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Abstract

A Similarity Ratio Analysis (SRA) method is proposed for early-stage Fault Detection (FD) in plasma etching processes using
real-time Optical Emission Spectrometer (OES) data as input. The SRA method can help to realise a highly precise control
system by detecting abnormal etch-rate faults in real-time during an etching process. The method processes spectrum
scans at successive time points and uses a windowing mechanism over the time series to alleviate problems with timing
uncertainties due to process shift from one process run to another. A SRA library is first built to capture features of a healthy
etching process. By comparing with the SRA library, a Similarity Ratio (SR) statistic is then calculated for each spectrum scan
as the monitored process progresses. A fault detection mechanism, named 3-Warning-1-Alarm (3W1A), takes the SR values
as inputs and triggers a system alarm when certain conditions are satisfied. This design reduces the chance of false alarm,
and provides a reliable fault reporting service. The SRA method is demonstrated on a real semiconductor manufacturing
dataset. The effectiveness of SRA-based fault detection is evaluated using a time-series SR test and also using a post-process
SR test. The time-series SR provides an early-stage fault detection service, so less energy and materials will be wasted by
faulty processing. The post-process SR provides a fault detection service with higher reliability than the time-series SR, but
with fault testing conducted only after each process run completes.
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Introduction

Integrated Circuit (IC) manufacturing has played an important

role in the development of the Information Technology (IT)

industry. In recent years, it has seen two major trends. Firstly,

more and more transistors are being built per wafer [1]. Secondly,

larger diameter wafers are being employed to increase the IC

yield. Compared with current 300 mm diameter wafers, 450 mm

diameter wafer technology is proposed as a main-stream product

for the near future [2]. These developments require that control

mechanisms in IC fabrication become more precise, year by year.

IC fabrication is a very complex process, with plasma etching as

one of its fundamental process steps. The etching process impacts

the quality of the final product output significantly and poses a

range of research challenges. Four challenge types were mentioned

in [3]: selectivity between etch mask and substrate, profile control

of the etch pattern, damage to the material during etching and

etch-rate control. Other important factors impacting the process

were also identified, such as control of plasma chemistry, surface

temperature, and pressure. As there remains a shortcoming in

precise understanding of the underlining physical/chemical

reactions involved, the process is often operated and controlled

on empirical principles [4]. In order to monitor the process to

effect its control, suitable process data collection mechanisms are

required. The Optical Emission Spectrometer (OES) is a popular

technology for this purpose. In the etching chamber, physical and

chemical reactions trigger optical emissions. Different chemical

species exhibit different spectrums. By observing the spectrum,

etching progress can be inferred, in real-time. Compared with

other measurement methods, OES provides non-intrusive mea-

surements where no interference with the process is introduced.

On the other hand, OES has limitations. High information

complexity and redundancy of the data and difficulty in emission

line identification are two well-known challenges [5]. Relating to

these challenges, considerable OES-related research has been

carried out including, virtual metrology methods [6,7], endpoint

detection strategies [8,9] and system condition monitoring [10].

This paper focuses on another important research topic in

plasma etching, Fault Detection (FD). There are four major

reasons for conducting fault detection in the IC fabrication process

[11] : (1) improvement of process quality, (2) decrease of

equipment downtime, (3) improvement of wafer quality and (4)

less usage of testing wafers. Traditional FD technologies have two

common problems: high cost and long-time delay before detection

of a fault. For example, the Scanning Electron Microscopy (SEM)

is used to measure etch depth, and then mean etch rate is

calculated by the depth divided by the total etch time. This etch

rate is a popular statistic to assess the process and wafer quality,

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e95679

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0095679&domain=pdf
http://www.research.ie/
http://www.research.ie/


