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Viral RNA dependent polymerases (VRdPs) are present in all RNA viruses; unfortunately, their sequence similarity is too low
for phylogenetic studies. Nevertheless, vRdP protein structures are remarkably conserved. In this study, we used the
structural similarity of vRdPs to reconstruct their evolutionary history. The major strength of this work is in unifying
sequence and structural data into a single quantitative phylogenetic analysis, using powerful a Bayesian approach. The
resulting phylogram of vRdPs demonstrates that RNA-dependent DNA polymerases (RADPs) of viruses within Retroviridae
family cluster in a clearly separated group of vRdPs, while RNA-dependent RNA polymerases (RARPs) of dsRNA and +ssRNA
viruses are mixed together. This evidence supports the hypothesis that RARPs replicating +ssRNA viruses evolved multiple
times from RdRPs replicating +dsRNA viruses, and vice versa. Moreover, our phylogram may be presented as a scheme for
RNA virus evolution. The results are in concordance with the actual concept of RNA virus evolution. Finally, the methods
used in our work provide a new direction for studying ancient virus evolution.
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Introduction

RNA  viruses evolve rapidly. Since viral RNA-dependent
polymerases (VRAP) miss the proofreading activity they produce
a high percentage of mutated variants [1]. These variants face a
strong evolutionary pressure by the host immune system and a
highly competitive environment between relative viruses [2].
These factors lead to a rapid diversification in the primary
structure of all viral genes and proteins, and a swift establishment
of new virus strains [3-5].

Despite these fast changes in the sequences of viral proteins,
functions that are crucial for efficient virus reproduction must be
preserved [6]. Therefore, proteins involved in important steps of
the virus life cycle accumulate mutations slower and preserve a
higher degree of conservation [6]. The most conserved proteins
among RNA viruses are polymerases, helicases, proteases and
methyltransferases [7].

Contrary to the primary structure, the tertiary structure of most
proteins sharing a common evolutionary origin remains conserved
[8,9]. The most conserved part of the protein is usually the core
structure essential for protein function. The core is often
surrounded by less conserved structures modifying the protein
function. Changes in these additional structures often lead to
minor changes in protein character (e. g., different substrate
specificity), but the major protein function remains unchanged.
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Morphological description of protein structure can help in
reconstructing protein evolutionary history. In this approach,
protein structural features are encoded in a character matrix
where the rows describe the individual proteins and the columns
describe the individual features. This is similar to the approach
used for reconstructing the evolutionary relations among fossil
species [10]. Morphological data can also be coupled with
sequence data to enforce the incoming information [11,12]. This
approach may also be applied to proteins. For example, mixed
morphological and sequence data were used to reconstruct the
evolution of aminoacyl tRNA synthetases class I [13] and the
protein kinase-like superfamily [14].

Among all viral proteins, vRdPs display the highest degree of
conservation. Genes coding for vRdPs were found in all non-
satellite RNA viruses and RNA viruses reproducing via a DNA
intermediate [15]. All vRdPs contain seven typical sequence motifs
(G,F,A, B, C, D and E) [16,17] that incorporate conserved amino
acid residues crucial for polymerase function [18,19].

Moreover, vRdPs share remarkable structural homology. The
protein structural fold resembles a right hand with subdomains
termed fingers, palm and thumb [20-23]. The palm subdomain is
structurally well conserved among all vRdPs. Finger and thumb
subdomains are more variable, but they can be fully aligned only
among RNA-dependent RNA polymerases (RARPs) of +ssRNA
viruses [21]. For most vRdPs, the finger, palm and thumb
subdomains accommodate seven conserved structural motifs
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(homomorphs), each bearing one of the conserved sequence motif
described before [24].

All vRdPs evolved from one common ancestral protein [16,20].
In the past, sequence similarity among vRdPs was used in attempts
to reconstruct RNA virus evolutionary history [7,16,25-31].
Unfortunately, this sequence similarity was shown to be too low
to produce an accurate sequence alignment for further phyloge-
netic analysis [32].

