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Abstract

Phylogenetic analyses of DNA sequence data can provide estimates of evolutionary rates and timescales. Nearly all
phylogenetic methods rely on accurate models of nucleotide substitution. A key feature of molecular evolution is the
heterogeneity of substitution rates among sites, which is often modelled using a discrete gamma distribution. A widely
used derivative of this is the gamma-invariable mixture model, which assumes that a proportion of sites in the sequence are
completely resistant to change, while substitution rates at the remaining sites are gamma-distributed. For data sampled at
the intraspecific level, however, biological assumptions involved in the invariable-sites model are commonly violated. We
examined the use of these models in analyses of five intraspecific data sets. We show that using 6–10 rate categories for the
discrete gamma distribution of rates among sites is sufficient to provide a good approximation of the marginal likelihood.
Increasing the number of gamma rate categories did not have a substantial effect on estimates of the substitution rate or
coalescence time, unless rates varied strongly among sites in a non-gamma-distributed manner. The assumption of a
proportion of invariable sites provided a better approximation of the asymptotic marginal likelihood when the number of
gamma categories was small, but had minimal impact on estimates of rates and coalescence times. However, the estimated
proportion of invariable sites was highly susceptible to changes in the number of gamma rate categories. The concurrent
use of gamma and invariable-site models for intraspecific data is not biologically meaningful and has been challenged on
statistical grounds; here we have found that the assumption of a proportion of invariable sites has no obvious impact on
Bayesian estimates of rates and timescales from intraspecific data.
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Introduction

In phylogenetic analyses of DNA sequence data, the evolution-

ary process is usually described using models of nucleotide

substitution. These models commonly assume that substitutions

occurring at each site are described by a Markov chain and that

different sites evolve in a mutually independent manner. In

practice, almost all models of nucleotide substitution are time-

reversible. The general time-reversible (GTR) model, formally

described by Tavaré [1], includes parameters that allow unequal

frequencies for the four nucleotides and a distinct rate for each of

the six pairwise nucleotide substitutions. By constraining one or

more of these parameters, a family of time-reversible models can

be generated. This gives rise to special cases of the GTR model,

such as the Jukes–Cantor [2], Kimura [3], and Hasegawa–

Kishino–Yano [4] models.

In their basic form, nucleotide substitution models assume that

the evolutionary process is homogeneous across sites. In reality,

however, rates of mutation can vary among sites because of

selective pressures associated with structural and functional

constraints [5–7]. Some sites, such as CpG islands in mammalian

taxa, have a higher propensity to mutate [8]. Failure to take into

account this rate heterogeneity among sites (RHAS) can lead to

biased estimation of branch lengths, with corresponding impacts

on estimates of phylogenies, substitution rates, and evolutionary

timescales [9–13].

RHAS can be modelled in a number of ways, but the most

popular approach is to assume that the rate at each site is a

random variable drawn from a statistical distribution. The gamma

distribution (+C) is most commonly used for this purpose [14,15],

owing to its ease of interpretation and its good fit to empirical data

[5]. The shape of the gamma distribution, governed by the shape

parameter a, can range from bell-shaped (a.1) to L-shaped (a,

1). Consequently, the gamma distribution is capable of modelling

various degrees of RHAS [5].

To reduce computational burden, most methods employ a

discrete gamma model in which the continuous distribution is

approximated by several rate classes with equal percentiles and

probabilities [14]. Within each class, all of the rates are

represented by the mean or median. The higher the number of

rate categories, the better is the fit of the discrete gamma

distribution to the continuous gamma distribution. The number of

rate categories (k) used in phylogenetic analyses of nucleotide

sequences generally ranges from 2 to 32 [16–18], with most

analyses employing 4–10 categories. In an analysis of two small
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data sets (4 sequences, 1352 sites and 5 sequences, 570 sites), Yang

[14] found that 4 rate categories provided sufficiently good

approximations of a and the likelihood and that there was little

improvement in estimation accuracy when more than 8 categories

were used. A greater number of rate categories might be

preferable for large data sets [19].

RHAS can also be described using discrete rate-class models, in

which the rate categories are not determined from some

underlying distribution. A special case of the discrete-rates model

is the invariable-sites model (+I), which assumes that there is a rate

class with a rate of 0 [4,20–23]. In this model, some proportion of

sites (pinv) is assumed to be invariable, or completely resistant to

change, because mutations at these sites are strongly deleterious or

fatal. The remaining sites are assumed to evolve at non-zero rates.

The idea of invariable sites was inspired by studies of protein

structures and has intuitive appeal [20,24]. The invariable-sites

model can be combined with the gamma model of RHAS (+C+I)

[25,26], and the resulting gamma-invariable mixture models are

widely used.

