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Abstract

We derive the Iterative Confidence Enhancement of Tractography (ICE-T) framework to address the problem of path-length
dependency (PLD), the streamline dispersivity confound inherent to probabilistic tractography methods. We show that PLD
can arise as a non-linear effect, compounded by tissue complexity, and therefore cannot be handled using linear correction
methods. ICE-T is an easy-to-implement framework that acts as a wrapper around most probabilistic streamline
tractography methods, iteratively growing the tractography seed regions. Tract networks segmented with ICE-T can
subsequently be delineated with a global threshold, even from a single-voxel seed. We investigated ICE-T performance
using ex vivo pig-brain datasets where true positives were known via in vivo tracers, and applied the derived ICE-T
parameters to a human in vivo dataset. We examined the parameter space of ICE-T: the number of streamlines emitted per
voxel, and a threshold applied at each iteration. As few as 20 streamlines per seed-voxel, and a robust range of ICE-T
thresholds, were shown to sufficiently segment the desired tract network. Outside this range, the tract network either
approximated the complete white-matter compartment (too low threshold) or failed to propagate through complex regions
(too high threshold). The parameters were shown to be generalizable across seed regions. With ICE-T, the degree of both
near-seed flare due to false positives, and of distal false negatives, are decreased when compared with thresholded
probabilistic tractography without ICE-T. Since ICE-T only addresses PLD, the degree of remaining false-positives and false-
negatives will consequently be mainly attributable to the particular tractography method employed. Given the benefits
offered by ICE-T, we would suggest that future studies consider this or a similar approach when using tractography to
provide tract segmentations for tract based analysis, or for brain network analysis.
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Introduction connectivity (in terms of parallel associated axons) from these
connection-confidence maps ([13], [14]).

Furthermore, the application of tract-specific statistics, and
therefore also many forms of network analysis (e.g. [15]), relies
upon the correct segmentation of tracts from PICo-type maps,
usually by the application of a priori information in the form of
waypoints, followed by a global threshold. Due to the reasons
outlined above, this often proves to be problematic, and a single
global threshold is generally insufficient. The PLD confound is one
of the key obstacles to the application of global thresholding, and
its inherent presence in all probabilistic streamline tractography
methods ([9], [13]) imposes a great challenge to the segmentation
of any tract system from a relevant seed region.

[11], [12]). L The origin of the PLD effect lies in the mechanics of the

However, several well-documented confounds and limitations ). ohabilistic streamline tractography method, and is simply due to
the step-wise dispersion of the propagating streamlines along the
length of a tract. Hence image resolution is also a contributory
factor. PLD is an inherent side-effect of the probabilistic approach
and is manifested as a monotonic, non-linear down-modulation of
the calculated probability as a function of the propagation distance
from the seed point ([9], [13]). Hence the resultant probability

Diffusion weighted imaging (DWI) provides a novel and unique
method with which to study white-matter microstructure within
the brain (for an overview see [1] and [2]). In particular,
processing of DWI data can produce estimates of white matter
fibre directions ([3], [4], [5], [6]) from which voxelwise uncertainty
orientation distribution functions (uODFs) can be generated.
Probabilistic streamlining methods thereafter permit generation of
connection-confidence maps e.g. Probabilistic Index of Connec-
tivity (PICo) maps [9], by counting the relative propagating success
of streamlines from a given seed region ([7], [8] and [9]). Such
PICo maps can then be used to inform brain connectivity ([10],

make it challenging to infer from such connection-confidence
maps. These include confounds such as Path-Length Dependency
(PLD) and the Partial Volume Effect (PVE), modelling limitations
in regions of crossing fibres, and data limitations due to an image
resolution that is far coarser than the axons themselves. These
issues hamper the inference of any robust form of true anatomical
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values produced per voxel represent only the chance that an
average streamline could propagate thereto from the seed region,
and cannot represent any anatomical connection strength of the
tract — see [13] for a discussion. The consequential decline in the
number of streamlines that manage to successfully propagate to
distal portions of a tract means that those that do are too few to
sufficiently sample uODYF's therein.

The PLD effect is a well-known phenomenon and has been
previously reported in early tractographic human studies, [9]. The
problems related to PLD have since been demonstrated in a
validation study [16], where they observed long WM tracts
terminating arbitrarily depending upon the threshold chosen. The
consequences of PLD can therefore be significant modulation of
tractographic results, thereby also impacting upon subsequent
diagnostic interpretation. Nevertheless, PLD has so far received
little attention.

Whilst few studies have looked into moderating PLD itself, some
attempts have been made to compensate for its effects. Normal-
isation by a distance-correction factor has been suggested ([17],
[18]), but due to tract specific differences (different routes, different
number of dispersions and anatomical complexities encountered)
this cannot guarantee the removal of all PLD effects.

To be able to delineate specific longer tracts, many studies use
constrained tractography (using a priori information such as
waypoints) to enable a global threshold. Although this does not
solve the PLD issue, the extra a priori info can help to delineate
specific tracts. This approach was used together with additional
heuristics by Sherbondy et al. [19] to counter the resistance to
conventional thresholding of specific tracts due to the effect of
PLD. It must be noted that such heuristics, together with the more
general and commonly-used approach of applying waypoints,
exclusion masks and termination regions, do not provide PICo
map outputs, nor attempt to remove PLD itself, but can be useful
to delineate specific tracts of interest.

