using the following thresholds (from top) = 0.050, 0.020, 0.010, 0.005,
0.002.(Right Panel) Tractography with ICE-T ROII (generated using ICE-
Tstreams = 20, ICE-Tthreshold = 0.01) used as seed, and then visualised at
the following thresholds (from top) = 0.015, 0.012, 0.010, 0.005,
0.002.Green arrows indicate areas demonstrating ‘‘near-seed flare’’.
Red arrows indicate premature termination of the tract ROI due to the
PLD effect causing the PICo values to fall below the applied threshold.
doi:10.1371/journal.pone.0096247.g005
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the ICE-T Framework as a generalizable wrapper around existing

methods and demonstrated its ability to mollify the universal PLD

confounds in segmented tracts. The results presented herein

suggest that using methods such as ICE-T that address the PLD

confound will benefit the statistical robustness for a wide range of

group statistics, such as structural connectivity analysis and

advanced tract shape models

The PLD confound
At present, the PLD confound is rarely addressed. Indeed, it is

common for the threshold-level of probabilistic streamline

tractography experiments to either be left extremely low (giving

‘near-seed flare’ effects, as observed in Figure 5), or to select a

threshold which perceptually segments-out the tracts of interest.

Both approaches are subjective, and therefore obviate meta- or

group-analysis. As noted by [19], PLD imposed problems for the

delineation of the tracts of interest in their group study, and so to

Figure 6. Tractography with ICE-T from each of the three ROIs (MC, PFC and SC), for each pig brain (P1, P2, P3). Parameters: ICE-
Tstreams = 20, ICE-Tthreshold = 0.005, results rendered at 0.005. Data show the glass brain of the unweighted diffusion image as anatomical reference.
doi:10.1371/journal.pone.0096247.g006

Figure 7. Comparison of along-tract profiles after tractography, with and without ICE-T, versus linear compensation. Curves show the
variation of PICo values (scaled to [0,1]) along the canonical streamline from the MC seed region (red dashed vertical line) on dataset P2 for
tractography with ICE-T (green), without ICE-T (blue), and tractography with linear compensation (orange). Right panel shows a zoomed portion of
the main graph, delineated by the purple dashed border, where both the tractography without ICE-T (blue) and tractography with linear
compensation (orange) are now drawn according to the scale on the right axis. Dataset details: ICE-T performed using ICE-Tstreams = 20, ICE-
Tthreshold = 0.005, number of ICE-T iterations until stability = 41. Tractography without ICE-T was generated using 5000 streams per voxel. A drastic fall-
off in PICo values can be observed (green arrow) for tractography results without ICE-T soon after the streamlines exit the seed region due to their
encountering a complex region. No such effect is seen for the results with ICE-T. For a tract reference, see the 3D render of this tract in Figure 6, P2,
MC seed region.
doi:10.1371/journal.pone.0096247.g007
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compensate, they found it necessary to employ several extra

heuristic constraints.

Linear propagation distance factors have previously been used

in an attempt to correct for the PLD effect [18], [17]. However, we

observed how anatomical complexities, e.g. centrum semiovale,

which cause barriers to streamline propagation, compounded the

PLD effect in a non-linear manner (Figure 7). We demonstrate

how linear compensation techniques cannot correct for the non-

linearity of the PLD effect, in contrast to ICE-T. The ICE-T

approach has the additional advantage of being independent of

the image resolution, unlike the PLD effect, which will increase

with the number of propagation steps (and thereby voxels),

required to reach the target. As such, the impact of PLD is likely to

increase as future studies permit the use of higher resolution

imaging techniques.

Benefits of the Iterative Process
In conventional tractography, the PLD imposes a limit upon

how far a streamline is likely to propagate away from a seed. As a

consequence, increasing the number of streamlines used cannot

improve the propagation performance [29]. In contrast, applica-

tion of ICE-T generates a delineation of the tract, thereby

iteratively distributing the seed voxels along its length. This has the

consequence that average streamline path-lengths will be dimin-

ished, thereby causing the distribution of false positives and

negatives along the length of the delineated tract to be more

uniform. Naturally, the decrease in distal false negatives also

means a concurrent increase in distal false positives. Note that the

presence of distal false positives actually reflects the removal of

PLD, because such errors are most likely to occur where the

sampling of the uODFs is sufficient.

The tracking algorithm reported in [31], based upon Time-Of-

Arrival (TOA) maps, has some similarities to the iterative nature of

ICE-T, but was developed as a way to improve tracking

performance of streamlines that met with problematic regions

such as those containing crossing fibres. The procedure includes

an iterative region-growing step that is similar to the approach

presented herein, and although they did not report any such

findings, it too may show an improvement to the PLD effect.

However the approach cannot be generalized to existing

tractography methods.

