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Abstract

Life on Earth is capable of growing from temperatures well below freezing to above the boiling point of water, with some
organisms preferring cooler and others hotter conditions. The growth rate of each organism ultimately depends on its
intracellular chemical reactions. Here we show that a thermodynamic model based on a single, rate-limiting, enzyme-
catalysed reaction accurately describes population growth rates in 230 diverse strains of unicellular and multicellular
organisms. Collectively these represent all three domains of life, ranging from psychrophilic to hyperthermophilic, and
including the highest temperature so far observed for growth (1220C). The results provide credible estimates of
thermodynamic properties of proteins and obtain, purely from organism intrinsic growth rate data, relationships between
parameters previously identified experimentally, thus bridging a gap between biochemistry and whole organism biology.
We find that growth rates of both unicellular and multicellular life forms can be described by the same temperature
dependence model. The model results provide strong support for a single highly-conserved reaction present in the last
universal common ancestor (LUCA). This is remarkable in that it means that the growth rate dependence on temperature of
unicellular and multicellular life forms that evolved over geological time spans can be explained by the same model.
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Introduction

Temperature governs the rate of chemical reactions including

those enzymic processes controlling the development of life on

Earth from individual cells to complex populations and spanning

temperatures from well below freezing to above the boiling point

of water [1]. The growth rates of unicellular and multicellular

organisms depend on numerous processes and steps, but all are in

principle limited by enzymic reactions [2]. This realization

provides a link that bridges the gap between biochemistry and

whole organism biology. By using the assumption of a single rate-

limiting reaction step we show that we can describe the growth

rate of diverse poikilothermic life forms. The temperature-

dependent growth curves of poikilothermic organisms across their

biokinetic ranges have a characteristic shape that may appear

superficially to be U-shaped, but attentive examination shows

them to be more complex. The history of previous approaches to

describing these curves is extensive [3–6]. We use a model to

describe the effect of temperature on biological systems that

assumes a single, rate-limiting, enzyme-catalyzed reaction using an

Arrhenius form that also allows for protein denaturation. The

relative success of microbial strains within populations has been

shown to be critically dependent on protein denaturation [7].

Earlier we presented such a model and fitted it to 95 strains of

microbes [8]. In this work in addition to data on microorganisms,

we also include data on the intrinsic growth rates for insects and

acari obtained from life table analysis and find that these

multicellular strains are also well described by the model. In total,

we model 230 datasets (called strains herein) that cover a

temperature range of 1240C. Notable amongst the modeled

strains is the inclusion of hyperthermophiles active at the highest

temperatures so far known for biological growth (1210C [9], 1220C

[10]). The lowest temperature modeled was 220C, below which

growth rates cannot be reliably compared due to ice formation

and the zone of thermal arrest. In this paper we address biological

implications and results arising from examination of much more

extensive data than previously used [8] and by grouping strains by

their thermal optima rather than by taxonomy.

In essence, we model the growth rates of strains by assuming

each strain is rate-limited by a single common enzyme which

becomes denatured both at sufficiently high and at sufficiently low

temperatures. The model uses growth rate data directly rather

than modeling protein function. The model structure and

definitions of the parameters are described in detail in the

Materials and Methods. Briefly, we model the intrinsic growth

rates for each strain (r) by using a function (equation 1) that

describes a single, rate-limiting, enzyme-catalyzed reaction. The

numerator of equation 1 has an Arrhenius form [11,12], and the

denominator describes the temperature-dependent denaturation

of that enzyme. It requires eight parameters, four of which are

assumed common to all life and are therefore held fixed (viz. the

change in enthalpy and entropy for protein unfolding DH?, DS?,

with associated convergence temperatures T?
H , T?

S , respectively),

and four additional parameters for each strain that are associated

with a rate-limiting enzyme (viz. scaling constant c; enthalpy of

activation DH
{
A; heat capacity change on denaturation DCP;

number of amino acid residues n). The model is fitted using a
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Bayesian hierarchical modeling approach that allows all data to be

simultaneously considered and estimates obtained in a single run.