Here, we visualise the PLD effect and its non-linear behaviour.
We propose a heuristic method, based upon probabilistic
tractography, to segment out a given tract system emanating from
a seed region, with minimal influence from PLD. Based upon a
region-growing approach, Iterative Confidence Enhancement for
Tractography (ICE-T) is an easy-to-implement framework that is
applicable as a wrapper function to most probabilistic streamline
tractography methods. This work introduces ICE-T, its modifiable
parameters (termed ICE-T 000 and ICE-T,,,,,) and their
generalizability, and investigates the method’s parametric behav-
iour. We confirm both the applicability of our ICE-T method
against the results derived by [16], via the use of the same ex vivo
pig brain dataset that uniquely combined tractography with
invasive tracer studies, and also its reproducibility. Additionally we
demonstrate that, due to the non-linear nature of PLD, linear
compensation methods may not be sufficient. Finally, we
demonstrate the application of the ICE-T method to a human
in vivo dataset.

Theory

We define PLD as being the drop in connection confidence
along a tract due to a combination of effects caused by the stepwise
dispersion of streamlines, which is in turn due to the stepwise
sampling of the uODF's and the compounding effect of anatomical
complexities. ICE-T aims to significantly reduce PLD in existing
probabilistic streamline tractography methods. The underlying
principle of ICE-T is to ensure that the uODF of each voxel that is
determined as being connected to the seed is sufficiently sampled
by a suitably large number of streamlines. To achieve this we
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apply ICE-T to conventional tractography in order to grow the
given seed region iteratively along its connections. This can be
viewed as a tract segmentation step via region-growing, using a
predicate of voxelwise connectivity determined by probabilistic
tractography. The resultant grown seed region thereby represents
the segmented tract system emanating from the given seed.
Hereafter one can either use the region for tract-based analysis, or
use it as a seed region for tractography. The outcome of the latter
will not be a PICo map, but instead a map describing how well
connected each voxel of the segmented tract is to all the other
voxels within the tract. This can therefore be considered as a tract-
based ACM [20], to which a global threshold can then be directly
applied without the need to compensate for bias introduced by
PLD.

Hereunder, we describe the mechanics of the ICE-T frame-
work.

ICE-T Framework

A tractography pipeline generally includes the following steps:
voxelwise fibre-reconstruction and generation of uODFs, followed
by the streamlining tracking process. ICE-T is a simple
modification of this, introducing a feedback loop around the
streamlining tracking process, and is described as pseudo-code in
Table 1. ICE-T utilises the same parameters as tractography, with
two exceptions: the number of streamlines generated per voxel is
modified (ICE-Tyeams), and the threshold applied to the end-of-
iteration connection-confidence map (ICE-Ty, eshola)-

The ICE-T framework consists of iteratively growing the seed
region-of-interest (ROI), ICE-T ROI;, (where 74 indicates the
iteration count) along the tract branches it comes across, as
outlined in Table 1. At each step, a PICo map [9] is generated and
then thresholded at ICE-T y,;eqno1a to produce ICE-T ROI;,,. This
RO, if it has increased in size, is then fed back to the tracking step
where it is used as the updated seed region for the next iteration.
By employing the connection-confidence value of a voxel as the
predicate, a connectivity constraint is automatically imposed upon
ICE-T ROI; and all its voxels are thereby classified as being highly
connected to one another and hence also to the original seed
region. In addition, the connectivity constraint is enhanced at each
iteration by the application of a streamline waypoint region
through which all streamlines are required to pass. The waypoint
region for iteration ‘1’ is defined as ICE-T ROI;, (equivalently the
seed region for iteration ‘i-1°). This guarantees that the original
seed region will be included in the final segmented tract. For
efficiency, the streamline computations are stored between
iterations meaning that at each iteration only streamlines from
the newly-included voxels need to be generated. The final grown
seed region ICE-T ROI; (where T’ represents the total number of
iterations performed), representing the segmented tract system
from the original seed, can then be used for tract-based analysis.
The resultant ICE-T ROI; is not a PICo map, but instead each
voxel’s value represents an index of connection confidence with
every other voxel within the tract, and is hereby defined as the
Intra-Tract Confidence.

Methods

Ethics Statement

Animal data. All procedures followed “Guidelines for the
Care and Use of Experimental Animals” and were approved by
the Danish Animal Experiments Inspectorate.
The participant signed an informed consent
following the guidelines of the declaration of Helsinki. The study
protocol (KF 01 — 131/03) was approved by the local ethics

Human data.
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Table 1. The ICE-T Framework as Pseudo-Code.

Path-Length-Dependency in Tract Segmentation

5 If Growth flag =1, then i=i+1
Goto Stage 2

6 Display resultant segmented tract

Stage Task Stage Inputs Stage Outputs

1 Start Iteration, i=1
ICE-T_ROI;= original seed region
ICE-Tgtreams Parameter (e.g. 20)
ICE-Tihreshold Parameter (e.g. 0.01)
Global Threshold Parameter (e.g. 0.005)

2 Perform streamlining from ICE-T_ROJ; ICE-Tstreams PICo map
ICE-T_ROJ;
Waypoint region: ICE-T ROI;,
(Any other waypoint, exclusion or termination masks)

3 Threshold the streamlining result at ICE-Tynreshold PICo map (from Stage 2) New binary region ICE-T_ROI_i+1
ICE-Tihreshold

4 Check for continued growth of seed region: ICE-T_ROJ; Growth flag

Is (ICE-T_ROl;yy) > (ICE-T_ROI_i)? ICE-T_ROl;14 =0 (no ROI growth)

=1 (ROI growth)
ICE-T_ROL_i

ICE-T_ROL_I

ICE-Titerations: I: The number of times that the seed region is iteratively grown.
doi:10.1371/journal.pone.0096247.t001

committee (“De Videnskabsetiske Komiteer for Kebenhavns og
Frederiksberg Kommuner”).

