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Abstract

Classification methods used in microarray studies for gene expression are diverse in the way they deal with the underlying
complexity of the data, as well as in the technique used to build the classification model. The MAQC II study on cancer
classification problems has found that performance was affected by factors such as the classification algorithm, cross
validation method, number of genes, and gene selection method. In this paper, we study the hypothesis that the disease
under study significantly determines which method is optimal, and that additionally sample size, class imbalance, type of
medical question (diagnostic, prognostic or treatment response), and microarray platform are potentially influential. A
systematic literature review was used to extract the information from 48 published articles on non-cancer microarray
classification studies. The impact of the various factors on the reported classification accuracy was analyzed through
random-intercept logistic regression. The type of medical question and method of cross validation dominated the explained
variation in accuracy among studies, followed by disease category and microarray platform. In total, 42% of the between
study variation was explained by all the study specific and problem specific factors that we studied together.
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Introduction

Microarray gene expression technology continues to be used to

obtain more understanding of the mechanisms of human diseases.

The statistical analysis of microarray data may be challenging,

with the inherent risk of finding a false positive result due to the

high dimensional nature of the data. Common flaws in the three

distinctive goals for the statistical analysis of microarray data (e.g.

differential expression, class discovery (unsupervised), and class

prediction (supervised)) have been found [1]. Inconsistency in the

results of microarray analyses within the same dataset unfortu-

nately has also been reported, especially for class prediction [2].

The variability of the reported classification accuracies may be due

to the variation in the methods used to build the classification

model, e.g. the type of classification model, cross validation and

gene selection strategy [3]. Additionally, the performance of a

predictive model may also depends on characteristic of the

microarray data [4].

Most of the studies evaluating classification performance have

concentrated on classification of cancer patients. In general, non-

cancer diseases have received low attention in the gene expression

literature, maybe because they have more varying levels of

complexity than cancers. However, to test the hypothesis that

disease complexity influences classification performance, it may be

beneficial to use a variety of studies on non-cancerous diseases,

instead of cancer studies.

This study focuses on the factors that might be associated with

the accuracy of classification models on gene expression datasets,

namely the type of disease, the medical question, sample size, the

number of genes, the gene selection method, the classification

method and cross validation techniques, using published studies

outside of the field of cancer. Although it was evaluated

differentially, we noticed that there is an overlap of the

aforementioned study factors with the observed factors by the

MAQC II study [3] that is focused in the field of cancer, i.e. the

number of genes, the gene selection method, and the classification

method. In the case of non-cancerous diseases, those study factors

may also affect the performance of classification method. The

results of this study may contribute to understand the dependency

of the performance of a classification model on the characteristics

of gene expression data as well as the techniques used to build the

model.

Materials and Methods

Literature search and data extraction
We searched microarray gene expression studies through

PubMed (US National Library of Medicine National Institute of

Health) for relevant papers. Applied studies in which the

investigator aimed to build supervised models based on microarray

gene expression experimental data were primarily of interest. The

studies that 1) were published in methodological journals 2)

focused on cancer 3) were published before 2005 4) had non-

human species as experimental objects 5) were not written in

English or 6) were categorized as review papers, were not

included. For the details of the search strategy and keywords see

Material S1.

The search strategy and selection of studies satisfied the general

methods for Cochrane reviews. The following details were
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recorded from each selected study: classification performance,

disease type, medical question (diagnosis, prognosis or response-to-

treatment), microarray platform (one- or two-color system), total

sample size, sample size per group, cross validation technique

(single or nested loop cross validation), gene selection technique

(filter, wrapper, or embedded), classification method(s), and the

number of genes. The selected studies had evaluated the

classification models in diverse ways, e.g. accuracy or misclassi-

fication error, sensitivity and specificity, positive and negative

predictive values, as well as AUC. The accuracy was then used to

represent the classification performance, since it is the most

commonly used measure by the selected studies and feasible to be

produced in some studies when the information about the

accuracy lacked.