Results and Discussion

We examined several alternative model structures that classified

strains either: I) with all strains in a single group; II) into

taxonomically defined groups that correspond to the three

domains of life [13]: Bacteria, Archaea, or Eukarya; III)

taxonomically, but allowing for multicellularity: Bacteria, Archaea,

unicellular Eukarya, or multicellular Eukarya; IV) into thermal

groups: psychrophiles, mesophiles, thermophiles, or hyperthermo-

philes; V) into thermal groups, except for fungi: psychrophiles,

mesophiles, fungal mesophiles, thermophiles, or hyperthermo-

philes. Using a Bayes factor [14] approach we determined that the

best performing model grouped the strains by thermal group,

except for fungi, which were put into a separate group (model V).

This model performed better than model IV, which combined the

unicellular mesophilic fungal (Ascomycota) strains with the

multicellular mesophilic taxa that included insects and acari.

Parameter estimates for the universal and thermal group

parameters are given in Tables 1 and 2, respectively. Detailed

parameter estimates for all strains are given in Table S1. The

estimates obtained here extend those provided by earlier analyzes

[8] in their breadth and especially in their improved precision due

to the much larger data set. In particular, the two convergence

temperatures (universal parameters) are now estimated to within

1.0 and 1.4 degrees, respectively.

Model fit
The fits for all 230 strains are shown in Figure 1–7 and are

excellent for almost all strains even including those with few data,

and across the large temperature range spanned by the data sets.

For example, strains 12 and 13 grew at temperatures as low as

280K while strains 17 and 18 grew at temperatures in excess of

390K.

Thermodynamic relationships
The probability of the native (catalytically active) state for the

thermal groups is shown in Figure 8A; we refer to the latter as

native state curves [15] since they represent the proportion of the

rate-controlling enzyme that is in the native conformation. The

curves for the probability of the native state have lower peaks for

psychrophiles, mesophiles, and Ascomycota, and the curves are

taller and progressively flattened for thermophiles and hyperther-

mophiles. The higher and flatter peaks for the thermophiles and

hyperthermophiles suggests protein stability over an increasingly

extended temperature range. The lower peak levels for the lower

temperature groups might be interpreted as reduced stability for

psychrophile [16] and Ascomycota proteins [17]. The psychro-

phile native state curve is also shifted to the left of the other groups,

which are all approximately aligned at the same lower temper-

ature (&275K). The deviation of the psychrophiles below the

other groups suggests that a mechanistic difference has evolved

separating psychrophiles from the other groups.

The native state peak of each curve occurs at Tmes which is

functionally dependent on DCP (Table 3). Also in Table 3, Topt,

the temperature of maximal growth rate, tracks very closely the

upper end of the native state curve so that the temperature

difference between Topt and the upper temperature of 50%

stability (TU ) is very small for all groups, ranging from 2.50 for

mesophiles to 4.20 for fungal mesophiles. In contrast is the

difference between Topt and the lower limit of the native state (TL)

Table 1. Posterior universal parameter estimates.

Parameter Mean 99% HPDI

Enthalpy change (J/mol amino acid residue), DH? 4874 (4846, 4913)

Entropy change (J/K), DS? 17.0 (16.9, 17.1)

Convergence temperature for enthalpy (K), T?
H 375.5 (375.1, 376.1)

Convergence temperature for entropy (K), T?
S 390.9 (390.3, 391.7)

Shown are the posterior means with 99% HPDI in parentheses.
doi:10.1371/journal.pone.0096100.t001

Table 2. Posterior estimates of thermal group parameters.

Thermal group DH
{
A

a DCP
b nc

Psychrophiles 48.6 (29.3, 59.8) 49.7 (46.5, 52.5) 388 (267, 531)

Mesophiles 75.3 (72.6, 79.1) 59.9 (59.6, 60.2) 422 (388, 457)

Ascomycota 39.7 (37.2, 42.0) 61.7 (61.5, 62.0) 340 (323, 356)

Thermophiles 71.3 (65.9, 77.6) 71.4 (70.0, 72.7) 180 (156, 205)

Hyperthermophiles 96.0 (79.7, 123.8) 96.9 (92.1, 102.8) 101 (66, 144)

aEnthalpy of activation (J/mol).
bHeat capacity change (J/K mol-amino acid-residue).
cNumber of amino acid residues.
Shown are the posterior means with 99% HPDI in parentheses.
doi:10.1371/journal.pone.0096100.t002

Protein Thermodynamics from Biological Growth Rates

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e96100



which increases from a modest 230C for psychrophiles but reaches

as high as 830C for hyperthermophiles. Last, the difference of

Topt{Tmes is virtually a constant for psychrophiles, mesophiles,

fungal mesophiles (100–110), but dramatically increases for

thermophiles (230) and hyperthermophiles (440; Figure 8B). These

observations suggest that as the enzymes adapted to withstand

higher and higher temperatures, their optimal thermal activity did

not lag far behind, and they lost little of their ability to function at

lower temperatures.

