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Abstract

Pattern recognition and classification are two of the key topics in computer science. In this paper a novel method for the
task of pattern classification is presented. The proposed method combines a hybrid associative classifier (Clasificador
Hı́brido Asociativo con Traslación, CHAT, in Spanish), a coding technique for output patterns called one-hot vector and
majority voting during the classification step. The method is termed as CHAT One-Hot Majority (CHAT-OHM). The
performance of the method is validated by comparing the accuracy of CHAT-OHM with other well-known classification
algorithms. During the experimental phase, the classifier was applied to four datasets related to the medical field. The
results also show that the proposed method outperforms the original CHAT classification accuracy.
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Introduction

Recognizing objects is an automatic routine task for humans

and there is a myriad of problems involving pattern recognition.

Simulating the human capacity for objects recognition has been a

very important topic for computer sciences. For several decade,

various approaches have been developed, which can be imple-

mented on computers, to simulate the human ability to recognize

objects. One of such approaches is the associative approach, whose

main purpose is to correctly retrieve complete patterns from input

patterns.

The first known model of associative memories is the

Lernmatrix, developed in 1961 by Karl Steinbuch [1]. Some

years later, an optical device capable of behaving as an associative

memory was created by Buneman and Longuet-Higgins. [2]. In

1972, the work of Anderson [3], Kohonen [4], and to some extent

Nakano [5], led to the model that is now known by the generic

name of Linear Associator. In this same year Shun-Ichi Amari,

published a theoretical work about self-organizing nets of

threshold elements [6]. The work of Amari represents an essential

background to one of the most important associative models: the

Hopfield memory [7]. In the late 1980’s, Kosko [8] developed a

bidirectional associative memory from two Hopfield memories.

The morphological associative memories were introduced by

Ritter et al. in 1998 [9], which represented a qualitative leap for

associative models. These models incorporated concepts from

mathematical morphology, which give them several advantages

over the known models. Associative models have been widely and

successfully used in different applications such as: pollutant

concentration prediction [10], pattern classification [11], images

processing [12,13], among others.

In this paper, a method that combines a hybrid associative

classifier, a coding technique for output patterns and majority

voting, is presented. The rest of this paper is organized as follows.

Section 2 describes all the materials and methods needed to

develop our proposal. Section 3 describes how the experimental

phase was conducted and discusses the results. Some conclusions

are presented in Section 4 and finally the Acknowledge and

References are included.

Materials and Methods

Associative Memories
An associative memory M is a system that relates input patterns

and output patterns as follows [14]:

x?M?y

with x and y being the input and output patterns vectors. Each

input vector form an association with its corresponding output

vector. An associative memory is represented by a matrix whose ij-
th component is mij . For each k integer and positive, the

corresponding association will be denoted as: xk,yk
� �

. The matrix

M is generated from a finite set of previously known associations,

called the fundamental set. If m is an index, the fundamental set is

represented as: xm,ymð ÞDm~1,2,:::,pf g, where p is the cardinality of

the fundamental set. The patterns that form the fundamental set

are called fundamental patterns. If it holds that

xm~ymVm [ 1,2,:::,pf g, M is autoassociative, otherwise it is

heteroassociative. If we consider the fundamental set of patterns

xm,ymð ÞDm~1,2,:::,pf g where n and m are the dimensions of the
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input patterns and output patterns, respectively, it is said that

xm [ An,A~ 0,1f g and ym [ Am. Then the j-th component of an

input pattern xm is x
m
j [ A. Analogously, the j-th component of an

output pattern ym is represented as y
m
j [ A. Therefore, the

fundamental input and output patterns are represented as follows:

xm~

x
m
1

x
m
2

..

.

xm
n r

8>>>><>>>>: [ An ym~

y
m
1

y
m
2

..

.

ym
n

8>>>><>>>>: [ Am

A distorted version of a pattern xm to be recalled will be denoted

as ~xxm. An unknown input pattern to be recalled will be denoted as

xv. If when an unknown input pattern xv is fed to an associative

memory M, and it happens that the output corresponds exactly to

the associated pattern, yv it is said that recalling is correct.

Lernmatrix
The Lernmatrix is a heteroassociative memory that can function

as a binary pattern classifier if the output patterns are properly

selected [14]. It is an input and output system that accepts a binary

input pattern xm [ An,A~ 0,1f g and produce as an output the

class ym [ Am. For a class k [ 1,2,:::mf g, where m is the number of

classes in the fundamental set, the class is coded according to the

following expression: y
m
k~1 and y

m
j ~0 for

j~1,2,:::,k{1,kz1,:::,p. The Lernmatrix is represented by a

matrix M. At the beginning of the learning phase, each

component mij of M is set to zero and then it is updated

according to rule mijzDmij , where:

Dmij~

ze if x
m
i ~1~ y

m
i

{e if x
m
i ~0 y y

m
i ~1

0 otherwise

8><>:
Where e is any positive constant that was previously chosen.

The recovery phase consists of finding the class vector for a

given vector xv [ An. Finding the class means to obtain the

coordinates of the vector yv [ Am that corresponds to the pattern

xv. The i-th component yv
i of the class vector yv [ Am is obtained

according to the following expression:

yv
i ~

1 if
Pn

j~1 mijx
v
j ~MAX m

h~1

Pn
j~1 mhjx

v
j

h i
0 otherwise

(

Linear Associator
Let xm,ymð ÞDm~1,2,:::,pf g be the fundamental set with [15]:

A~ 0,1f g, xm~

x
m
1

x
m
2

..

.

xm
n

8>>>><>>>>: [ An and ym~

y
m
1

y
m
2

..