Data Acquisition and Pre-Processing

i) Ex-vivo pig brain. The data, including ground-truth seed
regions defined by tracer injection, from three young and normal
Gottingen mini pig brains (P1, P2 and P3), as used in [16], were
re-used here to permit comparison against the validated results
reported therein.

MRI data were acquired ex vivo on a 4.7'T Varian MR scanner
using a pulse gradient spin echo (PGSE) sequence with single line
read-out using the following parameters: TR =6500 ms,
TE=67.1 ms; matrix =128x128, in-plane resolution
=0.51x0.51 mm?. Diffusion sensitisation gradient duration
8=27 ms, time between gradient-pulse onsets A=33.5 ms,
gradient strength 56 mT/m. A slice thickness of 0.5 mm, gap
0.5 mm and two sets of 35 interleaved slices ensured whole brain
coverage. NEX = 2. The pig brain datasets consisted of 3xb =0 s/
mm? and one b-value of 4009 s/mm? (chosen as specified in [21]),
acquired in 61 non-collinear directions as available in Camino
[22]. Before MR scanning the tissue was temperature stabilised to
room temperature and a dummy run lasting 15 hours ensured that
no short-term instabilities were introduced into the final diffusion
MRI dataset [21].

The application of a spin-echo diffusion sequence, and the
absence of both physiological and subject-generated motion,
minimised the distortions in the ex vivo data. Visual inspection
confirmed that no additional processing of the ex vivo data was
required prior to tractography [21]. To limit subsequent analysis
to brain tissue only, a brain mask was generated via summation of
all diffusion images followed by application of a suitable threshold.

For tractography, we used the same hand-drawn seed regions as
defined in [16] based upon the following tracer injection sites:
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ICE-Tihreshold: The level of “connection probability” (typically scaled between 0 and 1), above which a voxel must rise for it to be considered part of a significant
connection, and therefore to be appended to the seed region from which the streamlines were initiated. Applied at each iteration of the feedback loop.
ICE-Tgreams: The number of streamlines emitted from each voxel in the seed region during the region-growing steps.

right prefrontal cortex (PFC), right somatosensory cortex (SC) and
the left motor cortex (MC). The datasets, including the seed
regions, are freely available on (http://dig.drcmr.dk).

A single healthy volunteer (right-
handed female, age 21 years), with no history of neurological or
psychiatric disorders, or a family history thereof, nor hypertension,
was recruited.

An in-vivo diffusion MRI dataset was acquired on a 3T Trio
Siemens MR scanner with an eight-channel head coil (Invivo, FL,
USA) using a twice-refocused diffusion-weighted sequence to
minimise eddy current distortion [23] with the following
parameters: TR =8200 ms, TE =100 ms, matrix =96x96;
NEX =1, GRAPPA acceleration factor =2.5, number of refer-
ence lines =48, isotropic 2.3 mm voxels and 61 slices (no gap)
ensuring whole brain coverage. Ten b =0 s/ mm? and one b-value
of 1200 s/mm?® were acquired along the 61 non-collincar
directions available from Camino [22]. Additionally, a gradient-
echo-based field map sequence (TR =530 ms, TE(1) =5.19 ms,
TE(?2) =7.65 ms, FOV=256%256 mm, matrix 128x128, 47
slices with no gap, voxel size 2x2x3 mm, NEX =1, acquisition
time =2.18 min) was acquired to correct geometric distortions
caused by BO magnetic field inhomogeneities, and a 3-D whole
brain T1-weighted magnetization prepared rapid acquisition
gradient echo (MPRAGE) scan (1 mm® isotropic voxels, FOV
256 mm, matrix = 192x256x256, TR = 1540 ms, TE = 3.93 ms,
TT=800 ms, flip-angle =9°) was acquired for the generation of
tissue segmentations and thereafter a brainmask.

ii) In-vivo human brain.

Intra-volume subject motion and the undesired stretching or
shearing caused by eddy-current build-up were simultaneously
corrected for by estimating a 12 parameter affine model [24] to co-
register the DWI images with the first b = 0 image of the sequence.
Field inhomogeneity distortions, causing a geometric displacement
of voxel intensities along the phase encode direction of the images,
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were addressed by acquisition of a field-map. The field-map
correction [25] shipped as part of SPM8 (www.filion.ucl.ac.uk/
spm) was then used to estimate the voxel displacement map. The
DWI images were then re-sliced into the space of the first b=0
image via cubic b-spline interpolation within SPM8, with voxel
intensities per volume scaled by the Jacobian determinant of the
calculated transformation matrix. Finally, the rotational part of the
affine model was applied to reorient the gradient directions [26].

A brain mask was generated in the diffusion image space using
the grey- and white-matter (GM & WM) segmentations generated
by SPMS8 from the MPRAGE T'1 scan.

For tractography, a cubic seed VOI was specified (by ML) using
Matlab, defined so as to approximate the left subcortical motor
area. The location and size of the VOI was defined following
tractography seeded in the brainstem.

Tractography

i) Probabilistic Tractography. Ior this work we chose, for
comparative purposes, to use the same probabilistic tractography
method as that was employed in Dyrby et al [16] i.e. the multi-
tensor fibre reconstruction algorithm [3], [8] implemented in the
Camino software package [22]. This comprised a voxel classifi-
cation procedure [27] to allocate the likely number of component
fibre directions within each voxel, followed by fitting of a multi-
tensor model using a maximum of two fibre directions per voxel.
This was then followed by streamline propagation from the centre
of every voxel, using the FACT streamlining method [28] (with an
inner-product threshold of 0.5, imposing a maximum within-voxel
curvature of 60 degrees) to generate PICo maps [9]. The number
of streamlines emitted from each voxel within the original seed
region was 64,000 [16], whilst 25,000 streamlines were employed
for the human in vivo data. These numbers are far greater than
those often employed (5,000-10,000) and were chosen so as to
ensure that resultant PICo values could not be attributed to poor
sampling of the proximal tract network. However, due to PLD,
poor sampling of the distal tract will occur even with this number
of streamlines [29]. Streamlining was restricted to brain-only
voxels via a brain-mask.