We show in Figure 9A that the enthalpy of activation (DH
{
A) and

in Figure 9B the heat capacity change (DCP) both generally

increase with optimal temperature (Topt). We can consider DH
{
A as

relating to enzyme activity and DCP as relating to enzyme stability

[18] as well as hydrophobicity of the putative rate-controlling

enzyme [19]. The DH
{
A is smallest for Ascomycota followed by an

increasing trend: psychrophiles, mesophiles/thermophiles, and

then hyperthermophiles. The Metabolic Theory of Ecology [20],

which describes metabolism and other biological processes in

terms of an Arrhenius temperature dependence, explicitly assumes

a constant enthalpy of activation (where it is called ‘activation

energy’), although other work implies that it may not be invariant

[21]. Our results indicate that for the majority of strains in our

data, which are mesophiles and thermophiles, the enthalpy of

activation is roughly constant with only a minimal increasing trend

in these groups with increasing Topt, but for a broader range of

strains the spread in the enthalpy of activation is much larger.

In the case of the Ascomycota, all strains considered were

mesophilic and were consistent with some [17,22–24], but not all

[25], experimental data. As a check we calculated a separate

analysis of data for another Ascomycota species. We fitted the

thermodynamic model (equation 1) to growth rate data not used in

the Bayesian model for the Ascomycota species Aspergillus candidus

[26] using PROC NLIN from the SAS System, version 9.2. This

was the same method used previously [15] and required several

parameters to be held constant to achieve convergence. We fixed

DS?~17:0, T?
H~375:5, T?

S~390:9 (these being the best estimates

that we now have from the Bayesian runs). We obtained the

following estimates for the remaining five free parameters:

numerator constant c~5:087, enthalpy of activation

DH
{
A~28,627, unfolding heat capacity change DCP~62:19,

Figure 1. Fitted curves for strains 1–36.
doi:10.1371/journal.pone.0096100.g001
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enthalpy change at the convergence temperature DH?~4,872
and number of amino acid residues n~617:6. We note that the

enthalpy of activation is very low, even lower than the values we

have been getting for yeasts. The enthalpy change at the

convergence temperature (4,872) is very close to the mean value

estimated from the Bayesian run for that parameter, viz. 4,874.

The n value of 617.6 is higher than the mean value obtained for

that parameter from the Bayesian run for psychrophiles (388) and

for yeasts (340), but we expect the value to be higher at the low

temperature adaptation end of the temperature scale than at the

thermophilic end of the adaptation scale, and that is the case. The

heat capacity change for folding/unfolding of 62.2 is very close to

that obtained for yeasts in this study.

The fungal proteins associated with the particular strains used in

the Bayesian model may have low enthalpies of activation and,

due to an inherent instability of yeast prion-type proteins, like

psychrophilic proteins, are assisted by chaperones and chaper-

onins. Interestingly, their instability led to some workers suggesting

that they are potentiators and facilitators of evolution [27]. In the

case of the psychrophiles and hyperthermophiles, the apparent

deviation of enthalpy of activation (DH
{
A; Figure 9A) below and

above the mesophiles and thermophiles suggests the possibility that

the rate-limiting reaction has been subject to adaptation for their

respective environments.

In Figure 9C we predict that the number of amino acid residues

(n) declines with the optimal temperature for growth (Topt). A

negative correlation of protein length and optimal growth

temperature has been reported [28,29]. In Figure 9D the average

number of non-polar residues per amino acid residue (Nch) is

predicted by the model to increase with optimal temperature

(Topt), as has been observed experimentally for psychrophilic

Archaea [16]. This is consistent with the observation that the more

thermophilic proteins of Archaea have a greater hydrophobicity

compared to mesophilic homologues [30,31].