.

ym
n

8>>>><>>>>: [ Am

The learning phase consists of two steps:

1. For each of the p associations xm,ymð Þ find the matrix ym: xmð Þt
of dimensions m|n

ym: xmð Þt~

y
m
1

y
m
2

..

.

ym
m

0BBBBBB@

1CCCCCCA: x
m
1,x

m
2,:::,xm

n

� �
~

y
m
1x

m
1 y

m
1x

m
2 � � � y

m
1x

m
j � � � y

m
1xm

n

y
m
2x

m
1 y

m
2x

m
2 � � � y

m
2x

m
j � � � y

m
2xm

n

..

.

y
m
i x

m
1 y

m
i x

m
2 � � � y

m
i x

m
j � � � y

m
i xm

n

..

.

ym
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m
1 ym
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m
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m
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n
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1CCCCCCCCCCCCCCA

Table 1. Characteristics of the datasets used in the experimetal phase.

Dataset Instances Attributes Missing Values

Breast Cancer 683 9 Yes

Haberman’s Survival 306 3 No

Liver Disorders 345 6 No

Hepatitis Disease 155 19 Yes

doi:10.1371/journal.pone.0095715.t001

Table 2. Accuracy comparison with the original method (%) original data.

Datasets

Algorithm Breast Cancer Haberman’s Survival Hepatitis Disease Liver Disorders

CHAT 63.10 65.95 68.19 55.63

CHAT-OHM 95.00 66.36 84.96 61.45

doi:10.1371/journal.pone.0095715.t002

Hybrid Associative Classifier CHAT-OHM
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Table 3. Clasification accuracy comparison (%) original data.

Dataset

Algorithm Breast Cancer Haberman’s Survival Hepatitis Disease Liver Disorders

AdaBoostM1 95.05 74.02 89.8 65.96

BayesNet 97.34 71.73 87.68 56.85

BFTree 94.88 72.33 88.98 66.44

CHAT-OHM 95.00 66.36 84.96 61.45

ComplementNaiveBayes 85.43 73.87 77.54 56.57

ConjunctiveRule 91.98 72.97 88.99 56.06

DecisionTable 95.69 71.90 88.40 59.11

DMNBtext 65.01 73.53 79.38 57.98

IB1 95.75 65.77 81.03 62.22

LWL 92.14 71.90 89.70 60.80

MultiBoostAB 94.73 73.28 89.49 65.29

MultiScheme 65.01 73.53 79.38 57.98

NaiveBayes 96.26 74.80 87.50 54.89

NaiveBayesMultinomial 90.32 73.74 78.00 56.96

RandomForest 96.47 67.94 90.61 68.44

RandomTree 94.74 64.48 85.32 64.10

RBFNetwork 96.36 73.75 85.78 65.06

SMO 96.87 73.33 88.83 57.98

Vote 65.01 73.53 79.38 57.98

VotedPerceptron 91.08 73.82 78.09 63.53

doi:10.1371/journal.pone.0095715.t003

Table 4. Clasification accuracy comparison (%) normalized data.

Dataset

Algorithm Breast Cancer Haberman’s Survival Hepatitis Disease Liver Disorders

AdaBoostM1 95.05 74.02 89.80 67.72

BayesNet 97.34 71.73 87.68 56.62

BFTree 94.80 72.43 88.92 67.15

CHAT-OHM 95.52 62.45 89.52 58.5

ComplementNaiveBayes N/A N/A N/A N/A

ConjunctiveRule 91.98 72.97 89.05 56.28

DecisionTable 95.69 71.90 88.46 58.83

DMNBtext 90.00 73.01 88.99 64.17

IB1 95.46 65.58 81.03 63.25

LWL 92.14 71.90 89.95 60.74

MultiBoostAB 94.73 73.28 89.49 64.29

MultiScheme 65.01 73.53 79.38 57.98

NaiveBayes 96.11 74.66 87.36 55.42

NaiveBayesMultinomial N/A N/A N/A N/A

RandomForest 96.33 67.81 90.54 68.44

RandomTree 94.79 64.96 83.70 62.75

RBFNetwork 96.36 73.75 85.78 64.81

SMO 96.88 73.53 88.70 57.90

Vote 65.01 73.53 79.38 57.98

VotedPerceptron 96.87 75.09 85.03 65.86

doi:10.1371/journal.pone.0095715.t004

Hybrid Associative Classifier CHAT-OHM
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2. Sum the p matrices to obtain the memory M~
Pp

m~1

ym:

xmð Þt~ mij

� �
m|n

where the ij-th component of M can be

expressed as follow: mij~

Pp
m~1

y
m
i x

m
i .

The recovering phase consists of presenting an input pattern xv

to the memory M and performing the following operation:

M:xv~
Xp

m~1

ym: xmð Þt
" #

:xv

CHAT
The CHAT is a hybrid associative classifier developed by

Santiago-Montero [16], which is based on two associative

memories: the Lernmatrix and the Linear Associator. This classifier

overcomes some limitations that these two memories presented, by

ingeniously combining the learning and recovery phases of both

models. The first proposed model was called CHA, which

combined the learning phase of the Linear Associator and the

recovering phase of the Lernmatrix, but sometimes this model fails

to perform a correct classification. To overcome this limitation, a

new version was proposed, by adding a new step to the model:

translation of coordinates axes. This new version was named

CHAT. With this axes translation, the new origin is located at the

centroid of the input vectors patterns.