Sample size was recorded as the sample size in the training set,

used to build the model. The degree of class imbalance was

measured by dividing the number of samples in the majority class

with the total sample size in the training set. Due to the diversity of

cross validation methods used, we grouped the cross validation

techniques into single and nested cross validation. The studies that

used cross validation for both model assessment and model

selection were grouped into nested cross validation. Otherwise, it

was regarded as single cross validation.

Some classification methods have the ability to automatically

handle the curse of dimensionality (p..n), but others need a gene

selection step to reach a lower dimension before applying the

classification method. Some of the studies selected genes uni-

variately based on a statistic passing a threshold for selection or the

top-K genes to feed the classifier. In other studies, the gene

selection method was aimed at finding an optimal set of genes by

stepwise iterating between selection and classifier building. Thus,

we grouped the gene selection technique based on their interaction

with the classifier, namely filter (e.g. univariate selection), wrapper

(e.g. stepwise optimization of the selected gene set), and embedded

(e.g. penalized likelihood regression). Grouping was also done on

the classification method into two categories, depending on their

ability to detect interactions between genes. Genes can be

activated independently but also be activated through the

activation of other genes. Due to this phenomenon, the

classification methods that can automatically model interactions

are expected to have better performance than those who cannot,

at least in some studies. The methods that could detect the

interaction (referred to as ‘‘interaction classifiers’’) in our review

were tree-based methods, logistic regression, support vector

machines (SVM), k-Nearest Neighbours (kNN), artificial neural

networks (ANN), and weighting voting methods. Meanwhile,

discriminant analysis, prediction analysis of microarray (PAM),

compound covariate predictor, nearest centroid, and LASSO were

classified into the group of methods that could not automatically

detect interactions (called ‘‘non-interaction classifiers’’).

Among the selected studies, we found 34 different disease types.

The diseases were categorized according to SNOMED (http://

eagl.unige.ch/SNOCat/) producing 16 categories. Further re-

categorization was done to establish etiology-based disease groups.

As a result, we obtained 6 disease types: inflammatory disorder,

immune disease, degenerative disease, infection, mental disorder

and other (i.e. obesity and acute lung injury). See Material S2 for

grouping details.

Data analysis
The forty eight selected studies yielded sixty one classification

gene expression models. The number of observed classification

models is higher than the number of selected studies since some

studies had built more than one classification model. We

considered the data to be clustered data, where the selected

studies act as clusters. Further, in each study, we treated the

accuracy as a grouped binomial variable, for which we have the

number of samples that are correctly and incorrectly classified.

The data structure is visualized in Table 1. The logistic random

effect meta-analysis is a natural choice to handle this type of data

[5]. The logistic random effects model is the generalization of the

Table 1. Overview of the studied data.

Study Classification model(s) Study factor 1 … Study factor 8 Classfication model accuracy

1 model1 Nc1,Nm11
ð Þ

2 model21
Nc21

,Nm21
ð Þ

3 model31
Nc31

,Nm31
ð Þ

4 model41
Nc41

,Nm41
ð Þ

5 model51
Nc51

,Nm51
ð Þ

6 model61
Nc61

,Nm61
ð Þ

7 model71
Nc71

,Nm71
ð Þ

7 model72
Nc72

,Nm72
ð Þ

7 model73
Nc73

,Nm73
ð Þ

7 model74
Nc74

,Nm74
ð Þ

… … … … … …

45 model451
Nc451

,Nm451
ð Þ

46 model461
Nc461

,Nm461
ð Þ

47 model471
Nc471

,Nm471
ð Þ

48 model481
Nc481

,Nm481
ð Þ

modelij : Classification model j in study i.

Ncij : The number of correct classified sample(s) based on the classification model j in study i.

Nmij : The number of miss-classified sample(s) based on the classification model j in study i.

doi:10.1371/journal.pone.0096063.t001
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linear mixed effects model to binomial outcome data using a

sigmoid link function

As the accuracy is well known to be biased towards the majority

class, the random intercept logistic model was corrected by the

class imbalance level, which was always included in the meta-

regression model. For the ith study factor, the random effects

model is written as

log
p xjD

� �
1{p xjD

� �
 !