As noted above, we observed a trend in increasing DCP from

psychrophiles to mesophiles (including Ascomycota) to thermo-

philes to hyperthermophiles. Also, there appears to be a negative

correlation between DCP (per amino acid residue) and n
(Figure 9B, 9C)), illustrating that the relationship of these

parameters can be complicated when examined with organism-

level data. In Figure 10 we show that DCP appears to decline as n
increases, but after partitioning the data into successive intervals of

Figure 2. Fitted curves for strains 37–72.
doi:10.1371/journal.pone.0096100.g002
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Nch we see that within each interval they have a positive

relationship. In Figure 10 we also show Graziano et al’s predicted

relationship [32] as a visual guide, DCP~{46z

30(1{1:54n{0:268)Nch. The interpretation is that thermophilic

proteins are more hydrophobic (larger Nch) and that as Topt

increases, the DCP, which is determined by the reorganization of

water molecules around the polar and non-polar groups of the

protein following denaturation, increases more rapidly as n, an

index of the size of the protein, increases. This relationship is

determined by the ratio of the buried and exposed surface of the

proteins to avoid a close-packed core inaccessible to water

molecules [32]. The total heat capacity change for the protein,

given by n|DCP, is shown in Figure 11 to decrease with Topt.

This is consistent with previously suggested mechanisms for

stabilizing thermophilic proteins [33,34].

Stability-activity tradeoffs
Low temperature environments are constrained by low thermal

energies and accordingly psychrophilic proteins have low enthal-

pies of activation, allowing biologically useful rates to be obtained

at low temperatures. In the case of hyperthermophiles the

environment is more demanding and therefore more stable

proteins are predicted. These unfold more slowly [33] perhaps

as a result of greater hydrophobicity [35] and an increased

number of salt bridges [36], and also tend to be more highly

expressed [37]. Many proteins also rely on assistance from

molecular chaperones including the heat shock family of proteins,

or the more complex structures known as chaperonins, to

encourage correct protein folding and to rescue and repair

misfolded proteins [38]. It is thought that proteins are maintained

by evolution to be only as stable as needed for their environment

[39,40], though their active centers are optimized to be maximally

active at different temperatures [41].

Thermophilic proteins tend to be more stable against unfolding

than their mesophilic equivalents [37]. Stability is achieved by an

increase in enthalpic forces at higher temperatures while at lower

temperatures proteins are more flexible becoming dependent on

entropic forces [16,36,37]. At very low temperatures psychrophilic

proteins are more flexible and less stable [18], also depending on

chaperones, but to control cold denaturation [42]. It has been

suggested that the balance of stability and activity arising from

Figure 3. Fitted curves for strains 73–108.
doi:10.1371/journal.pone.0096100.g003
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entropic and enthalpic forces is important for protein function

[43], while in evolution, it is stability that is conserved [44].

Hyperthermophilic proteins are more slowly evolving than their

mesophilic equivalents [31,37] presumably because mutations in

thermophilic proteins would have more deleterious impacts [45]

and would not be perpetuated.

Hyperthermophilic proteins can be less kinetically sensitive to

temperature [46], an effect congruent to that described here. A

notable example is serum albumin, which is promiscuously

catalytic, stable up to 1500C, and is largely homologous within

vertebrates [47]. In other words, the more robust enzymes in

thermophiles and hyperthermophiles are stabilized over a broader

temperature range than in mesophiles and psychrophiles. While

we obtain this effect from modeling organism intrinsic growth

data, it is found in protein denaturation curves of individual

proteins. For example, denaturation curves of phosphoglycerate

kinases from the thermophilic bacterium, Thermus thermophilus, have

been found to be almost flat over a 600C range whereas those from

yeasts were strongly temperature-dependent [48]. The trimeric

protein CutA1 from the hyperthermophile Pyrococcus horikoshii [49]

is more stable at all temperatures above 00C than its thermophilic

and mesophilic equivalents. The CutA1 protein is universally

distributed in bacteria, plants and animals [50]. We suggest that

there may be many other hyperthermophilic proteins still to be

found in organisms with lower temperature optima.