Definition 3.1: Let xmDm~1,2,:::,pf g be a set of fundamental

input patterns, and let �xx be the mean vector of them, where:

x~
1

p

Xp

m~1

xm

Definition 3.2: Let xmDm~1,2,:::,pf g be a set of fundamental

input patterns and x̂xmDm~1,2,:::,pf g a new set of translated

patterns generated using the following expression:

x̂xm~xm{x Vxm [ 1,2,:::pf g

CHAT Algorithm

1. Let xmDm~1,2,:::,pf g be a set of n-dimensional fundamental

input patterns with real values in its components, which are

grouped into m classes.

2. To each of the fundamental input patterns belonging to class k,

an output vector of size m is assigned. This vector consists of

zeros, except for the k-th component, whose value is set to 1.

3. Calculate the mean vector of the set of input patterns according

to definition 3.1.

4. The mean vector is taken as the new origin of the coordinate

axes.

5. Translate the patterns of the input set according to definition

3.2.

6. Apply the learning phase, which is the same as the learning

phase of the Linear Associator, to the translated set obtained in

the previous step.

7. Translate the patterns that have to be classified using the

definition 3.2.

8. Apply the recovering phase, which is the same as the

recovering phase of the Lernmatrix, to the translated set

obtained in the previous step.

CHAT-OHM
In this section the description of the proposed method is

presented. This proposal is part of the results achieved by several

members of the Neural Networks and Unconventional Computing

Laboratory of the Centro de Investigación en Computación, Instituto

Politécnico Nacional, in an attempt to improve the performance of

the CHAT model [16]. This joint effort resulted in a number of

methods that implemented some variations on the CHAT, being

the proposed method one of them.

One-hot Vectors
One-hot vector is a coding technique for output patterns, which

will be used in the proposed method instead of the original coding

technique presented in the step 2 of the CHAT algorithm that was

described in the previous section.

Definition 3.3: Let ŷy1,ŷy2,:::,ŷym
� �

be a set of translated

fundamental output patterns of size p. The i-th component of

each translated fundamental output pattern is coded according to

the following expression:

ŷy
m
i ~

1 if i~m

0 otherwise

�

Majority Voting
The classification phase consists of finding the output vector yv

to which an unknown input pattern xv belongs. Majority voting is

a procedure used during the classification phase to perform this

task.

Definition 3.4: Let m [ Zz be the number of different classes in

the fundamental input set. Let x1,x2,:::,xm
� �

be a set of

fundamental input patterns where m [ 1,2,:::,pf g. For a class

k [ 1,2,:::mf g, a masking vector mvk of size p is coded according

to the following expression:

mvk
i ~

1 if xi [ k

0 otherwise

�

Let M be a matrix generated during the learning phase of the

CHAT-OHM and xv an unknown n-dimensional input pattern to

be classified. The recover pattern fyvyv is determined as follow:

1: zv~Mv

2. For each class k[ 1,2,:::mf g, a counting vector cvk is obtained

applying an ‘‘and’’ operator between zv and mvk:

cvk~zv ^mvk

3. Finally ~yyv is obtained using the following expression:

Hybrid Associative Classifier CHAT-OHM

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e95715



~yyv
i ~

1 if
Pp

j~1 cvi
j~MAX m

h~1

Pp
j~1 cvh

j

h i
0 otherwise

(

CHAT-OHM Algorithm

1. Let xmDm~1,2,:::,pf g be a set of n-dimensional fundamental

input patterns with real values in its components, which are

grouped into m classes.

2. To each of the fundamental input patterns an output vector of

size p is assigned. This vector is coded according to the

definition 3.3.

3. Calculate the mean vector of the set of input patterns according

to definition 3.1.

4. The mean vector is taken as the new origin of the coordinate

axes.

5. Translate the patterns of the input set according to definition

3.2.

6. Apply the learning phase, which is the same that as learning

phase of the Linear Associator, to the translated set obtained in

the previous step.

7. Translate the patterns that have to be classified using the

definition 3.2.

8. Apply the recovering phase, which is the same as the

recovering phase of the Lernmatrix, to the translated set

obtained in the previous step. Because of the way in which the

classes were coded, we will obtain an output vector zv of size p

and not the desire output class ~yyv of size m. Our algorithm

performs an extract step.

9. Perform the majority voting explained in the previous section.

Data Sets
This section provides a brief description of the dataset used

during the experimental phase. All the used datasets were taken

from the University of California at Irvine Machine Learning

Repository [17]. A summary of the main characteristics of the

datasets is shown in Table 1.

Haberman’s Survival Dataset
The dataset contains cases from a study conducted at the

University of Chicago’s Billings Hospital on the survival of patients

who had undergone surgery for breast cancer. The dataset contain

306 instances, which belong to two different classes; 255 instances

belong to the first class (patients who survived 5 years or more) and

81 instances belong to the second class (patients who died within 5

years). The dataset has 4 attributes including the class attribute.

The purpose of the dataset is to predict the survival status of

patients that have undergone breast cancer surgery.

Wisconsin Breast Cancer Dataset
This dataset was obtained from the University of Wisconsin

Hospitals, Madison from Dr. William H. Wolberg. The dataset

has information of clinical cases of breast cancer. The dataset

contains 699 instances belonging to two classes, 458 instances

belong to the first class (benign) and 241 belong to the second class

(malignant). Each instance consists of 10 attributes, including the

class attribute. The dataset has 16 pattern with one missing values.

The instances with missing values were deleted from the original
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Table 6. Clasification accuracy comparison (%) data without outliers.