When performing a phylogenetic analysis, the inclusion of a

model of RHAS is usually determined using a model-selection

approach. A common practice is to compare a range of

substitution models using a model-selection criterion, such as the

Akaike information criterion [27] or Bayesian information

criterion [28]. In this respect, the Bayesian information criterion

has been shown to perform well across a range of simulation

scenarios [29]. The best-fitting model is then used in subsequent

analyses of the data set.

Evolutionary models chosen using objective criteria are not

always the most biologically pertinent [30], which raises questions

about the meaning of the resulting estimates of parameters. A

prominent example is the +I model, which is sometimes selected as

the best-fitting RHAS model for data that have been sampled at

the population level. Intraspecific data tend to display lower levels

of variation than sequences that have been sampled at the species

level and above. This makes the evaluation of pinv highly sensitive

to taxon sampling [5]. We would expect the number of constant

sites to decline as sample size increases, leading to lower estimates

of pinv. Sites observed to be constant among sequences might not

be invariable, but might simply have not experienced any

mutations among the sequences that have been sampled.

Additionally, deleterious mutations are much more likely to be

found in population-level data [31,32], so that sites that would

typically be treated as ‘invariable’ at the phylogenetic level might

contain transient polymorphisms at the population level.

The +C+I mixture model, first used by Gu et al. [25], has been

criticised on the grounds that the two parameters involved – pinv

and a – cannot be optimised independently of each other

[15,19,33,34]. An L-shaped gamma distribution (a,1) already

accommodates a proportion of low-variability sites; as a conse-

quence, adding a parameter to account for invariable sites creates

a strong correlation between pinv and a [34]. This might cause

considerable problems during the parameter optimisation process,

since it is impossible to obtain reliable estimates of both

parameters simultaneously [33]. Combining this with the afore-

mentioned sensitivity of pinv to the size of the data set and the level

of divergence, applying the +C+I model to intraspecific data sets

appears particularly problematic, at least on theoretical grounds.

The impact of using different RHAS models in phylogenetic

analyses of intraspecific data is not well understood. The impact of

the choice of RHAS model is most likely to be seen in estimates of

branch lengths, which can have subsequent effects on the inferred

tree topology. Here we investigate how varying the RHAS model

affects phylogenetic analyses based on the molecular clock. We

focus on five intraspecific data sets, four of which comprise

heterochronous sequences (ancient DNA and viruses). In heter-

ochronous data set, the ages of the sequences provide internal

calibrations for the molecular clock, making such data ideal for

studying evolutionary rates and timescales at the intraspecific level.

We test whether increasing the number of gamma categories or

assuming a proportion of invariable sites affects estimates of

substitution rates and coalescence times.

Materials and Methods

We assembled five intraspecific data sets: (i) complete mitogen-

omes from human haplogroup C1, (ii) complete mitogenomes

from hominins, (iii) mitochondrial D-loop from muskox, (iv) PB2

gene from H1N1 human influenza virus, and (v) concatenated

genome fragment from HIV-1. The first data set comprised

isochronous sequences from the present day, whereas the last four

data sets comprised heterochronous sequences of known ages.

Details of the datasets are listed in Table 1.

For each data set, sequence alignments were done using

MUSCLE 3.8.31 [35] and adjusted manually. Sequences with

uncertain ages were removed. For each data set, we performed

preliminary Bayesian phylogenetic analyses using the best-fitting

substitution models selected by the Bayesian information criterion.

Alignments for all datasets used in this study are available in File

S1. Bayesian phylogenetic analyses of the data sets were performed

in BEAST v1.7.5 [36]. The best-fitting model of nucleotide

substitution was selected for each data set using the Bayesian

information criterion in Modelgenerator 0.85 [30]. We tested four

different RHAS models: equal rates among sites, +C, +I, and +C+
I. For the +C models, we repeated the analysis using various

numbers of rate categories ranging from 3–32. To test for rate

heterogeneity among lineages, we initially used the uncorrelated

lognormal relaxed clock [37]. For the human mitogenome data

sets (i and ii), the coefficient of rate variation did not provide any

evidence of rate variation among lineages. Marginal likelihoods

were estimated using the harmonic-mean estimator [38].