Unicellularity and multicellularity
The model fits unicellular specific growth rates [51] and

intrinsic growth rates in the case of multicellular organisms derived

by life table analysis [52]. The two rates are comparable since both

describe the maximum growth rate after allowing for the mortality

rate. We refer to them both as growth rates. A distinction between

them is that the growth rate of multicellular organisms results from

a more complicated sequence of events. However, the proportion

of the time spent in particular developmental stages, such as pupa

in insects and nymphs in mites, does not change with temperature

since they depend equally on the temperature dependence of cell

division [53]. In addition, within multicellular metazoan organ-

isms there are control cells (thermosensory neurones) that are

specialized in sensing heat shock and act to trigger an orchestrated

hierarchical response to temperature change throughout the

organism [54]. The remarkable implication of the excellent model

Figure 4. Fitted curves for strains 109–144.
doi:10.1371/journal.pone.0096100.g004
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fits is that the rate of biological growth at a given temperature,

considered as a proportion of the maximum possible rate for a

strain, whether in unicellular or multicellular organisms, is

ultimately limited by the thermodynamics of enzyme reactions.

The nature of the rate-limiting reaction
While the model performs excellently, both in terms of its

general consistency with protein biochemistry and in the good fits

obtained, some predictions do not fully agree with thermodynamic

expectations and there exists the possibility that the underlying

mechanism may be more complex than a single, rate-limiting,

enzyme-catalyzed reaction. Nevertheless, the model underlines the

importance of thermodynamics in biological processes especially

those relating to the interaction between proteins and water

molecules, which in turn may depend on the properties of water

itself [55]. But if it does take the form of a single reaction then we

can speculate on its nature. A mechanism by which cells control

denaturation may be suggested by consideration of protein

chaperones. Some examples are DnaK (Hsp70) and DnaJ

(Hsp40) and the bacterial chaperonins GroEL and GroES [56].

Such systems act during de novo folding and to refold unfolded

substrate proteins [38]. They are triggered by the inflated

exposure of hydrophobic groups in the unfolded proteins [38].

GroEL and GroES function together to create an Anfinsen

hydrophilic cage containing charged residues that accumulate

ordered water molecules, causing the substrate protein to bury its

hydrophobic residues and refold into its native state [56,57]. The

rate at which the GroEL and GroES function proceeds is

controlled by ATP hydrolysis [58]. If heat shock proteins represent

the rate-limiting step, the rate at which they function must be the

critical factor. Those chaperones that are responsible for de novo

folding and refolding are ATP-dependent [56]. Expression of

important chaperones (GroEL, GroEL, GrpE, DnaK) seem to

become silent as bacterial cells die from sudden thermal stress [59].

Therefore, we hypothesize that the rate-limiting may be linked to a

process leading to or directly linked to protein folding. The

modeled value of n varies 4-fold (Table 2) suggesting the reaction

could take different forms in different strains linked to their

temperature preference. Reactions potentially include a range of

important enzymes either enacting or supporting protein folding

with denaturation of the reaction leading to inhibition of the broad

protein folding process. Possible examples include trigger factor

Figure 5. Fitted curves for strains 145–180.
doi:10.1371/journal.pone.0096100.g005
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[60], peptidylprolyl isomerases (the slow step in protein folding)

[61], protein disaggregation [62] and maintenance of ATP

availability to the folding system [63,64].

Notably, we find that the predicted temperature of maximum

protein activity increases with optimal temperature but at a lesser

rate (Table 3). The pattern implies that the range of thermal

activity for the rate-controlling step in hyperthermophiles has a

much larger potential range than in thermophiles, and these in

turn larger than in mesophiles. We propose that the remarkable

occurrence of thermophilic proteins such as serum albumin and

CutA1 in non-thermophilic organisms may be examples of such a

phenomenon. The model provides strong support for a single

reaction system common to all life and, therefore, must have been

strongly conserved since the time of the last universal common

ancestor (LUCA). The question of a hyperthermophilic LUCA

remains unresolved [65–70] and while we do not speculate on the

LUCA’s nature, the suggestion of a metabolic commonality in the

form of a highly conserved rate-limiting reaction may prompt

further considerations on this issue.

Conclusions

1. Our focus has shifted away from domains, and towards thermal

adaptation groups to which all life belongs, as it is adaptation to

temperature, and not taxonomy, that is the factor of

importance in explaining the variation among data sets.

2. Significantly, these results are obtained without any use of

protein data, but only by growth rate data from unicellular and

multicellular organisms, thereby bridging the gap between

biochemistry and whole organism biology.