~ b0zq0Dð Þzb1class imbalancez

b2study factori

where p xjD

� �
is the probability of a sample j in dataset D to be

correctly classified and q0D is the random intercept with respect to

Figure 1. The PRISMA workflow diagram of the literature review search. The diagram represents the process of literature review search. The
details for each step can be found in the Material S1.
doi:10.1371/journal.pone.0096063.g001
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dataset D, in which q0D
~NN(0,s2

0D). Multivariable evaluation of

study factors was also done by a backward elimination approach.

In each backward step, two nested models, with and without a

particular study factor, were compared by Akaike’s information

criterion (AIC).

The explained-variation of the model accuracy was then

calculated on the log-odds scale using the random effects variance

of the study factor. The variation explained by all study factors

together was calculated based on the relative difference between

the random intercept variances of the null model s2
null and the full

model s2
full , divided by s2

null . The full model is the logistic random

intercept model with all study factors as covariates. We also

evaluated the explained variation of each factor relative to the full

model. The relative contribution in explained variation by the ith

factor to the full model was calculated by

s2
model ið Þ{s2

full

s2
null

ð1Þ

where s2
model ið Þ is the variance of the model based on all factors

except the ith factor i~1,2, . . . ,8ð Þ and s2
full is the variance of the

model based on all factors. All analyses have been done in R

software (Material S3). The glmer function from lme4 package

was used to analyse the data [6].

Table 2. Characteristics of 48 fully reviewed studies.

Study characteristics Number of studies

Year

2005–2007 15

2008–2010 19

2011–2013 14

Disease Type

Inflammatory disorder 17

Immune disease 5

Degenerative disease 6

Infection 12

Mental disorder 5

Other 3

Microarray color system

One-color 35

Two-color 13

Medical question

Diagnostic 29

Prognostic 6

Response-to-treatment 13

Cross validation

Single 19

Nested 29

Gene selection

Filter 13

Wrapper 16

Embedded 19

Classification method *

Interaction 37

No-interaction 24

*Some studies used more than one classifier.
doi:10.1371/journal.pone.0096063.t002

Table 3. Individual random intercept logistic regression.

Study factor Df AIC P value

Class imbalance level 1 142.3 0.18

Sample size 1 142.9 0.23

Microarray platform (color system) 1 142.8 0.22

Medical question 2 144.1 0.33

Disease type 5 148.3 0.66

Cross validation technique 1 144.0 0.66

Gene selection method 2 144.7 0.45

Classification method 1 144.3 0.90

The number of genes in final model 1 144.3 0.78

doi:10.1371/journal.pone.0096063.t003
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Results

Summary of study characteristics
The automated search strategy yielded over a thousand papers.

The first screening was done by examining the title and abstract,

and yielded 197 papers to be fully reviewed, which resulted in 57

papers that met all the criteria (last search on September 20, 2013).

The PRISMA workflow diagram of the systematic literature

review [7] is provided in Figure 1.

For further statistical analyses, we selected the 48 studies [8–55]

that mentioned accuracy as their classification performance

measurement. Because some studies had used more than one

classification method, the evaluation of factors influencing

accuracy was based on 61 classification models. The basic

characteristics of the selected studies are described in Table 2.

Within the search period, the number of classification studies

that had used microarray technology outside the field of cancer

tended to increase with calendar time, and the one color system

array (35/48) was mostly used, compare to the two-color system

(13/48). We found 34 different diseases, predominantly the

inflammatory disorder and infection disease groups, i.e. 17

(35%) and 12 (32%) studies, respectively. The diagnostic problem

is the most common medical question addressed by microarray

gene expression supervised learning. Classification models were

built by either the single (19/48) or the nested (29/48) cross

validation technique. The search result shows that there is no clear

preference in dimensionality reduction technique among the

selected studies. With regards to the classification methods, we

notice that SVM (24%) and PAM (21%) are the most commonly

used methods. However, when we grouped the classification

methods based on their ability to detect interaction between genes,

there appeared to be no clear preference for no-interaction or

interaction classifiers.

Meta-regression
Table 3 shows the result of individual evaluation for each factor

by random effects logistic regression. A model with ‘‘class

imbalance level’’ as a fixed effect is considered as the null model.