Prior knowledge in the form of waypoints and exclusion ROIs

can be used with ICE-T to reduce the false positives as in

conventional tractography. Similarly, prior knowledge can be

applied to constrain the segmentation to specific fibre bundles

emanating from a seed. Furthermore, as shown in Figures 5 & 8,

the tracts generated by ICE-T have more uniform cross-sectional

areas along their entire length, and the extent of the cross-section

can be controlled by the global threshold parameter. Hence the

ICE-T tract volumes are suited for use as binary masks to generate

sample volumes (VOIs) for tract-oriented statistics, e.g. [32].

Generalisability
It must be highlighted that probabilistic tractography with ICE-

T is not a new tracking algorithm per se, but a generic framework

applicable to most probabilistic streamlining methods. As such it is

able to benefit from their long-standing methodological develop-

ments, and their individual advantages and disadvantages.

ICE-T has a further benefit of generalizing the parameter

choice. Conventional tractography, besides the definition of a seed

region, requires the specification of the number of streamlines and

usually the global threshold, applied to the probabilistic results in

order to delineate the desired tracts. Aside from the seed region,

the parameters of the ICE-T Framework are ICE-Tthreshold and

ICE-Tstreams, used to generate ICE-T_ROII, along with the

subsequently-applied global threshold. The streamline parameter

has a different purpose in the two methods. In conventional

tractography, the number of streamlines is chosen heuristically in

an attempt to sufficiently sample the entire tract. Liptrot & Dyrby

[29] demonstrated how increasing the number of streamlines

(typically up to 5000) simply increased the voxelwise connectivity

probabilities, and so was unable to address the PLD. However

when using ICE-T, we have shown how far fewer streamlines are

required (approximately 20) - any more than this show minor

additional benefits and simply add to computational burden. This

is because at each iteration only the local tract environment needs

to be sufficiently sampled. The ICE-Tthreshold parameter controls

the minimal degree of connectivity confidence required that new

voxels must attain to be incorporated into the growing seed. We

have shown how choosing ICE-Tthreshold at approximately 0.01

permits segmentation of the tract network. Selection of a too high

ICE-Tthreshold hinders the growth of the seed region through

complex regions, e.g. centrum semiovale. In contrast, too low a

value of ICE-Tthreshold will lead to growth of the seed region

outside of the relevant tract network. The exact choice of ICE-

Tthreshold will depend upon several factors, including acquisition

parameters (e.g. imaging sequence, resolution), but especially the

tractography method as well as the topology of the particular tract

network being analysed.

The tracking results obtained with ICE-T show wide agreement

with those obtained in [16] using in vivo tracers. However

Figure 8. Comparison of thresholding tractography results,
obtained with and without ICE-T, in a human in vivo subject.
Both results are generated from a cubic seed (dark green) placed
approximately in the left MC region. Tractography without ICE-T used
the original cubic seed ROI as the seed (25,000 streamlines, blue, top
row). Tractography with ICE-T used the ICE-T ROII as seed (ICE-Tthreshold

0.01, ICE-Tstreams 20, purple, bottom row), shown here at various
rendering thresholds (0.02, 0.01, 0.005, 0.001).The path-length depen-
dency is very pronounced in the tractography results without ICE-T (top
row), evidenced by the movement of the end-of-tract point (green
arrows) as a function of the applied threshold. Probable false-positives
are seen in tractography both with and without ICE-T around the
descending portion of the contralateral CST (red arrows). These can be
addressed in the conventional manner by the introduction of exclusion
masks (dark green box and plane) that terminate and remove any
streamlines that propagate through them. Here two are shown for both
methods (last column) - one along the mid-sagittal plane and one in the
contralateral CST. The former is to prevent streamlines crossing
between the hemispheres at the cortical level dorsal to the corpus
callosum due to the high partial volume effect. The latter is to prevent
segmentation of a known false-positive branch of the contralateral CST.
doi:10.1371/journal.pone.0096247.g008
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omissions were also noted, for example the absence of the

corticonigral projections from the PFC region for datasets P2 and

P3 (Figure 6, red arrows). Although previous work [16] has

successfully delineated these tracts for this dataset using both in-

vivo tracers and tractography, the latter was achieved via the

application of waypoint constraints. This suggests that local

complexities may have prematurely halted the tractography using

ICE-T, and that a reduction of the ICE-Tthreshold may be needed

to permit successful penetration into the distal portion of the tracts.

This underlines that external factors such as tractography method

and dataset parameters (e.g. resolution, b-value) influence the

selection of ICE-T threshold. However, we have shown how the

parameters are generally transferrable to similar, ex vivo datasets

(P1, P2, P3), and have also successfully applied it to an in vivo

clinical dataset. The ICE-T parameters are not expected to be

generalizable across tractography methods or acquisition param-

eters, however it is expected that they will also exhibit a stable

range. In future work we will investigate the effect of various

tractography methods upon the ICE-T parameters.