however, this method introduces a large cost. The method also

needs to wait for the end of the etching process, so a long-time

delay is involved. The typical time delay to produce the etching

result with traditional metrologies was demonstrated in [12], often

taking hours or even days. During that time period, thousands of

wafers can be damaged due to continuance of the same underlying

system fault condition. Due to these problems, OES datasets have

been widely studied for the purpose of fault detection due to two

important features: its real-time monitoring capability and non-

intrusive nature, however, the method poses its own challenges. As

with other research with OES data, OES fault detection also

suffers from the high dimensionality problem. To illustrate this,

time series OES measurements from a healthy and a faulty etching

process are presented respectively in Figure 1. It is difficult to tell

the difference between them by a direct observation, so effective

data processing methods are required to extract useful information

from the raw data. In [13], the author mentioned that etch quality

was affected significantly by small variations in equipment, and it

is difficult to separate such a small variation from background

noise for fault detection. In [14], process shift was discussed as

another common challenge, for example, process shift can lead to

a high rate of false alarms. (A typical scenario of this problem is

presented and discussed in the result and discussion section, based

on a real dataset). Due to these challenges, a large amount of

research has focused on fault detection using OES, however, most

approaches share the following common issues.

In general, most methodologies employ a fault detection test

only after the whole etching process has completed. Starting with a

dataset from a complete process run, popular FD methods make

use of Principal Component Analysis (PCA) [15], support vector

machines [16], pattern recognition methods [13], Independent

Component Analysis (ICA) [17], and artificial neural networks

[18]. Each of these methods can have their own particular

problems. For example, two PCA issues were discussed in [11].

Firstly, the nonlinear characteristics of semiconductor plasma

processes made the traditional PCA approach difficult to

implement. Secondly, the PCA usually needs two control charts

for the fault detection: Hotelling’s T2 and Squared Prediction

Error (SPE). This can increase operation cost significantly,

compared with a single chart. Regarding the use of ICA, it is

always difficult to pick the component number and order in

practice [17].

Some methodologies are able to detect faults at an early-stage

with a single spectrum scan, but the times when the spectrums are

taken are usually limited to a few chosen time points. In [19], a

single OES scan was used for fault detection and classified at eight

fixed time points. PCA was used in this case, but low FD accuracy

was obtained. Therefore, the author concluded that a single OES

scan could not provide a reliable FD service. In [12], a pattern

recognition method was used for FD with OES. By calculating a

matching rate between the testing sample and a library

representing healthy samples, a fault could be detected success-

fully. Originally, the matching rate took all OES scans of a

complete etching process as input, so the fault could only be

detected at a post-process phase. This method could be adjusted to

take individual scans as input, potentially. However, it still has the

problem that the OES measurements were limited to certain time

points. The authors built the library for healthy samples using

average intensity plus/minus 3 standard deviations, did not discuss

why 3 standard deviations was an appropriate choice.

In order to address these problems, a Similarity Ratio Analysis

(SRA) method is proposed in this paper. Compared with previous

research, the SRA method can detect faults at an early stage of the

etching process. The OES data are also not limited to certain time

points by the SRA, so the FD system can be more flexible because

the timetable for the OES sampling can be adjusted based on real-

time system feedback. The SRA method is based on a supervised

training framework. In training, a range of acceptable wavelength

intensities is calculated and stored based on healthy samples, called

the SRA Library. The library describes features of an entire

etching process versus time. In testing, an individual spectrum scan

is compared with the library, and then a Similarity Ratio (SR) is

calculated. The SR quantifies how similar the testing data and the

library are, as a percentage score. System faults are detected by

checking the SR values with certain conditions. A confidence level

is also provided as a reference for the system alarm triggered.

According to the result of the example dataset, this method can

give an alarm for a system fault at about the 8.5 seconds in a 50

second faulty etching process.

Method

The SRA model for fault detection is based on a supervised

training framework. A training dataset is used to build a library for

healthy samples. In the context of plasma etching, the sample is

defined as a time series of OES spectrum scans for a complete

etching process on one wafer. In real-time fault detection, a single

testing spectrum scan is compared with the library at all time

Figure 1. Comparison of time series OES between healthy
sample and faulty sample. Panel A represents the time series OES
measurements of a healthy etching process. Panel B represents the time
series OES measurements of a faulty etching process. No significant
difference can be easily observed.
doi:10.1371/journal.pone.0095679.g001
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points. A corresponding SR value is calculated to quantify the

similarity between them. Then a fault detection mechanism is

applied based on the SR value, named 3-Warning-1-Alarm

(3W1A). It provides a reliable fault reporting mechanism, by

reducing the number of false alarms. The user is also given an

opportunity to adjust the threshold value to trigger a warning and

the number of warnings that trigger an alarm. The configuration

can thus trade-off between the system sensitivity and the cost of a

false alarm. In the rest of this section, calculation of the SRA

library is firstly discussed, followed by a description of the SR

calculation method. Then the FD mechanism is finally described.