For comparison, results from tractography were subjected to a
linear correction for PLD as described in [18]. Here the PICo
values obtained from tracking along a given tract of interest are
multiplied by their voxel distance from the seed region.

ii) Probabilistic Tractography With ICE-T. Tor the ICE-
T Framework, we employ the same setup and parameters for
probabilistic tractography as described above, with the exceptions
that the number of streamlines was defined by the ICE-Teams
parameter, and with the addition of the ICE-T,;cshola parameter,
as described in Table 1.

The ICE-T Framework was implemented in Matlab (Math-
works Inc.) as a data-flow wrapper, handling file management and
with calls to the required tractography functions from the Camino
package [22].

An mitial experiment was performed to empirically investigate
the combined impact of both ICE-T parameters, ICE-T y eshola
and ICE-T;eams, using a single pig-brain dataset (P1) and
sampling the following values:

ICE-T hyeshoia: [0.001, 0.005, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25,
0.30]

ICE-Tyeams: [1, 3, 5, 10, 20, 25, 50, 100, 250, 500].

To reduce processing time and storage demands when
investigating the ICE-T parameter space, a file repository of 500
projection streamlines per voxel for dataset P1 was generated a
priori, from which streamline samples could be randomly drawn as
required. This experiment permitted the derivation of a single
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value for the ICE-T,eams parameter, one which could then be
employed for all three pig-brain datasets.

Subsequently, the impact of the ICE-T,cshola parameter was
mvestigated using this fixed value of ICE-Tcams on all three pig-
brain datasets, with the following values:

ICE-Tpreshola: [0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035,
0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14,
0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25]

Analysis

To assess the degree of PLD along a selected tract, we select a
line-of-interest (LOI) along its midline (see below). To delineate the
LOI, we determined the most-likely pathway by selecting the
canonical streamline, Sc,nonical, from a collection propagated from
the seed region to a waypoint. The canonical streamline, Scanonicals
was estimated as that which had the greatest number of points of
agreement with all other streamlines. For this we used the first 100
successful streamlines. For analysis and subsequent comparison of
connection-confidence values produced with and without ICE-T,
Scanonical Was then employed as the LOI to extract the tract
midline data.

In the pig-brain datasets, Scanonicat Was derived from validated
pathways described in [16], using the seed regions and waypoints
specified therein. The LOI emanating from the SC region was
chosen as an example due to its length and its passage through the
complex region comprising the substantia nigra.

Results

ICE-T Parameter Selection

i) ICE-T,tcams Parameter. The first experiment investigat-
ed the combined impact of both ICE-T parameters. Figure 1
shows that the ICE-Teams parameter has no global effect upon
the size of ICE-T ROI;, however the latter does decrease with
increasing ICGE-T y,;eshola- A slight variation in the size of the ICE-
T ROI; can be observed in the PFC and MC between 5 and 10
streamlines. An outlier is noted at a single point for the PFC at
ICE-Tpeams 100 and ICE-T g eshola 0.25. For the remaining
experiments, we fixed the ICE-Tyeams at 20 streamlines, as a
compromise between having a sufficient number of streamlines
whilst minimising computational resources.

ii) ICE-T hreshola Parameter. For any seed region, the ICE-
T hreshola parameter significantly impacts the size of the ICE-T
ROI; as shown in Figure 2. The size of ICE-T ROI; increases
linearly as the ICE-T eshola 18 reduced, down to around ICE-
T hreshola = 0.025. Below this threshold, the increase is greater and
non-linear, most likely due to the incorporation of adjacent tract
networks into the segmented network along with a consequential
increase in the number of false positives. For very low ICE-
Tihreshola (approx. <0.001), ICE-T ROI; always grows at each
iteration, and hence never generates a specific segmented tract
network (results not shown). However, as shown in Figure 3 for the
MC seed, selecting an ICE-T y;esho1a @bove 0.005 results in a stable
ICE-T ROI;. Figure 3 also shows the general decrease in the
number of iterations required to reach stability as ICE-T y,;eshola 18
increased. Further iterations provide no additional change, and
the ICE-T halts at this point. The resultant ICE-T ROIj therefore
represents a segmented tract system emanating from the seed.
Similar results are obtained for SC and PFC (results not shown). In
the following experiments the number of ICE-T iterations is
automatically limited, determined by the point at which the ICE-T
ROI; and ROI;.; show no size differences, and hence the number
of iterations is not a parameter in itself.
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Figure 1. The impact of the ICE-T eams Parameter. Curves show the parameter’s effect upon the size of ICE-T_ROI, for various choices of the
ICE-Tihreshold Parameter and seed regions (detailed in the legend). Seed regions are labelled as MC (motor cortex), SC (somatosensory cortex) or PFC