No model with an additional fixed effect is better than the null

model. The multivariable model by backward evaluation is

summarized in Table 4. We started with the full model which

consists of nine study factors. The backward elimination resulted

in four study factors that are associated with the performance of a

classification method, namely the color system, medical question,

cross validation technique, and gene selection method (Table 4).

We refer this model as a final meta-regression model. Although the

final model would improve without the ‘‘class imbalance level’’

(shown by the lower AIC value if the classification model is

excluded from the random effect model), we keep this factor in the

logistic model as a correction as stated in the Methods section.

The relative contribution of each study factor to the explained-

variation of the full model is shown in Figure 2. The medical

question has a large relative explained-variation (25%), followed

by cross validation technique (9.2%), disease group (8.0%),

microarray color system (2.5%), the number of genes in the final

classification model (1.8%), and gene selection technique (1.31%).

In total, all study factors together explained 41.9% of the between

study variation in the null model.

Discussion

This study was conducted on 48 selected papers that were

published between 2005 and 2013 and identified through the

PubMed repository. Targeted keywords efficiently selected the

relevant papers, among thousands of published microarray

classification studies. We aimed to assess the influence of study

and method specific determinants of classification model accuracy

outside the field of cancer, by analysing eight factors through

random effects meta-regression. The accuracy is used as a

representation of classification model performance due to the

availability of the information in the majority of the selected study.

The accuracy is a well-known rough measurement for the

performance of a classification model. Especially in highly

imbalanced datasets, accuracy may yield overoptimistic results,

because a classification model might easily send all samples to the

Table 4. Backward elimination in multiple random intercept
logistic regression.

Step Study factors on the model Df AIC+ P value

1 Class imbalance level 1 155.95 0.128

Sample size 1 153.65 0.928

Microarray platform (color system) 1 154.85 0.271

Medical question 2 160.58 0.011

Disease type * 5 149.10 0.629

Cross validation technique 1 157.56 0.048

Gene selection method 2 152.72 0.582

Classification method 1 153.64 0.950

The number of genes in final model 1 153.91 0.602

2 Class imbalance level 1 148.52 0.233

Sample size * 1 147.10 0.993

Microarray platform (color system) 1 150.62 0.061

Medical question 2 151.90 0.033

Cross validation technique 1 150.80 0.054

Gene selection method 2 148.90 0.149

Classification method 1 147.18 0.773

The number of genes in final model 1 147.61 0.476

3 Class imbalance level 1 146.53 0.232

Microarray platform (color system) 1 149.07 0.046

Medical question 2 149.90 0.033

Cross validation technique 1 149.41 0.038

Gene selection method 2 147.63 0.104

Classification method * 1 145.19 0.766

The number of genes in final model 1 145.62 0.473

4 Class imbalance level 1 144.58 0.239

Microarray platform (color system) 1 147.32 0.042

Medical question 2 147.99 0.033

Cross validation technique 1 147.85 0.031

Gene selection method 2 145.77 0.101

The number of genes in final model * 1 143.76 0.451

5 Class imbalance level 1 142.76 0.315

Microarray platform (color system) 1 145.84 0.043

Medical question 2 145.99 0.044

Cross validation technique 1 146.02 0.039

Gene selection method 2 144.08 0.115

+The AIC of multivariable random effect logistic regression model if the
corresponding study factor is deleted. The AIC in the full model is 155.7.
*The study factors gave the lowest AIC and was excluded from the model for
the next step.
doi:10.1371/journal.pone.0096063.t004
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majority class. The class imbalance should therefore be taken into

account when interpreting the prediction accuracy [1], and a

meaningful classification model necessarily should have higher

accuracy than the proportion of the majority class. Unfortunately,

the classification models in [9,30,35,44] have lower accuracy than

their level of class imbalance (Figure S1). Other measurements,

such as Mathew’s correlation coefficient (MCC), might be less

affected by the class imbalance level. However, it was unfeasible to

have all information that is necessary to calculate MCC in all

selected studies. To deal with the problem of class imbalance when

using accuracy, we corrected our random effects models with the

class imbalance level. We then expect that this correction will

compensate for the drawback of using accuracy.