SRA Library Calculation
In the training phase of the SRA model, a SRA library is

created to depict common features shared by all healthy samples.

Each OES spectrum has intensity values at the same set of

wavelengths, and a boundary function is computed for each

wavelength individually. The boundary function describes the

intensity range of healthy samples at each wavelength versus time.

For each wavelength a pair of fitting functions describes the

wavelength intensity upper boundary and lower boundary. The

complete collection of functions of different wavelengths compose

the SRA library, as expressed by Equation (1). The terms UBFi(t)

and LBFi(t) represent respectively the upper boundary function

and the lower boundary function over time t for the ith wavelength.

The total number of wavelengths in the data is n.

SRA Library~

UBF1(t) LBF1(t)

UBF2(t) LBF2(t)

::: :::

UBFn(t) LBFn(t)

2
6664

3
7775 ð1Þ

The detailed calculation of the boundary functions for a single

wavelength is illustrated in Figure 2. In our example dataset, each

sample has a unique timetable to take spectrum scans, but all

training samples derive from the same type of healthy etching

process. Artificial data from only two samples is presented in the

figure to provide a clear description of the method. Spectrums

from different samples are re-ordered by time. A moving window

is applied and average intensity m and standard deviation s, for

each wavelength, are obtained within each window. Upper and

lower boundary values are calculated at m+ms, where m is

determined empirically as a value of 7, which sets a suitable

sensitivity for the fault detection algorithm (how m is determined

Figure 2. Illustration of boundary calculation for a single wavelength. Artificial data of two samples is demonstrated. A moving window is
used to compute mean m and standard deviation s of intensity values inside the window. Upper and lower boundary values are calculated by m+7s.
Corresponding fitting functions are calculated with the piecewise linear interpolation. The window size is set to 1.0 second and moves at a distance of
half of its length, 0.5 seconds in this case.
doi:10.1371/journal.pone.0095679.g002
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from a given training dataset is discussed in the results section).

Corresponding fitting functions are calculated from these distrib-

uted boundary values using a piecewise linear interpolation. The

window size is set to 1.0 second. The window is moving at a

distance of half of its length, 0.5 second in this case, such that the

left half of every window overlaps with the previous window and

the other half overlaps with the next window. According to

experimental results, such a design gives a smooth fitting function.

This fits the generic feature of plasma etching that wavelength

intensity changes slowly throughout the whole process. Detailed

discussion of the window size and sigma number is given in the

section Results and Discussion. If spectrums scans from all samples

are already well synchronised, the moving window is not needed.

In that case, intensity values of the same wavelengths are grouped

by the timestamps and corresponding boundary values are

calculated in the same way.

SR Calculation
The Similarity Ratio (SR) calculation is based on a comparison

between the boundaries in the SRA library and individual

spectrum scans. Upper bound values and lower bound values

are calculated for each wavelength, using boundary functions in

the library as described previously. UBFi(t) and LBFi(t) are

respectively the upper bound value and lower bound value for the

ith wavelength at time t. WLi,t is the actual intensity value of this

wavelength at time t for the process being monitored. A similarity

indicator SIi,t is used to record whether this wavelength at time tis

between the boundaries, as per Equation (2). The same procedure

is repeated for all wavelengths. Dividing by the total number of

wavelengths n, the SRt value at time t for a full spectrum scan is

outputted as per Equation (3). The potential range of SR is from

0% to 100%. For example, an SR value of 90% means that 90%

of the wavelengths of the sample spectrum are similar to the

healthy library.