(prefrontal cortex).
doi:10.1371/journal.pone.0096247.g001

The spatial growth of the ICE-T ROI; from the SC seed region
along the canonical streamline of the corticonigral tract that
projects through a complex crossing fibre region (centrum
semiovale) is illustrated in Figure 4. With this seed region,
selection of ICE-T ;e5n01a>>0.015 causes the region growing to halt
at this complex region. However, ICE-T y,;csno1a Values below this
level permit the ICE-T ROI; to grow along the entire canonical
streamline. Similar ICE-Ty,;cqho1q Values were also found for this
seed region in the P2 & P3 datasets (results not shown).
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Figure 5 shows tractography performed using only the seed
ROI versus using the ICE-T_ROIj, thresholded at different levels.
In order to extract the entire tract without using ICE-T i.e. using
seed ROI (left column), thresholding of the obtained results would
require application of a very low global threshold (<0.010). Using
the seed RO, the effect of low thresholding produces a near-seed
flare, reflecting the high proportion of false positive connections
found close to the seed, where the sampling is still sufficient (green
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P2 SC
& P3SC

0.200
0.220
0.240

Figure 2. The impact of the ICE-T;,eshola Parameter. Curves show the parameter’s effect upon the size of ICE-T_ROI, with the ICE-Tgyeams
parameter fixed at 20 streamlines, shown for each of the three ROIs (MC, PFC and SC) in each of the three ex-vivo datasets (P1, P2 and P3).

doi:10.1371/journal.pone.0096247.g002
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axis.
doi:10.1371/journal.pone.0096247.g003

arrows, Figure 5). Distally, due to the PLD effect, the false
negatives become dominant, as evidenced by the sudden
termination in white matter of those tracts that survive the
thresholding (red arrows, Figure 5). In contrast, the results after

present, and no sudden termination of tracts in white-matter are
seen, indicating a reduction in the PLD effect.

This demonstrates the potential for a common ICE-T y;cqno1a
which can be used across different subjects and seed regions, as

llustrated in Figure 6 for an ICE-T\j,egnoia 0of 0.005. Here an
extensive tract network is segmented for all 3 seed regions and
shows similar, though not identical, structures across all datasets
(P1, P2, P3). Exceptions can be seen in, for example, the
projections from the PFC seeds towards substantia nigra in Pl

application of ICE-T do not show such behaviour, and instead
generate a segmentation of the tract network at each threshold.
Notably, because a grown ICE-T ROI; is used for tracking, then
lowering the subsequent global threshold just broadens the cross-
sectional area of the tract system. Near-seed flare effects are not

p|oqse.1q1_|_-33|

120 00 80 60 40 ) "0 220 40
Distance (Voxels)

Figure 4. lllustration of the ability of ICE-T to penetrate through a complex region. The figure shows how ICE-T successfully propagates
through a known crossing-fibre region (centrum semi-ovale, light blue dotted circle, upper left panel) when seeded from the SC region (green region,
upper left panel) of dataset P1. The dark blue region (upper left panel) shows the results using ICE-Tyyreshold Of 0.02, and the red region (upper left
panel) for ICE-Typreshoid Of 0.015. The graph (lower panel) shows the spatial extent of the ICE-T_ROI,, sampled along the canonical streamline, from the
seed region (defined as Distance =0) as a function of both distance from the seed region, and of the value of the ICE-Tynreshold Parameter. Here a
coloured voxel represents that the segmented ROl was present at the given threshold and distance from the seed. Each threshold level is coloured
differently for clarity. Once the ICE-Tieshold Parameter falls to 0.015 and below (lower three rows), the region-growing penetrates past the complexity
and continues on to extract the distal portion of the tract. The 3D rendering (upper right panel) shows the ICE-T results at the same two thresholds
(0.02 in blue and 0.015 in orange). The seed region is located at the site of the green arrow (upper right panel).
doi:10.1371/journal.pone.0096247.g004
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Tractography after ICE-T

0.05

0.01
0.01

Figure 5. Comparison of tractography with and without ICE-T.
Tractography is seeded from both the MC & PFC seeds (shown in green)
of dataset P1.(Left Panel) Tractography without ICE-T (i.e. directly with
the seed ROI) using N =64000 streamlines per voxel and then visualised
using the following thresholds (from top) =0.050, 0.020, 0.010, 0.005,
0.002.(Right Panel) Tractography with ICE-T ROI, (generated using ICE-
Tstreams = 20, ICE-Tinreshold =0.01) used as seed, and then visualised at
the following thresholds (from top) =0.015, 0.012, 0.010, 0.005,
0.002.Green arrows indicate areas demonstrating “near-seed flare”.
Red arrows indicate premature termination of the tract ROl due to the
PLD effect causing the PICo values to fall below the applied threshold.
doi:10.1371/journal.pone.0096247.g005

0.015

Threshold

vs those from P2 and P3 (Figure 6, red arrows). Importantly,
however, the cross-sectional sizes of the longer tracts appear
consistent along their length, inferring an independence of the
results to path length.

However, deviations from expected results do occur around
complex regions. For example from the MC and SC seeds, false
positive contralateral projections towards the internal capsule are
observed, and when this is the case, they mirror completely the
ipsilateral tract network (green arrows, Figure 6). As could be
expected, the incorporation of just a portion of any false positive
branch leads its extraction up to a cortical region.

Tractography

The following compares the tractography results from the
original seed regions (SC, PFC and MC) with those derived from a
seed defined by the segmented tracts provided by ICE-T with an
ICE'Tthreshold of 0.005.

The tractography PICo values in Figure 7 show a substantial
drop in the area of the centrum semiovale, located at tract distance
of 40 voxels from the seed, and subsequently show a continuing
decrease towards the projection site, indicating the presence of
PLD. It is also apparent how the combined effect of PLD and
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anatomically-related obstacles impose a non-linear behaviour
upon the PICo values as a function of distance from the seed.
Although the linear compensation factor is initially able to correct
for distance after the seed region (approximate distance: 25-35
voxels), it is unable to compensate for the non-linear PLD effect
introduced in the centrum semiovale and the values on the distal
side remain low. In contrast, although the ICE-T results show
variations along the length of the canonical streamline, there is no
overall drop in Intra-Tract Confidence values related to such
underlying complex regions.