The main finding of this study is that four factors were

associated with the classification accuracy. The clinical problem

(i.e. diagnostic, prognostic or response-to-treatment) had the

highest relative contribution to the explained-variation of the full

model, which in other terms also had been experienced by the

MAQC II consortium study [3]. The MAQC II study defined the

difficulty of the classification problem as depending on the

endpoint. Further, they found that data using a particular

endpoint were easier to be classified than the same data when

Figure 2. The relative explained-variation of study factors. The x-axis represents the relative explained variation for each study factor, while
the y-axis shows the study factors. Table S2 provides more details on the relative explained-variation of each study factor.
doi:10.1371/journal.pone.0096063.g002

Figure 3. Boxplot of the ‘‘Medical question’’ study factor with respect to sample size on training data, proportional sample size
(class imbalance level), and the number of genes included in the final classification models.
doi:10.1371/journal.pone.0096063.g003
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using other endpoints. It shows that the classification performance

also depends on the difficulty of the classification problem. In

clinical applications, the classification difficulty may also be related

to the nature of the medical question: diagnostic, prognostic, or

response-to-treatment. In a diagnostic question, the investigator

tries to differentiate patients with or without the disease of interest,

based on their gene expression. The prediction based on this type

of problem should be less complicated than the other two, since

the gene expression information is gathered at the time when the

disease is already present or not. On the other hand, the response-

to-treatment classification predicts an outcome that has to develop

over time, based on the gene expression at the start of treatment.

The future of a patient is determined by multiple factors, not only

on the genomic factors when the information is gathered, but also

all events between the information extraction and prediction time.

Prognostic classification faces the same issue as response-to-

treatment classification, and may be even more difficult. In our

study, the classification difficulty is increasing from diagnostic to

response-to-treatment. This finding has been experienced previ-

ously in Leukaemia [56], where the diagnostic classifier had higher

classification performance than prognostic classification. Almost all

their diagnostic classifiers had perfect results, while the best model

for prognostic questions had only 78% accuracy. The effect of

classification difficulty has also been observed by [57], which used

the integrated Fisher score to rank the problem difficulty. The

number of selected genes did not increase as the classification case

became more difficult, which is confirmed by our results (Figure 3).

Furthermore, they stated that the gene selection method had a low

effect on the classification performance. In our result, the gene

selection method was associated with the classification model

performance. However, it is also worthy to note that we

categorized the gene selection methods based on their interactions

with the classifier. Dimensional reduction is often to be done by

applying a particular gene selection technique before building a

classification model. Some methods, however, have the ability to

exclude redundant genes while building the classification model,

e.g. PAM and LASSO. Unfortunately, the theoretical advantage

of these methods was not used by [28,43,44,48,51,55], making a

gene selection step necessary before building the classification

model. One reason for this might be because supervised learning

and differentially expressed genes analysis were presented in the

same paper.

The other important factor that should be considered in

building a classification model is the cross-validation technique. It

has the second largest of individual explained variability. The

variability of classification performance could be due to the

diversity of cross validation techniques that were used by

investigators. It suggests that more attention shall be put to this

factor when we build microarray classification models. Overop-

timistic assessment of model performance is the most common

flaw in class prediction studies, which causes an upward bias in

estimates of prediction accuracy [1,3]. Simple model evaluation is

done by dividing the data into a training and a testing set, i.e. build

a model in the training set and test the model into a dataset that is

blinded for the training part. The test set should not be involved in

any modelling step. An inappropriate approach is to first do the

gene selection in the whole dataset and then make the split in

training and testing set [1,58], as had been done by

[10,18,25,32,43]. In that case, the testing data was partly involved

in a model building step through the selection of genes in the

model, so that an overoptimistic classifier more likely will be

produced. We found 18 studies (40%) that used cross validation for

either model assessment or model selection, but not for both.

Although our individual evaluation (Table S2 and Figure S2)

shows that there is no difference in classification performance of

both cross validation techniques, the multivariable final model

showed that they do differ. Using cross validation for both model

assessment and model selection is definitely to be advised in order

to avoid producing an overoptimistic classifier. A framework for

building classification models on gene expression data by [59] may

be considered as a standard guide.