Dataset

Algorithm Breast Cancer Haberman’s Survival Hepatitis Disease Liver Disorders

AdaBoostM1 98.41 94.84 96.24 83.44

BayesNet 99.46 87.59 93.72 76.98

BFTree 97.84 93.39 96.40 84.43

CHAT-OHM 98.95 90.44 88.94 69.23

ComplementNaiveBayes 86.79 90.60 86.72 64.44

ConjunctiveRule 93.78 89.52 95.25 66.53

DecisionTable 97.16 88.32 94.31 77.73

DMNBtext 65.51 90.12 86.03 66.21

IB1 99.35 93.70 87.71 75.13

LWL 96.41 91.00 95.71 66.95

MultiBoostAB 97.25 92.41 96.32 80.11

MultiScheme 65.51 90.12 86.03 66.21

NaiveBayes 97.93 95.25 97.63 58.54

NaiveBayesMultinomial 92.24 90.93 87.72 65.44

RandomForest 98.55 93.79 96.10 87.36

RandomTree 97.75 92.85 93.65 81.98

RBFNetwork 98.46 93.26 96.62 79.03

SMO 99.50 91.24 92.63 66.21

Vote 65.51 90.12 86.03 66.21

VotedPerceptron 92.90 90.39 85.40 73.89

doi:10.1371/journal.pone.0095715.t006

Table 7. Clasification accuracy comparison (%) normalized data without outliers.

Dataset

Algorithm Breast Cancer Haberman’s Survival Hepatitis Disease Liver Disorders

AdaBoostM1 98.41 94.84 96.24 75.58

BayesNet 99.47 87.59 93.72 66.80

BFTree 97.70 93.75 96.40 75.63

CHAT-OHM 97.69 90.53 89.18 74.13

ComplementNaiveBayes N/A N/A N/A N/A

ConjunctiveRule 93.78 89.52 96.33 61.41

DecisionTable 97.17 88.32 94.31 68.28

DMNBtext 94.49 90.12 93.02 69.28

IB1 99.35 93.70 87.71 69.19

LWL 96.41 91.00 95.71 63.85

MultiBoostAB 97.25 92.42 96.32 72.20

MultiScheme 65.51 90.12 86.03 62.10

NaiveBayes 97.79 95.20 97.02 56.85

NaiveBayesMultinomial N/A N/A N/A N/A

RandomForest 98.70 93.75 96.39 77.26

RandomTree 97.65 92.77 91.67 71.97

RBFNetwork 98.46 93.26 96.92 71.92

SMO 99.50 91.33 92.63 62.05

Vote 65.51 90.12 86.03 62.10

VotedPerceptron 99.88 93.63 86.97 72.10

doi:10.1371/journal.pone.0095715.t007

Hybrid Associative Classifier CHAT-OHM
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Table 8. Comparison of classification Improvement (%) for Breast Cancer dataset.

Breast Cancer

Algorithm Normalization Without Outliers Without Outliers Normalized

AdaBoostM1 0.00 3.36 3.36

BayesNet 0.00 2.12 2.13

BFTree 20.08 2.96 2.82

CHAT-OHM 0.52 3.95 2.69

ComplementNaiveBayes N/A 1.36 N/A

ConjunctiveRule 0.00 1.80 1.80

DecisionTable 0.00 1.47 1.48

DMNBtext 24.99 0.50 29.48

IB1 20.29 3.60 3.60

LWL 0.00 4.27 4.27

MultiBoostAB 0.00 2.52 2.52

MultiScheme 0.00 0.50 0.50

NaiveBayes 20.15 1.67 1.53

NaiveBayesMultinomial N/A 1.92 N/A

RandomForest 20.14 2.08 2.23

RandomTree 0.05 3.01 2.91

RBFNetwork 0.00 2.10 2.10

SMO 0.01 2.63 2.63

Vote 0.00 0.50 0.50

VotedPerceptron 5.79 1.82 8.8

doi:10.1371/journal.pone.0095715.t008

Table 9. Comparison of classification improvement (%) for haberman’s survival dataset.

Haberman’s Survival

Algorithm Normalization Without Outliers Without Outliers Normalized

AdaBoostM1 0.00 20.82 20.82

BayesNet 0.00 15.86 15.86

BFTree 0.10 21.06 21.42

ComplementNaiveBayes N/A 16.73 N/A

ConjunctiveRule 0.00 16.55 16.55

DecisionTable 0.00 16.52 16.42

DMNBtext 20.52 16.59 16.59

IB1 20.19 27.93 27.93

LWL 0.00 19.10 19.10

MultiBoostAB 0.00 19.13 19.13

MultiScheme 0.00 16.59 16.59

NaiveBayes 20.14 20.45 20.40

NaiveBayesMultinomial N/A 17.29 N/A

RandomForest 20.13 25.85 25.81

RandomTree 0.48 28.37 28.29

RBFNetwork 0.00 19.51 19.51

SMO 0.00 17.91 18.00

Vote 0.00 16.59 16.59

VotedPerceptron 1.27 16.57 19.81

CHAT-OHM 23.91 24.08 24.17

doi:10.1371/journal.pone.0095715.t009

Hybrid Associative Classifier CHAT-OHM
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Table 10. Comparison of classification improvement (%) for hepatitis disease dataset.