SIi,t~
1, LBFi(t)ƒWLi,tƒUBFi(t)

0, Otherwise

�
ð2Þ

SRt~

Pn
i~1

SIi:t

n
|100% ð3Þ

Fault Detection Mechanism
Considering the potential cost of false alarms (scrapping a

healthy process run), a dedicated FD mechanism is used to provide

a reliable and timely FD service. Plasma etching is a complex

process with multiple physical and chemical reactions. Healthy

etching processes cannot and do not need to be exactly identical to

each other. Such tolerance is shown by a survey of a group of

Figure 3. Workflow of the real-time FD with the SRA. A SR value
is computed for each real-time spectrum scan. A SR warning is triggered
if the SR value is below the SR Warning threshold (FD_SRW_Threshold).
The warning is only registered internally, and it will not be sent to
external process control applications. A high-level alarm can only be
triggered, if there are a number of consecutive warnings. Consecutive
number of warnings set as variable FD_ALARM_Threshold. The alarm will
be sent to external applications, which would reply with necessary
actions.
doi:10.1371/journal.pone.0095679.g003

Figure 4. The PMF plots of etch rate values in training samples
and testing samples. Panel A represents the PMF of training samples,
which only include healthy samples. Panel B represents the PMF of
testing samples, which include healthy samples, similar to the training
samples, and faulty samples.
doi:10.1371/journal.pone.0095679.g004
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healthy samples in our data. These samples provide almost the

same output quality, but can have quite different OES measure-

ments. The SR measure is quite sensitive to such differences, so

low SR values could be achieved even when the spectrum scan

comes from a healthy process. If a system alarm is simply triggered

by a single SR value below a threshold, there is a relatively high

probability of a false alarm. In order to address this problem,

multiple low consecutive SR values are used to trigger an alarm,

using two control limits: an SR Warning threshold

(FD_SRW_Threshold) and a consecutive warning count (FD_A-

LARM_Threshold). A SR warning is triggered if the SR value is

below the FD_SRW_Threshold. The warning is only registered in an

internal log, and it will not be sent to external process control

applications. A high-level alarm can only be triggered if the

consecutive number of warnings exceeds the control limit

FD_ALARM_Threshold. The alarm will be sent to external

applications, which would reply with necessary actions, such as

stopping the gas supply to the processing chamber. The detailed

workflow of the method is presented in Figure 3 (A similar method

was presented as Western Electric Rules [20]. Instead of using a

single out-of-control data point, multiple data points were used in

a control chart.). For the demonstration, the FD_SRW_Threshold is

set to 90% and FD_ALARM_Threshold is set to 3. Based on this

configuration, the FD rule is named 3-Warning-1-Alarm (3W1A)

FD rule. Detailed experimental results for the 3W1A are presented

in the next section. However, these two control limits can also be

adjusted to customise the FD service with different sensitivities.

Results and Discussion

The SRA model for fault detection is demonstrated using a real

manufacturing dataset from an IC fabrication company. A 2-step

etching process is monitored by an USB4000 Miniature Fibre

Optic Spectrometer. A sample from the spectrometer is defined as

a set of time-stamped spectrum scans for a complete etching

process on one wafer. Every spectrum scan includes optical

intensity measurements at 2048 different wavelengths from

178 nm to 874 nm. For each etching step, a different gaseous

recipe is used. It takes approximately 25 seconds to finish one

single step, so 50 seconds for the whole process in total. Gaseous

species in the two steps include noble gases, fluorine and chlorine

based compounds. There is a routine cleaning procedure between

the two steps to remove residue from the first step. Reaction by-

products can remain on the chamber wall, which is one of the

major reasons for variance in the system output. An etch rate

measurement is also included in every sample. Etch rate is a

common metrology metric used to describe the output quality of

an etching process but is difficult to measure, so it is impracticable

to use it for real-time FD purposes. In the demonstration of the

SRA model, it is only used as a reference for selection of healthy

samples and faulty samples for evaluating the accuracy of the

method. It is not needed after the SRA library is built. Actually,

the SRA model does not need such a precise etch rate

measurement for training. Any information which can identify

whether a sample is good or bad is enough, such as knowledge

based on some practical experiments of the process operators. This

feature gives fewer constraints and more flexibility to the usage of

the model.