Another interesting finding in our study is the significant effect

of microarray color system on model performance. The one-color

microarray platform tends to yield higher accuracy than two-color

systems (Figure S3). This result was contradictory with [60] who

tested the dependence of the gene expression prediction in

neuroblastoma patients on the microarray platform. They

concluded that different microarray platforms should be able to

yield similar results if the investigators follow the right procedure

given by the vendor and they know the nature of those platforms.

Individual evaluation yielded no significant study factors that

influenced the class prediction accuracy. A study factor may not be

significant in a univariable model, but it may show its effect in a

multivariable evaluation, due to the presence of other study factors

in the meta-regression model, a mechanism well known as

confounding. Hence, we also evaluated the study factors simulta-

neously by using backward selection. High associations were

shown by the medical question and cross validation method

(Table 5). The prognostic and response-to-treatment studies

tended to use single cross validation method. Nested cross

validation is difficult to use in small sample sized data. Hence,

they might prefer to use single over nested cross validation.

Meanwhile, most of the diagnostic classification studies used

nested cross validation, where most of them had relatively large

sample size. This explains the confounding in the individual

analysis.

Statistical power might be an issue in our study, due to relatively

small number of selected studies used for analysis. However, it is

also important to note that there are not much published gene

expression classification studies outside the cancer field. We found

forty eight studies that fulfilled all our requirements (detail search

strategy is available in the Supplementary Material). Given the

relatively small population of non-cancer published studies, our

search yielded a considerable number of studies when it is

compared to the literature review studies in the cancer field

conducted by [1] (n = 90 studies) and [2] (n = 84 studies). Including

Table 5. The number of data points (average accuracy) clustered by ‘‘medical question’’ and ‘‘cross validation technique’’.

Medical question

Diagnostic Prognostic Response to treatment

Cross validation technique Single 10 (0.93) 5 (0.90) 13 (0.83)

Nested 27 (0.87) 2 (0.90) 4 (0.76)

doi:10.1371/journal.pone.0096063.t005
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cancer studies into our analysis might increase the statistical power

and possibly lead to a difference in behaviour of the study factors

in cancer and non-cancerous diseases. However, as aforemen-

tioned, gene expression studies in the field of cancer have been

observed intensively by [1,3,4], particularly in the supervised

learning case. Thus, in this study we chose to closely evaluate

published classification studies in the microarray gene expression

experiment outside the field of cancer. Although we have a

relatively small number of studies, our finding in the multivariable

evaluation have stable results, in which we found high agreement

of the random effect logistic regression model in the jackknife

resampling analysis and in the overall analysis (Supplementary

Material, Table S3).

This study evaluated eight factors that represent the character-

istics of the experiments as well as the gene expression data. The

multivariable analysis shows that 42% of the between study

variation was explained by these factors, while the other 58%

might be explained by un-observed factors, which may include the

preprocessing procedures (e.g. batch effect removal, normalization

and filtering criteria), the microarray type, and the number of

features after the preprocessing steps. We did not include factors

such as normalization and batch effect removal due lacking

information in the majority of the selected studies. This also rises a

recommendation for each published gene expression study to

report all steps both in the experiment and in the data analyses, as

mentioned by the MIAME (Minimum Information About a

Microarray Experiment) guideline [61].The transparency of study

reporting helps to achieve reproducibility of the results and to

serve as an input for further research, such as a meta-regression

study. The un-reproducibility of result is even more severe when

the datasets, in particular the raw dataset, are not publicly

available [62]. Among our 48 selected studies, we found only eight

studies that had stored both raw and processed datasets; and three

studies that stored processed datasets only either in the ArrayEx-

press or the GEO online repository (last checked on February 4,

2014).

Conclusions

The accuracy of classification models based on gene expression

microarray data depends on study specific and problem specific

factors. Investigators should pay more attention to these factors

when building microarray classification models. The cross

validation technique has an important impact in explaining the

variability across the studies. Nested cross validation is suggested to

be used in any microarray classification study.
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