In our current work, we used the structural similarity of vRdPs
to reconstruct their evolutionary history. We used the similarities
of vRdPs protein structures to produce a highly accurate structure
based sequence alignment for our subsequent studies. Moreover,
we picked 21 biochemical and structural features of each
polymerase and encoded them into the matrix that was used in
a phylogenetic analysis to particularize results obtained from
structure based sequence alignment analysis. In our phylogenetic
analysis, we used Bayesian clustering algorithms, which are ideal
for reconstruction of complicated phylogenetic relationships. The
resulting phylogenetic tree describing the evolution of vRdPs has
high statistical support for most branches. As vRdPs are the only
universal gene in all RNA viruses, our phylogenetic tree can be
understood as a scheme of RNA virus evolution.
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Table 1. The list of selected vRdPs.
Baltimore abbre-
class family genus virus viation viral RNA dependent polymerase
res. cocrystallized
PDB  str. [A] molecules citation
+ssRNA viruses  Caliciviriade Lagovirus Rabbit hemorrhagic disease virus RHEV 1KHV B 25  Lu* [90]
Norovirus Murine norovirus MuNORV1 3UQS A 2 S04~ [91]
Norovirus NORV 3BSO A 1,74 Mg?, CTP, RNA [92]
Sapovirus Sapporo virus SappV 2CKW A 23 [93]
Flaviviridae Flavivirus Dengue virus 3 DENV3 2J7W A 26 Zn**, GTP [94]
Japanese encephalitis virus JEV 4K6M A 2,6  SAH, SO,27, Zn*" [95]
Hepacivirus Hepatitis C virus 1 HCV1 INB6 A 26  Mn*, UTP [96]
Pestivirus Bovine viral diarrhea virus BVDV1 1549 A 3 GTP [97]
Leviviridae Allolevivirus Enterobacterio phage Qf Qp 3AVX A 2,41 Ca2+, 3'dGTP, RNA [98]
Picornaviridae  Aphthovirus Foot and mouth disease virus FMDV 2E9Z A 3 Mg2+, UTP, PP, RNA [99]
Enterovirus Humane rhinovirus 16 A HuURV16A 1XR7 A 23 [100]
Coxsackie virus B3 CoxVB3 3CDW A 25 PP; [101]
Humane rhinovirus 1B HuRV1B 1XR6 A 25 K [100]
Poliovirus 1 PolV 30LB A 2,41 Zn2+, ddCTP, RNA [42]
ds RNA viruses  Birnaviridae Aquabirnavirus Infectious pancreatic necrosis virus  IPNV 2Y19 A 22 Mg* [102]
Avibirnavirus Infectious bursal disease virus IBDV 2PUS A 2,4 [103]
Cystoviridae Cystovirus Pseudomonas phage phi6 D6 1HIO P 3 Mn?*, Mg?*, GTP, DNA  [62]
Reoviridae Orthoreovirus Mammalian orthoreovirus 3 MORV3 IN35 A 2,5  Mn2+, 3'dCTP, RNA [104]
Rotavirus Simian rotavirus Sa11 SRV 2R7W A 2,6  GTP, RNA [105]
Reverse tran- Retroviridae Gammaretrovirus  Moloney murine leukemia virus MoMLV 1RW3 A 3 [106]
scribing viruses
Lentivirus Human immunodeficiency virus 2 HIV2 TMU2 A 235 S0,.2° [107]
Human immunodeficiency virus 1 HIV1 3v81 C 2,85 nepavirine, DNA [108]
The vRdPs selected as described in Material and methods were assigned to individual viral species, genera, families and Baltimore groups. For each individual vRdP its
PDB code (PDB), used protein strand (column str.), resolution (column res.) and cofactor, substrate, template, product molecules (column co-crystallized molecules) are
I(Elefm 371/journal.pone.0096070.t001