For model training, 200 healthy samples are selected. The SRA

library is built on these samples for a healthy etching process. For

model testing, another 118 healthy samples are used, as well as 7

faulty samples. These faulty samples are determined from detailed

defect analysis of the product. All healthy samples share similar

etch rates of around 69 arb. units. All faulty samples have etch

rates of around 54 arb. units. The distribution of etch rates is

presented in Figure 4 as Probability Mass Function (PMF) plots.

Healthy samples from training and testing datasets have similar

distributions, while the faulty samples are distinguished from the

healthy ones. In the following model examination, this data

selection helps to validate whether the model triggers a positive

alarm for the faulty samples, and does not trigger false alarms for

the healthy samples.

SRA Result
Survey of process shift & moving window size

selection. Process shift is a very common practical problem in

modelling of the plasma etching process. It is usually caused by

small changes in a system variable [14]. It also can be caused by

the sensor readings being taken at a different phase for different

samples. It normally does not affect the overall properties of the

Figure 6. The PMF plot of process shift time in training
samples. 10.55% of samples have shift distance less than 0.1 second,
51.26% of shift distances are less than 0.5 second, 86.43% of shift
distances are less than 1.0 second, 96.48% of shift distances are less
than 1.5 seconds, and 99.50% of shift distances are less than 2.0
seconds.
doi:10.1371/journal.pone.0095679.g006

Figure 5. Illustration of process shift between two healthy
samples with similar etch rates at wavelength 253.29 nm. Etch
rates of both sample A and B are the same, 67.55 arb. unit, which
implies that a similar etching output quality is shared by them. Shapes
of the two curves are similar to each other, but there are differences in
time series. A clear time shift can be observed.
doi:10.1371/journal.pone.0095679.g005
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output data, but it can lead to slightly different measurements at

the same time point in different process samples. In Figure 5,

process shift is illustrated at wavelength 253.29 nm for two

samples from our data. These two samples have very similar etch

rate values, about 67.548 arb. units for both of them. They also

share very similar curve shapes, which imply similar etching

features. But a shift can be observed between them versus time. A

significant modelling bias could be introduced by the shift, if the

model assumed synchronised measurement time points in all

samples.

In the previous section on method description, a moving

window is introduced to calculate boundary values based on the

Figure 7. Plot of minimum SR values for training samples with different sigma numbers in the boundary function. By setting a
selection threshold (warning threshold 90% plus a safety margin of 5%), sigma number 7 is selected as the smallest sigma number whose
corresponding minimum SR value of training samples is higher than 95%.
doi:10.1371/journal.pone.0095679.g007

Figure 8. Fault detection result with the optimal sigma number 7. All 118 healthy testing samples and one typical faulty testing sample are
presented. For the healthy samples, no alarm is triggered. All of them overlap with each other and have similar SR values which are close to SR value
100%. For the faulty sample, multiple faulty alarms are triggered from an early-stage in the process.
doi:10.1371/journal.pone.0095679.g008
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Figure 9. Fault detection result with non-optimal sigma number of 4. All 118 healthy testing samples and one typical faulty testing sample
are presented. For the healthy samples, multiple warnings and alarms are triggered.
doi:10.1371/journal.pone.0095679.g009
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mean and standard deviation of the values falling within a window.

This produces a smooth boundary function by taking major

features of the data and removing abnormal outliers. This is

consistent with an etching feature that the whole chemical

environment is changing slowly across the whole process.

Considering the process shift problem, the moving window can

also include all shifted values whose shifting distances are less than

the window size. So the outputted boundary functions are capable

of resolving the shift problem. Theoretically, the window size

should be large enough to include all values at the same process

phase, but too large a window size will lead to a reduction in detail

in the time series information.

In order to find a suitable window size, a comprehensive survey

is conducted for the relevant time shift of all training sample time

series. One sample is selected out as a reference. The other

samples are compared against the reference sample with a cross-

correlation analysis, and the relevant shift time is calculated.

Statistical results are presented in Figure 6. According to this plot

and corresponding statistical results, 86.43% of process shifts

concentrate on the range from about 20.5 second to 0.5 second.