A major difference between tractography with and without

ICE-T is that while the latter outputs a PICo map based upon

tracking from a given seed region, ICE-T generates an Intra-Tract

Confidence map of all connections within the segmented tract.

Interpretation of the Intra-Tract Confidence map is therefore

different from that of a PICo map. The direct interpretation of the

values has not been considered herein. However, since a PICo

map is a metric of streamline propagation from a seed region, it is

affected by tract integrity, but is not a direct measure of it. In

contrast, the Intra-Tract Confidence map from ICE-T is a metric

that reflects the sum of connections from every member voxel,

most of which will, by construction, lie within the ICE-T_ROI, i.e

the segmented tract. However, this in turn means that it cannot be

used directly for network analysis as it does not reflect a probability

of being connected to the seed, but instead it can be used as a

binarized version of the tract system emanating from the seed. The

latter is often used for creation of structural connectivity matrices.

Considerations
In tractography, streamlines are propagated in both directions

from the seed region. It should be noted, however, that the ICE-T

method we have implemented here is based upon the Camino

toolbox and does not include directionality constraints applied to

each ICE-T_ROIi region. This infers the possibility that the

segmented tract network might reflect bi-directional pathways

along the entire delineated tract. If such behaviour is undesirable

then a simple forwards-only directionality constraint could be

applied at the end of each ICE-T iteration.

When specifying the initial seed region, we expect that any

subset of voxels within the region of interest could be employed.

Due to the region-growing feature of the seed region when using

ICE-T, it is expected that the iterative region-growing will expand

the seed to approximate the entire tract network. This same

argument would also imply that care must be taken to ensure that

over-inclusive regions are not employed as seeds. For example, we

found false-positive lateral branching only in the results using the

overly-large ROI when ICE-T is not applied (Figure 9a,b). This

suggests that the imprecise delineation of an ROI (too large) could

be a source of false positives in tractography, whereas ICE-T

appears to be more robust to the precision of the ROI. In addition,

as was clearly demonstrated in Figure 9f, a major advantage of the

Figure 9. Tractography in a human in-vivo dataset, with and without ICE-T, showing dependency upon the size of the seed ROI. Top
row ((a), (b), (c)) shows the same results as for Figure 8, but from a posterior viewpoint. From this angle it is also clear how the tractography without
ICE-T using the cubic seed also generates a lateral cortical branch ((a), (b): green arrow). Inset on (a) shows lateral view from the right side,
highlighting the posteriorly-directed angle of the branch.Bottom row ((d), (e), (f)): tractography results from a single voxel seed within the left MC,
using the same parameters as for the cubic seed. As for the cubic seed, the rendering thresholds have been selected so as to generate comparable
propagation of the tractography into the contralateral ascending portion of the CST. In the tractography results without ICE-T ((a), (d)), the ipsilateral
descending portion follows a more medial route than the results using ICE-T ((c), (f)), as can be seen on the merged views ((b), (e)). Further inspection
of these results indicates that the streamlines diverge from the CST around the level of the ventricles and seem to instead pick-up a periventricular
route through the medial thalamic nuclei ((d), (e): yellow arrows). The streams then diverge, following a descending route close to the CST ((d), (e):
orange arrows), and a medial route along the anterior thalamic radiation ((d), (e): red arrows). The ICE-T results correctly follow the CST from both
seed areas.
doi:10.1371/journal.pone.0096247.g009
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ICE-T method is the ability to segment a tract network using only

a subset, even a single voxel, of the seed region of interest.

Uniquely, using ICE-T with such a subset does not result in a

penalty of increased PLD, and it is still able to segment out the

same network as a much larger seed. This has obvious benefits for

future clinical studies where accurate delineation of anatomical

areas of interest to act as seed regions could be obviated and

replaced by a selection of a single voxel within the known region.

Such an approach is likely to be simpler and more reproducible as

the margin for error will be a function of the region’s size, and the

selection could occur in those subregions where the confidence of

correct localisation is highest.

Conclusions

The impact of PLD on the results of probabilistic streamline

tractography is a confound which should be considered. We have

shown the non-linear spatial variation of PLD along any given

pathway, challenging the application of a global threshold and

introducing both false positives (near-seed flare) and false negatives

(premature tract termination). We have shown how a novel re-

appraisal of the probabilistic streamline tractography pipeline,

termed ICE-T Framework (ICE-T), offers the possibility to

segment tract systems without the problems imposed by PLD.

With ICE-T, PLD issues are substantially reduced to the point

where tract networks can be delineated using a global threshold,

leading to a reduction in the PLD-related confounds. Importantly,

ICE-T only addresses the PLD issue, and preserves all the

characteristics of the individual tractography methods. It is

recommended that future work should consider handling PLD

in order to minimise the risk of bias in tract statistics and structural

network analysis.
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