In-vivo human brain

Results from the application of ICE-T to the in vivo human
dataset are shown in Figure 8, using parameters within the same
range as those determined to be applicable to the ex vivo dataset
(CE-T greshora = 0.01 and ICE-Teams = 20). Tractography with-
out ICE-T employed the seed ROI, whereas that with ICE-T used
the ICE-T ROI; as seed. The ICE-T tracts show, as in the ex vivo
data, a uniform cross-sectional size along their length as a function
of threshold. In contrast, such features are not seen in the tracts
generated from probabilistic tractography without ICE-T due to
the effects of PLD, as was also observed in the ex vivo pig brain. A
possible false positive can be observed in the ICE-T results, seen as
a descending tract in the region of the contra lateral capsula
interna (red arrow, Figure 8). Just as in tractography, we can
explicitly remove false positives by using exclusive ROIs. After
placing an exclusive ROI (small dark yellow region in Figure 8)
contra-laterally, superior to the capsula interna region, the false
positive projection can be removed.

Figure 9 illustrates the impact of the seed region specificity and
size on the tractography results for the human in vivo data. The
global thresholds for these results were chosen so as to match the
segmented tracts for their distal propagation into the contralateral
ascending portion of the cortical spinal tract (CST). The top row
shows the results using the same cubic seed region as used in the
Figure 8 — a cubic area centred approximately over the left motor
cortex. The lower row shows the results using only a single voxel
seed, chosen from within the cubic seed. Whilst the ICE-T results
show minor impact of the choice of seed used, those of the
probabilistic tractography without ICE-T demonstrate several
differences (Figure 9). Firstly, with the cubic seed, the degree of
near-seed flare is substantially greater than that after ICE-T
(Figure 9(a) vs. 9(c). Note that the green seed region is enveloped
by the tract in 9(a) but not in 9(c)). Secondly, the PLD effect is
greater when using the single-voxel seed (Figure 9(a) vs. 9(d)).
Thirdly, the segmented tracts differ slightly in both shape and
extent for the two seed regions (Figure 9b). Using the cubic seed
produced a lateral cortical branch not seen for the single-voxel
seed (Figure 9(a)(b) vs. 9(d)(e), green arrows). In contrast, the single-
voxel seed produced an ipsilateral medial branch (Figure 9(d)(e),
red arrows) that appears to divert from the CST around the level
of the corpus callosum (Figure 9(d)(e), yellow arrows) and instead
follow the anterior thalamic radiation. Inferiorly, the descending
portion (Figure 9(d)(e), orange arrows) also appears to follow a
different route than the CST, before terminating prematurely.

Discussion

We have shown that PLD can arise as a non-linear effect
modulated by tissue complexity, and that some of the effects
imposed by PLD upon probabilistic tractography are the near-
seed flare (false positives), and reduced distal propagation (false
negatives), confounds which have been speculated to bias
structural connectivity analysis ([13], [30]). We have introduced
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Figure 6. Tractography with ICE-T from each of the three ROIs (MC, PFC and SC), for each pig brain (P1, P2, P3). Parameters: ICE-
Tstreams = 20, ICE-Tihreshola = 0.005, results rendered at 0.005. Data show the glass brain of the unweighted diffusion image as anatomical reference.
doi:10.1371/journal.pone.0096247.g006

The PLD confound
At present, the PLD confound is rarely addressed. Indeed, it is

the ICE-T Framework as a generalizable wrapper around existing
methods and demonstrated its ability to mollify the universal PLD

confounds in segmented tracts. The results presented herein
suggest that using methods such as ICE-T that address the PLD
confound will benefit the statistical robustness for a wide range of
group statistics, such as structural connectivity analysis and
advanced tract shape models

common for the threshold-level of probabilistic streamline
tractography experiments to either be left extremely low (giving
‘near-seed flare’ effects, as observed in Figure 5), or to select a
threshold which perceptually segments-out the tracts of interest.
Both approaches are subjective, and therefore obviate meta- or

group-analysis. As noted by [19], PLD imposed problems for the
delineation of the tracts of interest in their group study, and so to

 Tractography
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Figure 7. Comparison of along-tract profiles after tractography, with and without ICE-T, versus linear compensation. Curves show the
variation of PICo values (scaled to [0,1]) along the canonical streamline from the MC seed region (red dashed vertical line) on dataset P2 for
tractography with ICE-T (green), without ICE-T (blue), and tractography with linear compensation (orange). Right panel shows a zoomed portion of
the main graph, delineated by the purple dashed border, where both the tractography without ICE-T (blue) and tractography with linear
compensation (orange) are now drawn according to the scale on the right axis. Dataset details: ICE-T performed using ICE-Tgyeams =20, ICE-
Tthreshold = 0.005, number of ICE-T iterations until stability =41. Tractography without ICE-T was generated using 5000 streams per voxel. A drastic fall-
off in PICo values can be observed (green arrow) for tractography results without ICE-T soon after the streamlines exit the seed region due to their
encountering a complex region. No such effect is seen for the results with ICE-T. For a tract reference, see the 3D render of this tract in Figure 6, P2,
MC seed region.

doi:10.1371/journal.pone.0096247.g007
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Thresholded Tractography