Materials and Methods

Selection of vRdPs for further phylogenetic studies

To find structurally homologous vRdPs, we employed the DALI
server [33] using the structure of Dengue virus type 3 (DENV3)
RdRP as a query (PDB number 2J7W-A). The program was run
under the default conditions. DALI server automatically screens
the PDB database to select structurally homologous proteins and
lists them according to a decreasing Z-score, a quantitative
expression of protein structure similarity [33]. Only protein
structures having similarity Z score higher than 2 were taken in
account since hits with lower Z-score are most likely incidental
hits. The vRdPs were selected among the listed protein structures.
They were assigned to the individual virus species classified into
genera and families according to the actual ICTV virus taxonomy
[34]. Representative structures were selected using the following
criteria: (1) Maximally two polymerases from two different viruses
were selected from one genus (the exception was four viruses from
genus Enterovirus). (2) Structures with bound substrate, substrate
analogue and/or template nucleic acid were favored. (3) High
resolution structures were preferred. (4) Structures without any
mutation were favored. As polymerases are very active enzymes
changing their topology in response to many external stimuli
(bound template/nucleotide/product, actual step of polymeriza-
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Figure 1. Protein structures of selected vRdPs representatives. Nine representatives of the selected vRdPs were chosen. Their structures are
shown as a ribbon diagram. All molecules are oriented in the same orientation with finger subdomain on the left, the palm on the bottom and the
thumb on the right. The catalytic site is positioned in the centre of each molecule and in some protein structures it is enclosed by the finger tips
located at the top of each protein structure. Conserved protein structures typical of vRdPs (homomorphs) are highlighted by colours: violet (hmG),
dark blue (hmF), dark green (hmA), light green (hmB), yellow (hmC), orange (hmD) red (hmE), and pink (hmH). Molecular rendering in this figure were

created with Swiss PDB Viewer.
doi:10.1371/journal.pone.0096070.g001

tion cycle, etc.), the criteria for structure selection was set up to
select polymerase structures under identical conditions.

The same process described above was done using three
structures with the lowest structure homology to 2J7W-A as
queries using the DALI sever: 3V81-C (human immunodeficiency
virus 1 - HIV1), 2R7W-A (simian rotavirus - SRV) and 2PUS-A
(infectious bursal disease virus - IBDV). Sets of structures selected
in these three runs were compared with the first set to insure no
adequate structures were missed.

Construction of structure superposition and structure
based sequence alignment

Structures of selected vRdPs were superimposed using the
DALI server multiple structural alignment tool [33]. DALI created

PLOS ONE | www.plosone.org

structure based sequence alignment was validated and improved
using the default settings in T-Coffee Expresso [35]. The resulting
alignment was verified by comparison with previously published
vRdP alignments [17,24,31,36,37].

The structure based sequence alignment was analyzed using the
JOY server under the default conditions [38]. JOY is a program
used for annotation of protein sequence alignments with 3D
structural features. It is necessary in understanding the conserva-
tion of specific amino acid residues in a specific environment. JOY
contains various algorithms such as DSSP [39] used for secondary
structure classification. Sequence consensus and sequence conser-
vation were calculated in Chimera implemented algorithms

[40,41].
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Figure 2. Structure based sequence alignment of vRdPs finger subdomain. vRdPs are listed at the beginning of each row by the name of
the virus encoding the appropriate vRdP followed by vRdP PBD code. The number at the beginning and at the end of each row indicates the position
of the first and last amino acid residue on the appropriate row in the full-length protein bearing polymerase activity (including all additional protein
domains). The numbering above the alignment describes position of individual amino acid residues in the alignment. Amino acid residues forming o
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helices, 3,4 helices, and B strands are written by red, green, and blue, respectively. Solvent accessible amino acid residues are written in lower case
letters; solvent inaccessible by upper case letters. Amino acid residues with positive phi torsion angle, amino acid residues hydrogen bound to main-
chain amide, or amino acid residues hydrogen bound to main-chain carbonyl are underlined, written in bold, or in italic, respectively. Most frequent
amino acid residues at each alignment position are listed in a row called consensus. Highly conserved positions (more than 80%) are indicated by
uppercase violet letters. The 100% conserved amino acid residues are shown by uppercase red letters. Most upper row shows Clustal calculated
consensus. Amino acid residues in conserved sequence motifs G and F typical for all vRdPs are highlighted by violet and dark blue colour frames.
Amino acid residues it the conserved structural homomorhps hmG and hmF are highlighted the same but lighter colours.

doi:10.1371/journal.pone.0096070.g002

Analysis of the vRdPs structural similarities between
vRdPs

Analysis of conserved amino acid residues and sequence motifs
in the structural based sequence alignment as well as presence/
absence of conserved structural features was done manually
according to criteria previously used in describing vRdPs
[20,24,42]. Comparative results were encoded into a 21-column
character matrix where each column represents a single selected
character typical of some but not all vRdPs. The matrix row
represents each evaluated polymerase. Structural characters were
coded to MrBayes as standard data (0-9). These characters were
set as unordered allowing them to move from one state to another
(character designated “0” can change to “2” without passing “1”).