3. Using growth rate data that describe how quickly unicellular or

multicellular populations grow under non-limiting conditions,

we obtain estimates of thermodynamic parameters for protein

denaturation consistent with the published literature on the

physiology of organisms.

4. With this approach, we can now obtain relationships between

these thermodynamic parameters that were previously identi-

fied from protein chemistry experiments.

5. As we now have a universal model that fits population growth

data for organisms that can be prokaryotic or eukaryotic, as

Figure 6. Fitted curves for strains 181–216.
doi:10.1371/journal.pone.0096100.g006
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well as unicellular or multicellular, the organisms thermal

adaptation position (i.e. whether it is a psychrophile, mesophile,

thermophile or hyperthermophile) and, if a mesophile, whether

it is single-celled or multi-celled, is sufficient to predict reliably

its relative rate response to temperature.

6. We also advance the modeling approach by updating the

universal parameters using adaptive direction sampling instead

of Metropolis-coupled MCMC that we previously used [8],

resulting in a greatly reduced run-time that will make further

model development much more feasible.

7. We find it remarkable that unicellular and multicellular life

forms that evolved over at least 3 billion years can be described

by the same temperature dependence model.

Methods

Data
The data summarized in Table S1 comprised 3,289 records of

intrinsic growth rates (or rates of metabolism in some cases) of 230

strains from 31 Bacteria, 20 Archaea, and 77 Eukarya species.

They covered a temperature range of 271.2–395.3K (21.95–

122.150C). They included 10 psychrophiles (e.g. Gelidibacter sp.),

157 mesophiles (e.g. Escherichia coli), 43 mesophilic fungi (Ascomy-

cota; e.g. Monascus ruber), 14 thermophiles (e.g. Acidianus brierleyi),

and 6 hyperthermophiles (e.g. Methanopyrus kandleri). The thermal

groups are defined below. Not all domains of life were represented

in all thermal groups; Eukarya, in particular, is thought to have an

upper limit of 600C [71]. The organisms are very diverse and

include acidophiles (e.g. Ferroplasma acidiphilum), halophiles (e.g.

Haloarcula vallismortis), haloalkaliphiles (e.g. Natronococcus occultus), an

alga (Chlorella pyrenoidosa), as well as multicellular organisms

including insects (e.g. Clavigralla tomentosicollis), acari (e.g. Amblyseius

womersleyi), and a collembola (Paronychiurus kimi).

Model structure
Below, we refer to the observed growth rate as r and the

modeled growth rate as F . The model shown in equation 1 below

assumes that the growth rate is governed by a single, enzyme-

catalyzed reaction system that is limiting under all conditions. In

the equation the quantity F is the predicted rate given the

temperature and the values of the parameters. The numerator

(T exp (c{DH
{
A=RT)) is essentially an Arrhenius model that

describes the rate of the putative enzyme-catalyzed rate-control-

ling reaction (RCR) as a function of temperature while the

denominator models the change in expected rate due to the effects

of temperature on the conformation and, hence, catalytic activity

of the putative enzyme catalyzing that reaction.

F~

T exp c{
DH

{
A

RT

 !

1z exp {n

DH?{TDS?zDCP T{T?
H{T log

T

T?
S

� �� �
RT

0
BB@

1
CCA
ð1Þ

In equation 1: R is the gas constant (8.314 J/K mol); c is a

scaling constant; DH
{
A is the enthalpy of activation (J/mol); T is

the temperature in degrees Kelvin; DCP is the heat capacity

change (J/K mol-amino acid-residue) upon denaturation of the

RCR; n is the number of amino acid residues; DH? is the enthalpy

change (J/mol amino acid residue) at T?
H , the convergence

temperature for enthalpy (K) of protein unfolding; DS? is the

entropy change (J/K) at T?
S , the convergence temperature for

entropy (K) of protein unfolding.

We derive several further quantities. One is the average number

of non-polar hydrogen atoms per amino acid residue [32]:

Nch~(DCPz46)=(30(1{1:54n{0:268)). Another is Tmes, the

temperature at which denaturation is minimized [15]. This

temperature provides an index of temperature adaptation of the

organism and was calculated as Tmes~T?
H{DH?=DCP. Last,

there is the optimal temperature for growth, Topt, which was

calculated numerically from the fitted growth rate curves.