Using the maximum-clade-credibility trees from our Bayesian

analyses, we inferred the number of substitutions at each site using

stochastic mutational mapping in SIMMAP [39,40]. We used the

empirical nucleotide frequencies and applied the mean rate

estimate from the Bayesian phylogenetic analysis of each data

set to scale the branch lengths. Numbers were rounded to the

nearest integer. The distribution of inferred mutational counts

provided a picture of the RHAS pattern for each data set. We

performed chi-squared tests to compare the goodness-of-fit of

gamma and negative binomial distributions to the site-specific

substitution counts. In the absence of RHAS, the distribution of

site-specific substitution counts should conform to the Poisson

distribution. In the presence of gamma-distributed RHAS, we

expect the number of changes per site to conform to the negative

binomial distribution. We simultaneously estimated the values of a
by minimising x2. We compared the fit of these two distributions

using the Akaike information criterion.

In the analyses of the heterochronous sequences (data sets ii to

v), the molecular clock was calibrated using the ages of the

sequences. Following previous studies of viruses [41] and ancient

DNA [42], we used date-randomisation tests to check that the

spread and structure of the sequence ages were sufficient for

calibrating estimates of substitution rates (Figure S1). This test

involves the random reassignment of the dates to the sequences. If

the mean posterior rate estimated from the original data set is

included in any of the 95% credibility intervals of the rates

estimated from the date-randomised replicates, the sequence ages

Impact of RHAS Model on Phylogenetic Estimates
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are considered to have insufficient structure and spread for

calibrating the molecular clock. For the mitogenomes from human

haplogroup C1 (data set i), we assumed an age of 21,700 years

(standard deviation 2700 years) for the root of the tree, following

the study by Kumar et al. [43].

A constant-size coalescent prior was used for each analysis,

based on Bayes factors calculated from the marginal likelihoods of

each +C model. Posterior distributions of parameters, including

the tree, were estimated by Markov chain Monte Carlo (MCMC)

sampling. MCMC chains were run for at least 26107 steps, with

samples drawn every 103 steps. After discarding an appropriate

proportion of the samples as burn-in, we checked for acceptable

sampling, mixing, and convergence to the stationary distribution

in each case.

Results

Analysis of rate variation among sites
All data sets showed a negative relationship between the

number of sites in a rate category and the number of inferred

substitutions per site. The category of zero inferred changes had

the highest count for all data sets and, with the exception of the

HIV data set, most sites were observed to be constant for each

data set (Figure 1). For all data sets, the Poisson distribution

provided a poor fit to the site-specific substitution counts (P,,

0.001), with the negative binomial distribution providing a

significantly better fit (Table 2). Despite this improvement, neither

model provided a good approximation of the pattern of RHAS in

the two human mitogenome data sets (i and ii), which were the

largest and least variable. The HIV data set (v) features a large

proportion of sites inferred to be non-constant, and shows

considerable deviation from both the Poisson and negative

binomial distributions. There was a particularly large proportion

of sites with high inferred numbers of substitutions.

Effect of RHAS model on estimates of likelihoods and
parameters

For four out of the five data sets, the marginal likelihood

increased with the number of gamma rate categories (Figure 2). In

general, 6–10 rate categories provided a good approximation of

the asymptotic likelihood value for +C models, whereas there was

minimal improvement in likelihood when using greater than 10

gamma rate categories. It is noticeable that marginal likelihood is

generally higher with +C+I models than with +C models, and that

there is more rapid convergence towards the asymptotic value in +
C+I models. In the analyses of the four heterochronous data sets

(ii–v), neither varying the number of gamma rate categories nor

allowing a proportion of invariable sites had any obvious impact

on estimates of the coalescence time (root age) or the substitution

rate (Figure 3). In almost all cases, the 95% credibility intervals

overlapped substantially and the variance in means was ,6% of

the average 95% CI width (except for the HIV data set). The only

exception was the rate estimate for the HIV data set (v), which

slightly decreased with an increasing number of gamma rate

categories. In the analysis of the mitogenome sequences from

human haplogroups C1 (data set i), neither varying the number of

gamma categories nor allowing a proportion of invariable sites had

any noticeable effect on the estimate of the substitution rate

(Figure S2).

The relationships between the a shape parameter or pinv and the

number of gamma rate categories were less clear (Figure 2). The

general pattern seemed to be a negative relationship between both

parameters and the number of gamma rate categories, which can

best seen in the declining posterior means and the non-
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overlapping 95% CIs of estimates based on small and large

numbers of gamma categories. However, exceptions to both of

these rules were observed in the sequences from human influenza

A H1N1 virus (data set iv).

Increasing the number of gamma rate categories led to a linear

increase in computation time (Figure 4). The computational costs

associated with an increase in the number of gamma categories

were similar between +C and +C+I models. With regard to the

topologies of the maximum-clade-credibility trees, we observed

that the major clades were unaffected by changes in the number of

gamma categories or the inclusion of invariable sites (results not

shown). Since this study is limited to data at the population level,

which are described by the coalescent process, we did not

investigate the impacts of different models on detailed phyloge-

netic relationships.