Hepatitis Disease

Algorithm Normalization Without Outliers Without Outliers Normalized

AdaBoostM1 0.00 6.44 6.44

BayesNet 0.00 6.04 6.04

BFTree 20.06 7.42 7.42

CHAT-OHM 4.56 3.98 4.22

ComplementNaiveBayes N/A 9.18 N/A

ConjunctiveRule 0.06 6.26 7.34

DecisionTable 0.06 5.91 5.91

DMNBtext 9.61 6.65 13.64

IB1 0.00 6.68 6.68

LWL 0.25 6.01 6.01

MultiBoostAB 0.00 6.83 6.83

MultiScheme 0.00 6.65 6.65

NaiveBayes 20.14 10.13 9.52

NaiveBayesMultinomial N/A 9.72 N/A

RandomForest 20.07 5.49 5.78

RandomTree 21.62 8.33 6.35

RBFNetwork 0.00 11.14 11.14

SMO 20.13 3.80 3.80

Vote 0.00 6.65 6.65

VotedPerceptron 6.94 7.31 8.88

doi:10.1371/journal.pone.0095715.t010

Table 11. Comparison of classification improvement (%) for liver disorders dataset.

Liver Disorders

Algorithm Normalization Without Outliers Without Outliers Normalized

AdaBoostM1 1.76 17.48 9.62

BayesNet 20.23 20.13 9.95

BFTree 0.71 17.99 9.19

CHAT-OHM 22.95 7.78 12.68

ComplementNaiveBayes N/A 7.87 N/A

ConjunctiveRule 0.22 10.47 5.35

DecisionTable 20.28 18.62 9.17

DMNBtext 6.19 8.23 11.30

IB1 1.03 12.91 6.97

LWL 20.06 6.15 3.05

MultiBoostAB 21.00 14.82 6.91

MultiScheme 0.00 8.23 4.12

NaiveBayes 0.53 3.65 1.96

NaiveBayesMultinomial N/A 8.48 N/A

RandomForest 20.68 18.92 8.82

RandomTree 21.35 17.88 7.87

RBFNetwork 20.25 13.97 6.86

SMO 20.08 8.23 4.07

Vote 0.00 8.23 4.12

VotedPerceptron 2.33 10.36 8.57

doi:10.1371/journal.pone.0095715.t011
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dataset and the resulting data set was used for the experimental

phase.

Liver Disorders Dataset
The Liver Disorders dataset was created by BUPA Medical

Research Ltd. This dataset presents the results of a study of liver

disorders that might arise from excessive alcohol consumption. It

contains 345 instances belonging to two classes, 145 instances

belong to the first class and 200 instances belong to the second

class. Each instance consists of 7 attributes, including the class

attribute.

Hepatitis Disease Dataset
This dataset contains information of the clinical results of

hepatitis patients. It contains 155 instances belonging to two

classes, 32 instances belong to the first class (die) and 123 instances

belong to the second class (alive). Each instance consists of 20

attributes, including the class attribute. This dataset has multiple

missing values. Due to the small size of the dataset and the

considerable number of missing values, these cannot be discarded.

In this case the missing values were substituted by the class mode

for categorical features and by the class mean for continuous

values.

Machine Learning Algorithms
This section provides a short description of the algorithms used

during the experimental phase. All of these algorithms are

implemented in the WEKA 3: Data Mining Software in Java

[18]. Further details on the implementation of these algorithms

can be found in the following reference [19].

IB1
IB1 is a basic nearest-neighbor instance-based learner that finds

the training instance closest in Euclidean distance to the given test

instance and predicts the same class as this training instance. If

several instances qualify as the closest, the first one found is used

[19].

ConjunctiveRule
ConjunctiveRule learns a simple conjunctive rule learner that

predicts either a numeric or a nominal class value. Uncovered test

instances are assigned the default class value of the uncovered

training instances. The information gain (nominal class) or

variance reduction (numeric class) of each antecedent is computed,

and rules are pruned using reduced-error pruning [19].

RandomTree
Trees built by RandomTree test a given number of random

features at each node, performing no pruning. The tree is

constructed considering K randomly chosen attributes at each

node. Also has an option to allow estimation of class probabilities

based on a hold-out set [19].

RandomForest
RandomForest constructs random forests by bagging ensembles of

random trees. A random forest is a classifier consisting of a

collection of tree-structured classifiers and each tree depends on

the values of a random vector sampled independently and with the

same distribution for all trees in the forest [20].

BFTree
BFTree constructs a decision tree using a best-first expansion of

nodes rather than depth-first expansion used by standard decision

tree learners. Pre and post pruning option are available that are

based on finding the best number of expansion to use via cross-

validation on the training data. While fully grown trees are the

same for best-first and depth-first algorithms, the pruning

mechanism used by BFTree will yield a different pruned tree

structure than that produced by depth-first methods [19].

SMO
SMO implements John Platt’s sequential minimal optimization

algorithm for training a support vector classifier, using kernel

functions such as polynomial or Gaussian kernels. Missing values

are replaced globally, nominal attributes are transformed into

binary ones, and attributes are normalized by default. For further

details of the implementation, see [21].

AdaBoostM1
AdaBoostM1 is a variation of boosting, method for combining

multiple models seeking models that complement one another.

This algorithm is constructed through the combination of various

classifiers produced by repeatedly running T rounds a given

‘‘weak’’ learning algorithm on various distributions over the

training data. Finally the booster combine the T ‘‘weak’’

hypotheses into a single final hypothesis [22].

MultiBoostAB
MultiBoostAB combines boosting with a variant of wagging to

prevent overfitting. Multiboosting is an extension of AdaBoost

technique [23]. Wagging is a technique that allow variance

reduction, while AdaBoost perform both variance and bias

reduction. MultiBoost is achieved by wagging a set of sub-

committees of classifiers, each sub-committee formed by Ada-

Boost. When forming decision committee using C4.5 as the base

learning algorithm, MultiBoost is demonstrated to produce

committees with lower error than AdaBoost.

RBFNetwork
RBFNetwork implements a normalized Gaussian radial basis

function network, deriving the centers and widths of hidden units

using k-means and combining the outputs obtained from the

hidden layer using logistic regression if the class is nominal and

linear regression if it is numeric. The activations of the basis

functions are normalized to sum to 1 before they are fed into the

linear models [19].