Construction of phylogenetic tree

Best fitting model of amino acid substitutions was tested in
PROTTEST 2.4 [43] under the Akaike information criterion [44]
and the Bayesian information criterion [45]. As results of the two
tests were not consistent, we decided to use the most complex
model, the general time reversible (GTR) model with a proportion
of invariable sites and a gamma-shaped distribution of rates across
sites [46,47]. Bayesian phylogenetic analysis was performed using
MrBayes v3.1.2 [48]. Bayesian analysis consisted of two runs with
four chains (one cold and three heated), and was run for 10 million
generations sampled every 100 generations. The first 25% of
samples were discarded as a burning period. Although the average
standard deviation of split frequencies was much lower than 0.01,
convergence of runs and chains was verified using the AWTY
[49]. Analysis was run for sequence data alone and for mixed data
(sequence alignment and structural character matrix) with equal
settings for analysis.

Results

Formation of representative set of vRdPs

The DALI server queried using the Dengue virus RARP (2]J7W-
A) found 745 hits with structure similarity Z-score 2 or higher.
Using the criteria described in the Material and methods section,
we selected 21 vRdPs protein structures among these hits. In our
subsequent query, no additional protein structures were selected
from 844, 743 and 575 hits identified using 3V81-C (HIV1),
2R7W-A (SRV), and 2PUS-A (IBDV).

To ensure we did not miss any relevant structure, we browsed
the PDB [50] using names of all RNA virus genera listed in the
ICTV database. No additional structures were found. A prelim-
inary notice was found about the successful crystallization of Thosea
asigna virus RARP (genus Permutotetravirus, tamily Permutotetraviridae),
but the structure has not yet been published [51].

The final list included 22 vRdPs from 22 virus species in 17
virus genera and 8 virus families (see Table 1 for details). All viral
families were classified in the Baltimore classes III (double
stranded RINA viruses), IV (positive sense single stranded RNA
viruses), and VI (Positive-sense single-stranded RNA viruses that
replicate through a DNA intermediate). No polymerases of any
virus classified in Baltimore class V (negative sense single stranded
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RNA viruses) were identified, since there was no known protein
structure of any RNA dependent RNA polymerase for these
viruses.

Structure superposition of vRdPs

The vRdPs from our collection represents a wide range of
proteins that are different in protein size and other parameters (see
Table 1). Many of them bear additional domains with non-
polymerase activities that are conserved only among closely related
proteins. These domains were not taken into account for
subsequent analysis.

Primary and tertiary structures of domains bearing polymerase
activity are similar in all selected proteins. Subdomains finger (F),
palm (P), and thumb (T) are collinearly arranged in all vRdPs
succeeding always as F1-P1-F2-P2-T from N- to C-terminus (see
Figure S1 for details) [20-23]. Polymerase domains of selected
vRdPs were superpositioned and structures typical for each of the
selected viral families are highlighted in Figure 1 (for schematic
structure of all vVRdPs see Figure S2). Structural superposition
shows a conserved architecture of vRdP subdomains and the seven
conserved structural homomorphs previously described [24] are
clearly visible.

An additional eighth structural helix-turn-helix motif was
observed in the thumb subdomain, we call homomorph H
(hmH). Despite the poorly conserved sequence of homomorph
H, the structural motif is well conserved in all vRdPs (see Figure 1).
To characterize its conservativeness, we calculated its RMSD
among all vRdPs and compared it with the RMSD of homomorph
D (hmD) that is similar in size. Results showed that hmH 1is as
conserved as the well-established hmD (see Table S1 for further
details).

Structural similarities among vRdPs

The structure similarity Z-score was calculated for all polymer-
ase couples (see Table 2) showing extremely high protein structure
similarities among vRdPs from viruses classified into one viral
genus (see genus Fnterovirus as the best example). The similarities
among the vRdPs of viruses classified in the same family are
slightly lower, but still very high (see family Picornaviridae as the best
example). RARPs of all +ssRNA viruses (except enterobacterioph-
age QP - QP) form a cluster of relatively highly similar structures,
while structures of pseudomonas phage ®6 (P6), QB and
Birnaviridae RARPs are moderately similar, and structures of
reoviral RARPs and retroviral RADPs are similar only distantly to
RdRPs of +ssRNA virus (see Table 2 for details).

We also quantified 21 attributes previously used for vRdPs
description and encoded them into a 21-column character matrix
(see Table 3). Features were selected and quantified manually
according to criteria previously used for describing vRdPs
[20,24,42] and are included in the Text SI.