Discussion

Our phylogenetic analyses of five intraspecific data sets have

provided a number of insights into the performance of RHAS

models. Varying the RHAS model, including the number of

gamma rate categories or a proportion of invariable sites (pinv), had

negligible impacts on our estimates of root age and substitution

rate from heterochronous data sets. We found evidence of a

complex interplay between a, the number of gamma rate

categories, and pinv. When a proportion of the sites were assumed

to be invariable, increasing the number of gamma rate categories

generally caused a decrease in both a and pinv. This is because the

sites that are changing rapidly (mutational hotspots) are preferen-

tially accommodated over less variable sites when there are few

rate categories. When there is a limited number of rate categories,

this results in a gamma distribution with a higher a. The presence

of the invariable-sites parameter in this situation mitigates this

bias, but results in an overestimation of pinv.

Our results highlight a trade-off between computational cost

and improved accuracy when an increasing number of gamma

rate categories are used to model RHAS. The marginal likelihood,

which describes the average fit of a model to the data, reaches a

plateau as the number of gamma rate categories increases, a result

that echoes those of Yang [14]. Using a large number of

categories, however, incurs a significant computational cost,

increasing both the RAM and time requirements for the likelihood

calculations [44]. Our results suggest that using 6–10 rate

categories provides a good approximation of the plateau likelihood

value when not using invariable-sites models, and that increasing

the number of rate categories incurs greater computational cost

with minimal benefit. This contradicts suggestions that using a

relatively small number of rate categories is insufficient to capture

the complexities of the molecular evolutionary process [17].

For population-level analyses that aim to estimate substitution

rates or coalescence times, our results suggest that greatly

increasing the number of gamma categories typically does not

lead to substantial changes in parameter estimates. An exception is

when the evolutionary rate is highly variable among sites and

deviates strongly from a gamma distribution, as in the case of the

HIV data set examined here. In such cases, a higher number of

rate categories (8–10) might lead to a modest improvement in

estimation accuracy. Surprisingly, the H1N1 influenza virus data

did not show a positive relationship between marginal likelihood

Figure 1. Semi-logarithmic plots of substitutions per site for
five intraspecific DNA data sets. Number of substitutions at each
site were inferred using parsimony on the Bayesian estimates of the
tree topologies. Columns indicate the number of sites against the

number of substitutions occurring at each site. Red and green lines
indicate the best-fitting Poisson and negative binomial distributions,
respectively.
doi:10.1371/journal.pone.0095722.g001

Impact of RHAS Model on Phylogenetic Estimates
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and the number of rate categories, although the reasons for this

are unclear.

The results of our analyses using the invariable-sites model are

more complex. The +C+I model is intuitively appealing and is,

according to the Bayesian information criterion, the preferred

model for four of the five data sets analysed (Table 1). However,

estimates of parameters in the +C+I model are highly sensitive to

taxon sampling [5,34] and there is a strong correlation between

the proportion of invariable sites and the gamma shape parameter

[34]. Our analyses reveal that estimates of the proportion of

invariable sites are also highly susceptible to changes in the

number of rate categories. Our results corroborate the notion that

estimates of both parameters are inevitably biased when the +C+I

model is used [34].

The interdependence of pinv and a in the +C+I model has led

some researchers to warn against its use [33,45]. For example, in

the justification of their exclusion of +C+I models in their analyses,

Ren et al. [45] contended that one should also consider the

Table 2. Fit of Poisson and negative binomial distributions to the site-specific substitution counts in Figureô 1, estimates of a, the
ratio of the P values for both distributions, the proportion of constant sites for five data sets and the substitution rate estimate for
each data set.

Poisson Negative binomial aNB
a DAIC

Number of
constant sitesb

Mean
substitution
rate (site21

year21)

(i) Human hg C1
mitogenomes

4:22|10{8 x2
5~58:63 0.048 809.7 96.8% 4:22|10{8

P~3:73|10{62 P~2:33|10{11

(ii) Hominin
mitogenomes

x2
3~481:21 x2

6~76:44 0.092 2617.6 93.2% 2:04|10{8

P~5:62|10{104 P~1:94|10{14

(iii) Muskox x2
5~626:76 x2

6~84:22 0.24 829.0 69.5% 9:51|10{7

P~3:3|10{133 P~1:89|10{15

(iv) H1N1 x2
5~1793:11 x2

10~153:95 0.31 1622.0 63.6% 1:75|10{3

P%10{300 P~5:72|10{28

(v) HIV x2
21~3860:99 x2

38~475:95 0.39 13845.0 27.5% 3:05|10{3

P%10{300 P~4:50|10{77

aThis estimate of the shape parameter for gamma-distributed rates among sites was obtained by minimising x2.
bSites having ,0.5 mutations as inferred by stochastic mutational mapping in SIMMAP.
doi:10.1371/journal.pone.0095722.t002