NaiveBayes
NaiveBayes implements the probabilistic Naı̈ve Bayes classifier.

The NaiveBayes algorithm is based on Bayes rule and assumes

that the attributes are conditional independent given the class, and

it posits that no hidden or latent attributes influence the prediction

process [24].

BayesNet
Bayesian networks are alternative ways of representing a

conditional probability distribution by means of directed acyclic

graphs (DAGs). In this model, each node represents a random

variable and an arrow connecting a parent node with a child node

indicates a relationship between them [25]. BayesNet learns

Bayesian nets under two assumptions: nominal attributes (numeric

ones are pre-discretized) and no missing values (any such values

are replaced globally).
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NaiveBayesMultinomial
NaiveBayesMultinomial implements the multinomial Bayes’

classifier. A Naı̈ve Bayes classifier is based on Bayes rule but this

does not take into account the number of occurrence of an

element. The Naı̈ve Bayes Multinomial incorporates frequency to

perform classification [19].

ComplementNaiveBayes
ComplementNaiveBayes builds a Complement Naı̈ve Bayes

classifier as described by Rennie et al [26]. In this work, they

proposed heuristic solutions to some problems presented by the

Naı̈ve Bayes classifiers. They proposed a solution for skewed data,

more training examples for one class than another that causes that

the classifier prefer one class over the other.

DecisionTable
DecisionTable builds a simple decision table majority classifier,

this table has two components: a set of features that are included in

the table and a body consisting of labeled instances from the space

defined by the features [27].

LWL
LWL is a general algorithm for locally weighted learning. It

assigns weights using an instance-based method and builds a

classifier from the weighted instances. Different classifiers can be

selected, but a good choice is Naı̈ve Bayes for classification

problems and linear regression for regression problems. Attribute

normalization is turned on by default [19].

DMNBtext
Another Naı̈ve Bayes scheme for text classification is

DMNBtext. This learns a multinomial Naı̈ve Bayes classifier in a

combined generative and discriminative fashion. DMNBText

injects a discriminative element into parameter learning by

considering the current classifier’s prediction for a training

instance before updating frequency counts. When processing a

given training instance, the counts are incremented by one minus

the predicted probability for the instance’s class value. DMNBText

allows users to specify how many iterations over the training data

the algorithm will make, and whether word frequency information

should be ignored, in which case, the method learns a standard

Naı̈ve Bayes model rather than a multinomial one [19].

MultiScheme
MultiScheme selects the best classifier from a set of candidates

using cross-validation of percentage accuracy or mean-squared

error for classification and regression, respectively. The number of

folds is a parameter. Performance on training data can be used

instead [19].

Vote
Vote provides a baseline method for combining classifiers. The

default scheme is to average their probability estimates or numeric

predictions, for classification and regression, respectively. Other

combination schemes are available–for example, using majority

voting for classification [19].

VotedPerceptron
VotedPerceptron implements the voted perceptron algorithm.

The solution vector found by the perceptron algorithm depends

greatly on the order in which the instances are encountered. One

way to make the algorithm more stable is to use all the weight

vectors encountered during learning, not just the final one, letting

them vote on a prediction. Each weight vector contributes a

certain number of votes [19].

Normalization
During the experiments performed over the original data, we

observed that some of the datasets present large scale difference

between features. To avoid the effect that an overly large variable

can have over the classification performance, the datasets were

normalized and the experiments were performed with the

normalized datasets. Normalization can prevent some features

from dominating just because they have large numeric values.

Subtracting the mean and dividing by the standard deviation can

be an appropriate normalization method for this situation [31].

The normalization was performed separately on each attribute.

Normalization was calculated using the following expression:

zi ~
xi {m

s

Where zi is the normalized value of xi, m is the mean of the

population and s is the standard deviation of the population.

Wilson’s Edition
One of the most popular filtering algorithms is the Wilson’s

Edition [28]. The general idea of this method is to identify and

remove noisy or atypical patterns, primarily those which exist in

the overlap area between two or more classes. The process consists

of applying the rule of the k nearest neighbor (usually k = 3) to

estimate the corresponding class of each pattern in the dataset.

Those patterns whose class does not correspond to the majority

class of the k-nearest neighbors will be discarded [28].

Algorithm Comparison
One of the objectives of this study is to perform a consistent

comparison between the classification performance of our

proposal and the classification performance of other well-known

pattern classification algorithms. There are two aspects that need

to be addressed: select a suitable test set and the method to

compare the classification performance of each algorithm. To

predict the performance of a classifier, we need to assess the

success rate on a dataset that takes no part in the construction

(training phase) of the classifier. When the data available is big,

there is no problem in the selection of a suitable test set, just use a

large training set and a large test set. But the question of predicting

performance with limited data is still controversial. There are

many techniques, of which cross-validation is the method of choice

in most situations. Kohavi [29] compared cross-validation and

bootstrap, the results show that bootstrap has low variance, but

extremely large bias for some problems; as a consequence stratified

10-fold cross-validation is recommended. To perform the com-

parison of our proposal with other pattern classification algo-

rithms, we used the 10-fold cross-validation approach.