Automatically created structure based alignment of selected
vRdPs including annotated structural features is depicted in
Figures 2, 3, and 4.
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Figure 3. Structure based sequence alignment of vRdPs palm subdomain. Alignment of vRdPs is as in Figure 2. Amino acid residues in
conserved sequence motifs F, A, B, and C are highlighted by dark blue, dark green, light green, and yellow frames. Amino acid residues it the
conserved structural homomorhps are highlighted the same but lighter colours. The only three 100% conserved amino acid residues in the entire
alignment (an arginine residue at position 327 in motif F, an aspartate residue at position 411 in motif, and a glycine residue at position 517 in motif
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B). The fourth 100% conserved amino acid residue is an aspartate residue in motif C. Despite this aspartate residue is superpostionable in protein
structures, it is placed on different position in structure based sequence alignment of protein primary structures thanks to cyclic permutation in IBDV
and IPNV RdRPs (see position 397 for birnaviral RARPs and position 580 for remaining vRdPs).

doi:10.1371/journal.pone.0096070.g003

Phylogenetic characterization of vRdPs

The evolutionary history of vRdPs was reconstructed using the
Bayesian clustering analysis. Sequence (structure based sequence
alignment) and structural (character matrix) information were used
simultaneously in a unified analysis. Combination of these datasets
was used to produce a phylogenetic tree with high Bayesian
posterior probabilities for most branches (see Figure 5). Despite the
high Bayesian support, one polytomy appeared concerning the
position of Birnaviridae family.

Our phylogenetic analysis classified all vRdPs into groups that
correspond to the viral genera and families proposed by ICTV.
RdDPs of RNA viruses replicating via DNA intermediate
(Baltimore class VI) formed a clearly separated group of vRdPs.
The RdRPs of +ssRNA and dsRINA viruses clustered together and
did not form any separate groups. This suggests that dsRNA
viruses evolved from +ssRNA viruses multiple times, and vice
versa. The possible evolutionary scenarios of vVRdP evolution and
its impact on the reconstruction of RNA virus evolution will be
discussed further.

Usage of each data set alone was less statistically powerful than
the combined analysis (see Figure S3). Despite, our results rely
mostly on sequence information incoming from a structure based
sequence alignment. The 21-column character matrix served as a
stabilizing element that properly placed ambiguous branches and
prevent against long branch artifacts (compare Figure S3 panels A
and B and Figure 5).

Discussion

Similarities among vRdPs

The vRdPs are an ancient and diversified enzyme group. They
share only limited conservation in primary structure, however
their protein structure [21,24] and the mechanism of function
[19,23,42] are very similar. The vRdPs adopt a conserved right
hand conformation with three subdomains termed fingers, palm
and thumb. Seven conserved sequence motifs were previously
described in vRdPs [16,17,37]. Moreover, amino acid residues in
these motifs adopt extremely conserved position in vRdPs* [24].
Herein, we described a novel conserved structural motif named
homomorph H (hmH) formed by a conserved helix-turn-helix
structure in the thumb subdomain of all vRdPs. Despite its high
structure conservation, and hmH primary structure is slightly
conserved. Function of hmH remains elusive and further
biochemical studies will be needed to elucidate it.

Presence of vRdPs in all RNA virus species allows their use in
phylogenetic analysis [7,16,25-31]. This approach was disputed
by an extensive study showing the sequence conservation of vRdPs
is too low to be successfully and meaningfully used for
phylogenetic analysis employing classical methods [32]. The
similarities among vRdPs may have evolved by convergent
evolution [32], however these conclusions may be challenged by
several arguments. 1) The vRdPs share seven conserved sequential
collinearly arranged motifs; a phenomenon highly improbable via
convergence [16]. 2) The right hand conformation is not the only
fold that can be adapted by RNA-dependent polymerases. Cellular
RdRPs participating in RNA interference accommodate totally
different double barrel conformations [52]. 3) Modern bioinfor-
matics approaches based on Bayesian analyses are more suitable
for reconstruction of distant evolutionary relationships [53] than
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previously described statistical methods [32]. 4) Conserved protein
tertiary structure of all vVRdPs can supplement missing information
in highly diverged protein sequences and allowing us to study the
evolution of extremely distantly related proteins [13,14].