Figure 7. Fitted curves for strains 217–230.
doi:10.1371/journal.pone.0096100.g007
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We allowed four parameters to have values specific to each

strain: (c,DH
{
A,n,DCP). We assumed the strain parameters to be

Gaussian distributed with means specific to their grouping within

the model. We constructed alternative groupings of the strain

parameters, which we labeled: I, II, III, IV, and V. For model I we

only used a single group to which all the strains belonged. In

model II we allocated the strains to one of the taxonomic domains

Bacteria, Archaea, or Eukarya. Model III was the same as model

Figure 8. Probability of native state curves and portions of strain fitted curves between Topt and Tmes. A: probability of native state
curves for the thermal groups showing the flat-topped curves for the hyperthermophiles, reduced peak maximas for psychrophiles and Ascomycota,
common lower temperature limit for the mesophiles, thermophiles, and hyperthermophiles, and displacement of the psychrophile curve to lower
temperatures than the other domains. B: the portions of the fitted growth curves for all strains between Topt and Tmes showing a trend for a broader
gap in the more thermophilic strains. The plot uses a logarithmic scale on the vertical axis and the reciprocal of the temperature on the bottom
horizontal axis.
doi:10.1371/journal.pone.0096100.g008

Table 3. Means of derived parameters.

Thermal group Nch
a Tmes

b Topt
c TL

d TU
e TU {Topt Topt{TL Topt{Tmes

Psychrophiles 4.64 277 288 265 291 2.7 23 11

Mesophiles 5.08 294 305 283 307 2.5 23 11

Ascomycota 5.3 296 306 283 310 4.2 23 10

Thermophiles 6.35 307 330 285 332 2.5 45 23

Hyperthermophiles 8.64 325 369 286 372 2.4 83 44

aAverage number of non-polar hydrogen atoms per amino acid residue.
bTemperature at which denaturation is minimized (K).
cTemperature at which growth is maximized (K).
dThe lower temperature at which the putative rate-controlling enzyme is 50% denatured (K).
eThe upper temperature at which the putative rate-controlling enzyme is 50% denatured (K).
doi:10.1371/journal.pone.0096100.t003
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II except that we split Eukarya into unicellular and multicellular

groups. Model IV grouped strains according to the four thermal

groups given below, but ignored the taxonomic domains to which

the strains belonged. Allocation to the thermal group followed an

initial model fit from which we obtained estimates of Topt. The

strains were then allocated into the thermal groups as follows:

psychrophile: Toptƒ170C; mesophile: 170CvToptƒ450C; ther-

mophile: 450CvToptƒ800C; hyperthermophile: Toptw800C.

Model V was the same as model IV but included an additional

group for the Ascomycota since exploratory work indicated they

may differ from the other groups.

The remaining parameters (DH?,T?
H ,DS?,T?

S ) described protein

thermal stability limits [72–74] and were not expected to depend

on the individual biochemistry of each strain. Indeed, our earlier

study [8] and exploratory work supported this conclusion.

Accordingly, in the model structure, these values were assumed

common to all strains. We refer to these as universal parameters.

To control the variance homogeneity we worked on the square

root scale [75–77]. We assumed that the square root of the

observed growth rate had a Gaussian distribution with a mean

given by the square root of the modeled value,
ffiffiffiffi
F
p

, and with an

unknown precision (reciprocal variance),
ffiffi
r
p

*N(
ffiffiffiffi
F
p

,t).

The data were standardized for each strain by dividing by the

maximum rate for each strain so that all the standardized rates

were in the range ½0,1�. This ensured that the rates were not size-

dependent. A subsequent standardization was conducted following

an initial model fit by dividing the observed data for each strain by

the fitted maximum rate for that strain. These model-scaled data

were then used in subsequent analyzes. This procedure meant that

the influence of the c parameter was effectively removed from the

model.