Figure 2. Bayesian phylogenetic estimates of various parameters against number of gamma rate categories for five intraspecific
DNA data sets. From top to bottom, rows show estimates of marginal likelihood, the gamma shape parameter (a), and the proportion of invariable
sites (pinv). Filled blue and empty red markers represent parameter estimates using +C and +C+I models, respectively.
doi:10.1371/journal.pone.0095722.g002

Impact of RHAS Model on Phylogenetic Estimates
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‘‘biological interpretations of the models and the robustness of

analysis to model assumptions’’ (p. 815), not just the fit of the

model to the data. We concur with this viewpoint, considering that

the invariable-sites assumption is particularly troublesome for

intraspecific data. Here we would expect a +C+I model to perform

well for data sets that show a bimodal distribution in site-specific

rates (one peak at 0 and one peak at .0). However, when the aim

is to estimate the substitution rate or coalescence times for a

population-level data set, we found that allowing a proportion of

invariable sites did not alter the results substantially. There was,

however, a small computational benefit associated with +C+I

models, since they generally outperformed +C models in marginal

likelihood at small numbers of gamma categories, reducing the

need for higher numbers of categories in +C models. In some

instances (data set i and ii), the asymptotic marginal likelihood for

+C+I models was slightly higher than the marginal likelihood for +
C models.

Using a gamma distribution to model RHAS has deservedly

been popular, owing to its good fit and mathematical simplicity

[46]. There is, however, no reason to believe that the distribution

of rates among sites actually follows the gamma distribution.

Indeed, we observe that the gamma model still does not provide an

accurate picture of RHAS, especially for the least variable data sets

that we examined (i and ii). Some studies have explored the

possibility of using alternative approaches to model RHAS.

Notably, the discrete-rates CAT model, implemented in RAxML

[47] and FastTree2 [44], has been shown to be computationally

more efficient than the traditional +C model and yields tree

topologies with improved likelihood values [48]. Recently, Wu et

al. [49] proposed a Bayesian method of automatic model selection

that simultaneously estimates the substitution model and rate at

each site. The performance of these parameter-rich models, with

regard to phylogenetic analyses of intraspecific sequence data,

warrants further study.

Figure 3. Bayesian phylogenetic estimates of substitution rate and root age against number of gamma rate categories for four
intraspecific DNA data sets. Filled blue and empty red markers represent parameter estimates using +C and +C+I models, respectively.
doi:10.1371/journal.pone.0095722.g003

Figure 4. Computation time (min) as a function of the number of gamma rate categories, for the hominin mitogenome data set (ii).
Filled blue and empty red markers represent computation time using TrN+C and TrN+I+C models, respectively. Each Markov chain was run for 106

steps on a six-core processor (Intel Xeon W3690).
doi:10.1371/journal.pone.0095722.g004

Impact of RHAS Model on Phylogenetic Estimates
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Conclusions

The inclusion of a parameter for the proportion of invariable

sites is a legacy of studies conducted at the interspecific level. At

the intraspecific level, estimating the proportion of invariable sites

is primarily a statistical measure that does not have much

biological meaning. Here we suggest that most intraspecific studies

of substitution rates or coalescence times can use fewer than 10

gamma rate categories, in order to achieve a balance between

model complexity, computational efficiency, and parameter

estimation. The results of our study apply to population-level

data, but are probably relevant to data sets containing sequences

from closely related species. Further studies of rate variation in

interspecific data sets will provide additional insights into the

performance of RHAS models.

Supporting Information

Figure S1 Results of the date-randomisation test for
temporal signal in heterochronous data. The plot shows

the rate estimates and their 95% credibility intervals for the

unrandomised data (empty markers)_and date-randomised repli-

cates (filled markers). The test was conducted on the four

heterochronous data sets, each with 20 replicates.

(EPS)

Figure S2 Estimates of substitution rates as a function
of the number of gamma rate categories, for the
isochronous human hg C1 mitogenome data set (i). Filled

blue and empty red markers represent rate estimates using +C and

+C+I models, respectively.

(EPS)

File S1 Alignments for all datasets used in this study.
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