Classification Accuracy
For classification problems, the performance of a classifier can

be measured in term of the success rate. The classifier predicts the

class of each instance in the test set; if the class is correct, it is

counted as a success. The success rate is the proportion of success

over the whole set of test instances. In this paper, the accuracy of

the classifiers is expressed as a percentage, and was computed

according to the following expression:
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Accuracy ~
Number of correct classified instances

Number of test instances

Validation Method
According to [19] the standard way of predicting the

classification accuracy of a learning technique is to use stratified

10-fold cross-validation. This method divides the dataset into 10

parts in which each class is represented in approximately the same

proportion as in the full dataset. The classification algorithms will

be executed 10 times, in each execution one different part will be

used as the test set and the classification algorithm will be trained

with the remaining nine parts. The success rate will be calculated

for each execution. Finally, the 10 success rates are averaged to

yield an overall success rate.

Experiments and Discussion

In this section we present and discuss the results obtained during

the experimental phase, throughout which four datasets were used

to obtain the classification performance of each of the compared

classification algorithms. The datasets used in this section were

taken from the UCI Machine Learning Repository [17]. A brief

summary of the datasets is presented in Table 1.

The performance achieved by the proposed method is

compared with the performances of 19 well-known methods taken

from the WEKA 3 Data Mining Software [18]. Further

information about the used algorithms can be found in [19]. All

experiments were conducted using a personal computer with an

Intel Core i3-2100 Processor running Ubuntu 13.04 64-bits

operating system with 4096 GB of RAM.

To ensure valid comparison of classification performance, the

same conditions and validation schemes were applied in each

experiment. Classification performance of each of the algorithms

was calculated using stratified 10-fold cross-validation, with

random re-ordering of the patterns before fold generation. In

order to account for the random re-ordering of the patterns, the

experiments for each classification algorithm, including our

proposal, were executed 10 times using the stratified 10-fold

cross-validation approach and the results averaged to obtain a final

success rate for each algorithm. These results are used to compare

the performance of our proposal and the other classification

algorithms.

Original Datasets
In this subsection we analyze the classification accuracy results

of each one of the compared algorithms, when applied to the

original four datasets that were selected for this study. Table 2

shows the classification accuracy achieved by the original CHAT

model and by our proposal in the four datasets. It is worth noting

that CHAT-OHM achieved the best classification accuracy for all

the datasets. In some cases the improvement in the classification

accuracy is quite significant, as in the cases of the Breast Cancer

dataset and the Hepatitis Disease dataset, with an improvement of

31.9 percent and 16.77 percent, respectively. The improvement

for the Liver Disorders dataset is 5.82 percent, which is still

important. The Haberman’s Survival dataset is where we observed

the least improvement with only 0.41 percent.

Table 3 shows the classification accuracy achieved by our

proposal and the 19 classification algorithms from WEKA, against

which we will compare our method. For each dataset, the highest

classification accuracy is emphasized with boldface.

As we can observe in Table 3, the CHAT-OHM does not

surpass all the other classification algorithms, still it exhibits a

competitive classification accuracy. For the Breast Cancer dataset

the CHAT-OHM achieved a performance of 95% (9th place),

only 2.34% below the best performer, BayesNet. For the Liver

Disorders dataset the best classifier was RandomForest, with a

68.44% of classification accuracy, while the CHAT-OHM

reached the 9th place with a difference of performance of

6.99%. For the case of Haberman’s Survival dataset CHAT-

OHM achieved a classification accuracy of 66.36% which leaves it

in 18th place with 8.44% below the best classifier, NaiveBayes.

The best performance for Hepatitis Disease dataset was achieved

by RandomForest with 90.61% of classification accuracy, while

the CHAT-OHM was positioned in the 13th place with a

classification accuracy of 84.96%.

Notice, however, that despite not exhibiting the best perfor-

mance for any given dataset, CHAT-OHM has a consistent

behavior: the proposed method reached the 9th place for the

Breast Cancer dataset and the Liver Disorders dataset, while being

the 13th place for the Hepatitis Disease dataset and the 18th place

for the Haberman’s Survival dataset. On the other hand, Bayes

Net is the best classifier for the Breast Cancer dataset, while being

the 17th place for the Liver Disorders dataset, the 16th place at the

Haberman’s Survival dataset, and the 9th place for the Hepatitis

Disease dataset. Another example of this inconsistent performance

is that of the NaiveBayes algorithm: it is the 5th place for Brest

Cancer dataset, the worst method for the Liver Disorders dataset,

the best at Haberman’s Survival dataset, and the 10th method for

Hepatitis Disease dataset.

Normalized Datasets
While performing the experiments, we noticed that some

attribute values are significantly larger than the values of the rest of

the attributes. As recommended by [31] to avoid the impact of

scale change, the dataset can be normalized. The justification

usually given for this normalization is that it prevents certain

features from dominating merely because they have large

numerical values.

Table 4 shows the classification accuracy achieved by our

proposal and the 19 classification algorithms from WEKA, when

applied to normalized datasets. For each dataset, the highest

classification accuracy is emphasized with boldface. In general, no

significant variations were achieved with respect to the results of

the datasets without normalization. In most cases the improve-

ment is less than 2 percent, with only two clear exceptions:

VotedPerceptron and DMNBtext, which significantly increased

their classification accuracy. The former exhibits an improvement

of 5.79% for the Breast Cancer dataset and 6.94% for the

Hepatitis Disease dataset, while the latter shows an improvement

of 24.99% for the Breast Cancer dataset, 6.19% for the Liver

Disorders dataset and 9.61% for the Hepatitis Disease dataset.

The performance of CHAT-OHM was not significantly affected

by normalization, but for the Hepatitis Disease dataset the

improvement of 4.56% changes its rank from the 13th place

(Table 3) to the 4th place (Table 4).