Implementation
We used a Bayesian approach to allow for uncertainty in

measurement and parameters to be incorporated in a natural way

Figure 9. Relationships between thermodynamic parameters and Topt. A: enthalpy of activation (DH
{
A) versus Topt. B: heat capacity change

(DCP) versus Topt. C: number of amino acid residues (n) versus Topt. D: average number of non-polar hydrogen atoms per amino acid residue (Nch)
versus Topt.
doi:10.1371/journal.pone.0096100.g009
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through the appropriate prior specification. We assigned normal

priors to the strain parameters in which the means were specific to

the taxonomic group for models I, II, and III, or thermal group for

models IV and V: hj*N hd(j), exp (th)
� �

, in which d(j) is the

taxonomic or thermal group for strain j. The exp (th) is the strain

precision and models the variation between the strain parameters

about the hd(j) parameters. The taxonomic and thermal group

means and the th were assigned uniform priors with limits

informed by the biochemistry literature with the exception of c

which was assigned a vague prior. The universal, thermal group

and taxonomic group parameters were each assigned a uniform

prior with limits informed by the biochemistry literature. Finally,

the observational precision was assigned a gamma distribution,

t* (0:001,0:001). Prior specifications are documented in

Table 4. Inference was obtained in the form of posterior means

and variances using Markov Chain Monte Carlo (MCMC)

simulation [78]. We chose to update the parameters of each

strain as a block using Haario updates [79]. We also used Haario

updates for each set of taxonomic or thermal group mean

parameters and the strain parameter precisions. For the universal

parameters we used adaptive direction sampling [80] combined

with a low probability stepping-stone proposal [81]. This resulted

in a much reduced run-time compared to previous work [8]. The

models were run for 1,000,000 iterations and the last 50% of

iterations retained for further analysis. We compared the models

using Bayes factors [14] obtained using a pseudo-prior approach

[82]. There was a clear separation between the five models with

model V being preferred over the other four models with Bayes

factors of: 1.0e9, 7.0e7, 9.1e2, and 9.9e4. We therefore continued

only with model V. We summarized parameters using posterior

means, standard deviations, and 99% highest posterior density

intervals (HPDI). A 99% HPDI is the shortest interval that

contains a parameter with 99% probability.

Figure 10. Relationship between thermodynamic parameter values DCP, n and Nch. Shown is DCP versus n for all strains after partitioning
the data into intervals based on Nch . Each resulting set is indicated by different symbols and color shading, and for each Graziano et al’s predicted
relationship [32] is plotted with the mean Nch as labeled. Also shown is the Tmes (on the right-hand axis) corresponding to the DCP on the left-hand axis.
doi:10.1371/journal.pone.0096100.g010
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Table 4. Priors for model parameters.

Parameter (with supporting literature references) Priors

Scaling constant cj* N cd(j), exp tcð Þ
� �

cd* Unif {70,70ð Þ
tc* Unif {6:4537,{0:9085ð Þ

Enthalpy of activation [4,83–92] DH
{
A * N DH

{
A , exp t

DH
{
A

� �� �
DH

{
A * Unif 0:01,200000ð Þ

t
DH

{
A

* Unif {21:9926,{16:4474ð Þ

Heat capacity change [93,94] DCP * N DCP , exp tDCP
ð Þð Þ

DCP * Unif 37,118ð Þ
tDCP

* Unif {6:8289,{1:2837ð Þ

Number of amino acid residues [95,96] nj* N nd(j) , exp tnð Þ
� �

nd* Unif 1,20000ð Þ
tn* Unif {13:3692,{7:8240ð Þ

Enthalpy change at convergence temperature [97] DH?*Unif 3000,7000ð Þ
Entropy change at convergence temperature [97] DS?*Unif 10,30ð Þ
Convergence temperature for enthalpy [94,97,98] T?

H*Unif 320,420ð Þ

Convergence temperature for entropy [97] T?
S*Unif 320,420ð Þ

Shown are the prior distributions which are either Gaussian or uniform distributions. The parameters of the Gaussian distributions are their means and precisions
(reciprocal variances). Strain level parameters are subscripted by j, taxonomic or thermal group parameters by d , and membership of strain j in group d by d(j).
doi:10.1371/journal.pone.0096100.t004

Figure 11. Total heat capacity change versus Topt. Shown is the total heat capacity change (n|DCP) versus Topt. Colors and symbols are:
psychrophiles: dark blue circles; Ascomycota: green diamonds; mesophiles: light blue squares; thermophiles: orange triangles; hyperthermophiles: red
inverted triangles.
doi:10.1371/journal.pone.0096100.g011
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