ICE-T Segmentation

Figure 8. Comparison of thresholding tractography results,
obtained with and without ICE-T, in a human in vivo subject.
Both results are generated from a cubic seed (dark green) placed
approximately in the left MC region. Tractography without ICE-T used
the original cubic seed ROI as the seed (25,000 streamlines, blue, top
row). Tractography with ICE-T used the ICE-T ROI, as seed (ICE-Tynreshold
0.01, ICE-Tsyeams 20, purple, bottom row), shown here at various
rendering thresholds (0.02, 0.01, 0.005, 0.001).The path-length depen-
dency is very pronounced in the tractography results without ICE-T (top
row), evidenced by the movement of the end-of-tract point (green
arrows) as a function of the applied threshold. Probable false-positives
are seen in tractography both with and without ICE-T around the
descending portion of the contralateral CST (red arrows). These can be
addressed in the conventional manner by the introduction of exclusion
masks (dark green box and plane) that terminate and remove any
streamlines that propagate through them. Here two are shown for both
methods (last column) - one along the mid-sagittal plane and one in the
contralateral CST. The former is to prevent streamlines crossing
between the hemispheres at the cortical level dorsal to the corpus
callosum due to the high partial volume effect. The latter is to prevent
segmentation of a known false-positive branch of the contralateral CST.
doi:10.1371/journal.pone.0096247.g008

compensate, they found it necessary to employ several extra
heuristic constraints.

Linear propagation distance factors have previously been used
in an attempt to correct for the PLD effect [18], [17]. However, we
observed how anatomical complexities, e.g. centrum semiovale,
which cause barriers to streamline propagation, compounded the
PLD effect in a non-linear manner (Figure 7). We demonstrate
how linear compensation techniques cannot correct for the non-
linearity of the PLD effect, in contrast to ICE-T. The ICE-T
approach has the additional advantage of being independent of
the image resolution, unlike the PLD effect, which will increase
with the number of propagation steps (and thereby voxels),
required to reach the target. As such, the impact of PLD is likely to
increase as future studies permit the use of higher resolution
imaging techniques.

Benefits of the Iterative Process

In conventional tractography, the PLD imposes a limit upon
how far a streamline i1s likely to propagate away from a seed. As a
consequence, increasing the number of streamlines used cannot
improve the propagation performance [29]. In contrast, applica-
tion of ICE-T generates a delineation of the tract, thereby
iteratively distributing the seed voxels along its length. This has the
consequence that average streamline path-lengths will be dimin-
ished, thereby causing the distribution of false positives and
negatives along the length of the delineated tract to be more
uniform. Naturally, the decrease in distal false negatives also
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means a concurrent increase in distal false positives. Note that the
presence of distal false positives actually reflects the removal of
PLD, because such errors are most likely to occur where the
sampling of the uODFs is sufficient.

The tracking algorithm reported in [31], based upon Time-Of-
Arrival (TOA) maps, has some similarities to the iterative nature of
ICE-T, but was developed as a way to improve tracking
performance of streamlines that met with problematic regions
such as those containing crossing fibres. The procedure includes
an iterative region-growing step that is similar to the approach
presented herein, and although they did not report any such
findings, it too may show an improvement to the PLD effect.
However the approach cannot be generalized to existing
tractography methods.

Prior knowledge in the form of waypoints and exclusion ROIs
can be used with ICE-T to reduce the false positives as in
conventional tractography. Similarly, prior knowledge can be
applied to constrain the segmentation to specific fibre bundles
emanating from a seed. Furthermore, as shown in Figures 5 & 8,
the tracts generated by ICE-T have more uniform cross-sectional
areas along their entire length, and the extent of the cross-section
can be controlled by the global threshold parameter. Hence the
ICE-T tract volumes are suited for use as binary masks to generate
sample volumes (VOlIs) for tract-oriented statistics, e.g. [32].

Generalisability

It must be highlighted that probabilistic tractography with ICE-
T is not a new tracking algorithm per se, but a generic framework
applicable to most probabilistic streamlining methods. As such it is
able to benefit from their long-standing methodological develop-
ments, and their individual advantages and disadvantages.

ICE-T has a further benefit of generalizing the parameter
choice. Conventional tractography, besides the definition of a seed
region, requires the specification of the number of streamlines and
usually the global threshold, applied to the probabilistic results in
order to delineate the desired tracts. Aside from the seed region,
the parameters of the ICE-T Framework are ICE-T g, eshola and
ICE-Tiyeams, used to generate ICE-T_ROI;, along with the
subsequently-applied global threshold. The streamline parameter
has a different purpose in the two methods. In conventional
tractography, the number of streamlines is chosen heuristically in
an attempt to sufficiently sample the entire tract. Liptrot & Dyrby
[29] demonstrated how increasing the number of streamlines
(typically up to 5000) simply increased the voxelwise connectivity
probabilities, and so was unable to address the PLD. However
when using ICE-T, we have shown how far fewer streamlines are
required (approximately 20) - any more than this show minor
additional benefits and simply add to computational burden. This
is because at each iteration only the local tract environment needs
to be sufficiently sampled. The ICE-T,;eqn01q parameter controls
the minimal degree of connectivity confidence required that new
voxels must attain to be incorporated into the growing seed. We
have shown how choosing ICE-T j,esn01q at approximately 0.01
permits segmentation of the tract network. Selection of a too high
ICE-T reshoia hinders the growth of the seed region through
complex regions, e.g. centrum semiovale. In contrast, too low a
value of ICE-Treshola Will lead to growth of the seed region
outside of the relevant tract network. The exact choice of ICE-
T hreshola Will depend upon several factors, including acquisition
parameters (e.g. imaging sequence, resolution), but especially the
tractography method as well as the topology of the particular tract
network being analysed.