The normalization method used in our experiments, produce

both positive and negative normalized values. This situation did

not allow us to perform the experiment with two classification

algorithms from WEKA: ComplementNaiveBayes and Naive-

BayesMultinomial, since these algorithms are unable to handle

negative values.
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Outliers Treatment
During the testing phase, we also noticed the presence of some

atypical pattern in the datasets. To verify the presence of outliers

in the datasets, a method for detection and deletion of outliers

called Wilson’s Edition was applied to the datasets [28]. Table 5

shows the amount of outliers found and deleted from the four

datasets using this technique. The information presented by this

table, shows that the Breast Cancer dataset presents only 3.22% of

outliers while Haberman’s Survival dataset presents 36.45%. The

fact that most of the classifiers work much better for the Breast

Cancer dataset, may be justified by the almost absence of outliers

in this dataset. The decision boundary between the classes appears

to be better defined for the Breast Cancer dataset, thus the

classification algorithms exhibit a higher classification accuracy

than the one achieved with the other datasets, where the decision

boundaries seem not so well defined.

Table 6 shows the classification accuracy achieved by our

proposal and the 19 classification algorithms from WEKA, when

applied to datasets without outliers. For each dataset, the highest

classification accuracy is emphasized with boldface. The removal

of outliers leads to an improvement for all the classification

algorithms presented in this work. For the Breast Cancer dataset

22 outliers were removed, which represent the 3.22% of the

original dataset. The improvement in the classification accuracy

for this dataset varies from 0.5% to 4.27%. The CHAT-OHM

shows an improvement of 3.95% for the Breast Cancer dataset,

which changes its position from the 9th place (Table 3) to the 4th

place (Table 6), as mentioned before.

Table 7 shows the classification accuracy achieved by our

proposal and the 19 classification algorithms from WEKA, when

applied to normalized datasets without outliers. For the Liver

Disorder dataset, increases in the classification accuracy can be

observed when compared with the experiments performed on the

original datasets. But if we compare the result of experiments with

the datasets without outliers and the ones with the normalized

datasets without outliers, the classification accuracy gets worse

instead of better. In general, it seems that for this dataset, it is

better not to use normalization and instead rely on the removal of

outliers. On the other hand CHAT-OHM performed better with

the normalized and outliers-free dataset. The original performance

was 61.45%, the performance with the outliers-free dataset was

69.23% and the performance with the normalized outliers-free

dataset was 74.13%; with this improvement the classifier changes

its rank from the 9th place with the original dataset (Table 3) to the

4th place with the normalized outliers-free dataset (Table 7).

Improvement Analysis
From the results presented in Table 3, 4, 6, and 7, it is shown

that there is no specific classification algorithm that exceed all the

other algorithms in all the presented problems. This claim is

supported by the No-Free-Lunch Theorems presented by Wolpert

and Macready [30], which establish that for an algorithm, any

performance gain in one kind of problem is offset by its

performance loss in other kind of problems.

Table 8, 9, 10, and 11 show the percentage of improvement

achieved by our proposal and the 19 classification algorithms from

WEKA, when applied to normalized datasets, datasets without

outliers, and normalized datasets without outliers, for each of the

four datasets used.

For the Brest Cancer dataset, CHAT-OHM exhibits an

improvement of 3.95%, being the second algorithm with higher

improvement when removing the outliers. The dataset that

presented greatest improvements with the removal of outliers

was Haberman’s Survival. On average the classification accuracy

improved from 71.82% to 91.49%. The improvements for this

dataset vary from 15.86% to 28.37%. The CHAT-OHM exhibit

an improvement of 24.08% when removing the outliers, position-

ing itself in the fourth place of the algorithms with higher

improvements. For the Liver Disorders dataset the improvements

when removing the outliers vary from 3.65% to 20.13%. The

CHAT-OHM shows an improvement of 7.78%, which is

relatively low when compared with the improvements presented

by the rest of the algorithms for this dataset.

With the normalized outliers-free datasets, CHAT-OHM shows

an improvement of 12.68% with the Liver Disorder dataset and its

rank changes from the 9th place to the 4th place. Also, it was the

classifier with the best improvement for this dataset. For the

Haberman’s Survival dataset the model exhibit a 24.08% of

increase in its performance and it was the fourth best improvement

for this dataset.

Conclusions

In this paper, we present a method that combines a Hybrid

Associative classifier, a coding technique for output classes and a

procedure of majority voting during the classification phase. This

method is called CHAT-OHM. During the experimental phase,

this method is applied to four different datasets related to the

medical field. The performance of the method is compared with

19 machine learning algorithms implemented in WEKA Data

Mining Software.

The proposed method uses an associative classifier, the CHAT

[16], combined with a novel coding technique and a voting

procedure. The results obtained demonstrate that the proposed

method improved the result obtained by the CHAT.

However the experiments show that the CHAT-OHM is

sensitive to the presence of outliers. To improve the classification

accuracy of this algorithm, it has to be combined with a method of

detection and removal of outliers. In the present work we use

Wilson’s Edition as such method.

The CHAT-OHM presented fairly good results and a consistent

behavior when applied to the four datasets used in this study. The

performance of the model was not significant affected by the

normalization process. On the other hand it was positive affected

by the removal of outliers, displaying remarkable improvement in

its performance, such as the ranking improvement for the Breast

Cancer (4th place) with a performance increase of 3.95%. Another

significant performance enhancement was obtained with the Liver

Disorders dataset using normalization and outliers removal, the

CHAT-OHM improved its rank to the 4th place with an increase

of the classification accuracy of 12.68%.

It should be mentioned that our proposal is part of a family of

methods based on the CHAT classifier. The main difference

between these methods is the coding technique of each one, such

as: Modified Johnson-Möbius binary coding, Gray coding, among

others.
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