Nevertheless, polymerases can adopt various conformations,
changing their topology in response to bound template/incoming
nucleotides, steps in polymerization cycle and artificially depend-
ing on crystallization conditions. We overcome this by selecting
vRdPs’ representatives crystallized under similar conditions (see
Material and methods).

How did the vRdPs evolve?

Our phylogram shows the RADP of Retroviridae forms a clearly
separate group of RNA viruses replicating via the dsDNA
intermediate (Baltimore class VI). This is caused by a series of
specific interactions that occurs between template, product and
protein, and differs significantly between RdDPs and RdRPs [54].
For example, RdDPs accommodates a conservative aromatic
amino acid residue in motif B (alignment position 525 - Figure 3).
This position is occupied by aspartate or asparagine interacting
with aspartate in motif A (alignment position 416 - Figure 3) in
RdRPs discriminating incorporation of dN'TPs instead of N'TPs
[20]. Moreover, the structure of RdDPs is much simpler, many
structural motifs are absent, and others are highly reduced [24].

RdRP of the +ssRNA bacteriophage QB is the closest relative of
retroviral RADPs. The Qf polymerase already contains all motifs
typical for RdARPs, but is still simpler having no additional
structural motifs [55,56]. As QP represents an ancient virus group
[57], it is probable that the phylogram may be rooted between Qf
RdRP and retroviral RARPs.

Rooting the evolutionary tree of vRdPs using cellular right
handed polymerases as an outgroup shows, the root is positioned
between bacteriophage QB RARP and retroviral RADPs (Cerny et
al, under submission). This is in concordance with RNA world
theories and theories implicating viruses in the shift from RNA
world to DNA world [58].

RdRPs of all RNA viruses are mixed together in our phylogram
and they do not follow the Baltimore classification. For example
RdARP of +ssRNA QB is closely related to the RARPs of dsRNA
viruses than to the RARPs of other +ssRNA viruses and RdRP of
dsRNA birnaviruses tends towards RARPs of mammalian +ssRNA
viruses. The RARPs can easily replicate both ssRNA and dsRNA
without any critical rearrangements in their structure. This is not
surprising since picornaviral RARP were shown to replicate
dsRNA even without the aid of a helicase [59].

Primer dependence/independence also apparently evolved
multiple times. RARPs of viruses, which in our phylogram are
closer to the expected root (Leviviridae, Reoviridae, Cystoviridae), do not
require RNA or protein primer for reaction initialization [60].
This suggests that the original vRdPs were probably primer
independent. De novo initiation is also typical for many cellular
RdRPs [61].

Primer independent RdRPs of viruses from families Flaviviridae
and Cystoviridae share remarkably large thumb subdomains of their
RdRPs, allowing accurate positioning of the first incoming
nucleotide and RNA polymerization initiation [62]. Despite that
both proteins share similar interactions between enzyme, template
and incoming nucleotide, the position of the priming motif is

different [62].
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Figure 4. Structure based sequence alignment of vRdPs thumb subdomain. Alignment of vRdPs is as in Figure 2 and 3. Amino acid residues
in conserved sequence motifs D and E are highlighted by orange and red frames. Amino acid residues in the conserved structural homomorhps are
highlighted the same but lighter colours. hmH homomorph is highlighted in pink.

doi:10.1371/journal.pone.0096070.g004
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Figure 5. Phylogenetic tree of vRdPs evolution. Phylogenetic tree was calculated by an analysis unifying sequence and structure information.
Only names of virus species coding vRdPs are listed in the tree. Individual virus species are grouped in genera (blue) and families (red) according

actual ICTV virus taxonomy.
doi:10.1371/journal.pone.0096070.g005

Viruses from the family Bimaviridae and several other families
encode cyclic permuted RARP [31,37]. It was suggested that
birnaviral RARPs represents an ancient group of polymerases that
split from other polymerases before DdDPs, DdRPs, RdDPs and
RdRPs were established as four distinct groups [31]. Our results
indicate RdRPs with cyclic permutation are younger and they
share a common evolutionary ancestor with RdRPs of +ssRNA

virus RARPs.

What does our model of vRdPs evolution tell us about

the evolution of RNA viruses?