The tracking results obtained with ICE-T show wide agreement
with those obtained in [16] using in vivo tracers. However
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Figure 9. Tractography in a human in-vivo dataset, with and without ICE-T, showing dependency upon the size of the seed ROI. Top
row ((a), (b), (c)) shows the same results as for Figure 8, but from a posterior viewpoint. From this angle it is also clear how the tractography without
ICE-T using the cubic seed also generates a lateral cortical branch ((a), (b): green arrow). Inset on (a) shows lateral view from the right side,
highlighting the posteriorly-directed angle of the branch.Bottom row ((d), (e), (f)): tractography results from a single voxel seed within the left MC,
using the same parameters as for the cubic seed. As for the cubic seed, the rendering thresholds have been selected so as to generate comparable
propagation of the tractography into the contralateral ascending portion of the CST. In the tractography results without ICE-T ((a), (d)), the ipsilateral
descending portion follows a more medial route than the results using ICE-T ((c), (f)), as can be seen on the merged views ((b), (e)). Further inspection
of these results indicates that the streamlines diverge from the CST around the level of the ventricles and seem to instead pick-up a periventricular
route through the medial thalamic nuclei ((d), (e): yellow arrows). The streams then diverge, following a descending route close to the CST ((d), (e):
orange arrows), and a medial route along the anterior thalamic radiation ((d), (€): red arrows). The ICE-T results correctly follow the CST from both
seed areas.

doi:10.1371/journal.pone.0096247.9g009

omissions were also noted, for example the absence of the most of which will, by construction, lie within the ICE-T_ROI, i.e
corticonigral projections from the PFC region for datasets P2 and the segmented tract. However, this in turn means that it cannot be
P3 (Figure 6, red arrows). Although previous work [16] has used directly for network analysis as it does not reflect a probability
successfully delineated these tracts for this dataset using both in- of being connected to the seed, but instead it can be used as a
vivo tracers and tractography, the latter was achieved via the binarized version of the tract system emanating from the seed. The
application of waypoint constraints. This suggests that local latter is often used for creation of structural connectivity matrices.

complexities may have prematurely halted the tractography using
ICE-T, and that a reduction of the ICE-T\},;eshola may be needed Considerations

to permit successful penetration into the distal portion of the tracts. In tractography, streamlines are propagated in both directions
This underlines that external factors such as tractography method from the seed region. It should be noted, however, that the ICE-T
and dataset parameters (e.g. resolution, b-value) influence the method we have implemented here is based upon the Camino
selection of ICE-T threshold. However, we have shown how the toolbox and does not include directionality constraints applied to

parameters are generally transferrable to similar, ex vivo datasets each ICE-T_ROJ; region. This infers the possibility that the
(P1, P2, P3), and have also successfully applied it to an in vivo segmented tract network might reflect bi-directional pathways

clinical dataset. The ICE-T parameters are not expected to be along the entire delineated tract. If such behaviour is undesirable
generalizable across tractography methods or acquisition param- then a simple forwards-only directionality constraint could be
eters, however it is expected that they will also exhibit a stable applied at the end of each ICE-T iteration.
range. In future work we will investigate the effect of various When specifying the initial seed region, we expect that any
tractography methods upon the ICE-T parameters. subset of voxels within the region of interest could be employed.
A major difference between tractography with and without Due to the region-growing feature of the seed region when using
ICE-T is that while the latter outputs a PICo map based upon ICE-T, it is expected that the iterative region-growing will expand
tracking from a given seed region, ICE-T generates an Intra-Tract the seed to approximate the entire tract network. This same
Confidence map of all connections within the segmented tract. ~ argument would also imply that care must be taken to ensure that
Interpretation of the Intra-Tract Confidence map is therefore over-inclusive regions are not employed as seeds. For example, we
different from that of a PICo map. The direct interpretation of the found false-positive lateral branching only in the results using the
values has not been considered herein. However, since a PICo overly-large ROI when ICE-T is not applied (Figure 9a,b). This
map is a metric of streamline propagation from a seed region, it is suggests that the imprecise delineation of an ROI (too large) could
affected by tract integrity, but is not a direct measure of it. In be a source of false positives in tractography, whereas ICE-T
contrast, the Intra-Tract Confidence map from ICE-T is a metric appears to be more robust to the precision of the ROL. In addition,
that reflects the sum of connections from every member voxel, as was clearly demonstrated in Figure 9f, a major advantage of the
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ICE-T method is the ability to segment a tract network using only
a subset, even a single voxel, of the seed region of interest.
Uniquely, using ICE-T with such a subset does not result in a
penalty of increased PLD, and it is still able to segment out the
same network as a much larger seed. This has obvious benefits for
future clinical studies where accurate delineation of anatomical
areas of interest to act as seed regions could be obviated and
replaced by a selection of a single voxel within the known region.
Such an approach is likely to be simpler and more reproducible as
the margin for error will be a function of the region’s size, and the
selection could occur in those subregions where the confidence of
correct localisation is highest.

Conclusions

The impact of PLD on the results of probabilistic streamline
tractography is a confound which should be considered. We have
shown the non-linear spatial variation of PLD along any given
pathway, challenging the application of a global threshold and
mntroducing both false positives (near-seed flare) and false negatives
(premature tract termination). We have shown how a novel re-
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appraisal of the probabilistic streamline tractography pipeline,
termed ICE-T Framework (ICE-T), offers the possibility to
segment tract systems without the problems imposed by PLD.
With ICE-T, PLD issues are substantially reduced to the point
where tract networks can be delineated using a global threshold,
leading to a reduction in the PLD-related confounds. Importantly,
ICE-T only addresses the PLD issue, and preserves all the
characteristics of the individual tractography methods. It is
recommended that future work should consider handling PLD
in order to minimise the risk of bias in tract statistics and structural
network analysis.
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