Virus evolution is an extremely complicated story. Viral genes
and proteins evolve rapidly and relative proteins share only a low
degree of homology [3-5], making virus phylogenetic reconstruc-
tion difficult. It is complicated to generate a proper alignment of
selected proteins and the resulting phylograms usually do not have
sufficient statistical support [32]. Therefore, a qualitative descrip-
tion of a set of virus features is used for reconstruction of distant
phylogenetic virus relationships (capsid architecture, genome
replication strategies, etc. [63,64]). Nevertheless, this approach is
sensitive to recombination events between virus and host, or
between different viruses, and occurs quite often resulting in a
mixture of different genes[65-68]. That is why, virus evolution
nowadays is not considered as a linear process, but rather as a
network [69].

Absence of any universal gene shared by all viruses makes
reconstruction of virus evolution even more difficult, despite that
some genes are shared among many viruses. An example of such a
gene is a jelly-roll capsid protein that is typical for picorna-like
viruses (+ssRNA genome), Microviridae, Parvoviridae (both ssDNA),
Papylomaviridea, Polyomaviridae (both dsDNA), etc. [70,71]. Jelly-roll
capsid protein, however is an inappropriate candidate for a virus
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phylogenetic marker, since viruses sharing a jelly-roll capsid
protein are only distantly related and protein is missing among
closely related virus families.

Presence of the vRdPs in all RNA viruses [15] allowed to use the
vRdPs as a marker for RNA virus evolution [28]. Nevertheless,
their sequence similarity is too low to be used by classical
phylogenetic approaches [32]. We overcome this using structure
based homology of vRdPs. Our phylogram describing the
evolutionary history of vRdPs may be understood as an evolutive
phylogram of RNA viruses. Our results are in concordance with
the actual concepts of virus evolution [63,69] and depict the
polyphyletic origin of dsRNA viruses. The first group is
represented by Cystoviridae and Reoviridae families, while the second
group is represented by the Binaviridae family. Reoviridae and
Cystoviridae share many common features. Both viral groups have
similar multilayer capsid organization [72]. They replicate their
genome by a conservative manner inside the inner virus capsid
[73]. Viruses in Bimaviridae family are more similar to +ssRNA
viruses. Their cyclically permuted RARPs are similar to cyclically
permuted RARPs of +ssRINA viruses from Permutotetraviridae [31].
Moreover, birnaviruses replicate their genome in a semiconserva-
tive manner outside the virus capsid [74] using their guanylylated
RdRP as a primer [75] that is similar to protein primed replication
of picornavirus-like viruses [76,77].

Mammalian +ssRNA viruses cluster together forming two
monophyletic clades. The first is represented by viruses from the
family Flaviviridae, while the second by viruses from families
Calictindae and  Picornaviridae. Regardless that the differences
between them are smaller than in the case of dsRNA viruses,
both these clades differ in the same biological aspect. Flaviviruses
replicates their RNA by a primer independent manner [78,79].
Their genome is either uncapped [80,81] or capped by 7-
methylguanosine cap [82]. Caliciviridae and Picornaviridae use vPg
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protein primer that also caps their genomes [83]. These similarities
between mammalian +ssRNA viruses and Burnaviridae show they
evolved from a common ancestor [31,70,84].

The last two groups of RNA viruses, families Leviviridae and
Retroviridae, are distinctly separated. These two groups seem to be
extremely ancient and they probably evolved from the last
universal common ancestor of all life forms — even before the
cell evolution [64,85,86]. This is in concordance with recent
theories about evolution of ancient life forms, the transition from
the RNA into the DNA word and cell evolution [58].

Only a limited number of vRdP protein structures are known
now. Nevertheless, they come out from very diverse viral groups
that can serve as representatives of other virus groups (7ogaviridae
and Coronaviridae would most probably follow Flaviviridae etc.).
ThevRdPs with known protein structure come from viruses that
are usually important as human or veterinary pathogens or
represent important biological models. There is no known vRdP
protein structure of any plant, protozoan or fungal virus.
Moreover, no protein structure of any —ssRNA virus RdRP is
known. Since RdRPs of —ssRINA viruses share many sequence
motifs with other vRdPs [87-89], their structure will most
probably be similar to the structure of other RNA viruses.
Likewise, vRdPs structures of plant, protozoan and fungal viruses
that are often closely related to animal viruses [68] will probably
be similar.

Supporting Information

Figure S1 Linear organization of protein domains of
vRdPs. The vRdP polymerase finger, palm and thumb
subdomains are highlighted by blue, green and red. Remaining
protein domains are colored by yellow. Conserved sequential and
structural features are not shown. Diagram is in scale.
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are listed in the tree.
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