Hence, most shift distances in the example dataset would be

covered by using a window size of 1.0 second. In that case

boundary values will be computed every second. Other methods to

solve this misalignment problem (e.g. Dynamic time warping,

covariance optimized warping [21] and linear time scaling)

normally need to wait for complete time series data and are

computationally expensive [22], so they cannot be easily used for

early-stage FD, unlike the proposed moving window method.

Sigma number selection. The SRA library is built with

m+ms boundaries for each wavelength from healthy training

samples. For each wavelength, m is the average value of all

intensities falling in the moving window, and s is the standard

deviation. By choosing different sigma numbers m, different SRA

libraries are tested and the corresponding minimum SR values of

training samples are presented in Figure 7. Because the SRA

library is based on healthy training samples, the minimum SR

values of these samples should be close to an SR value of 100% as

far as possible. In that case the SRA library would more accurately

represent healthy samples. On the other hand, the sigma number

should not be too large as the library would then be too general to

reliably distinguish between faulty and healthy samples. Hence,

Figure 7 is used to decide a suitable sigma number based on

selection of the warning threshold (FD_SRW_Threshold) for fault

detection. This threshold is also used in the fault detection

mechanim, as mentioned previously. In the following demonstra-

tion, the FD_SRW_Threshold is set to 90% plus a safety margin of

5% to increase the reliability of fault detection. The optimal sigma

number is chosen to satisfy the following condition: it is the

smallest sigma number whose minimum SR value is higher than

FD_SRW_Threshold plus the safety margin. In that case, sigma

number 7 is chosen with a minimum SR value of 99.32% in the

training data set. A range of other threshold values have also been

tested, and none triggers a false alarm. Multiple true alarms are

triggered with most threshold values, except for thresholds below

20% or above 95%, due to either a too specific or too general SRA

library.

Fault Detection Result
Surveys of the window size and sigma number help to establish

suitable choices for this particular dataset during the training

phase: 1.0 second for the window size and 7 for the sigma number.

In the testing phase, SR values are calculated for each spectrum

scan of every healthy and faulty testing sample. For this particular

dataset, a customised FD rule (3W1A) is applied to these SR values

to provide a reliable fault detection service. In the 3W1A, a SR

warning is triggered if a SR value is below the FD_SRW_Threshold

which is equal to 90%. An alarm is triggered if three

(FD_ALARM_Threshold) consecutive SR warnings occur. Control

limits FD_SRW_Threshold and FD_ALARM_Threshold can also be

customised based on the FD sensitivity required by users. For

example, FD_SRW_Threshold can be increased to 99.99% and

FD_ALARM_Threshold can be reduced to 1. So SR values below

99.99% will trigger a warning, and the warning will trigger an

alarm immediately. This configuration is suitable when a very

sensitive FD system is required and there is only a small cost for a

false alarm.

In the following section, fault detection results with the 3W1A

are discussed first for each individual spectrum scan, called time-

series SR. Then average SR values for a complete etching process

are presented, called post-process SR.

Time-series SR. Fault detection results are demonstrated

with all healthy testing samples and a typical faulty testing sample

in Figure 8. The other faulty samples are quite similar to this one.

Each sample includes a SR time series for a complete etching

process. The SR values of the healthy sample are drawn in green,

and the SR values of the faulty one are drawn in red. The SR

warning threshold (FD_SRW_Threshold) is marked as a yellow

straight line. All dots represent SR values which are above the

threshold. Number 1 represents the first SR warning, whose value

is below the threshold. The second consecutive SR warning is

marked as number 2. The system alarm (the third consecutive SR

warning) is marked as the letter A. For the healthy samples which

overlap in the figure, no warning or alarm is triggered and all SR

values are very close to SR value 100%. This high similarity

between SRA library and healthy testing data implies that the

SRA library is carrying enough features to describe the entire

healthy etching process. For the faulty sample, multiple warnings

Figure 10. The average SR value plot of an entire etching
process with training and testing dataset. All training samples and
healthy testing samples have average SR values around 98%. All faulty
testing samples have average SR values around 68%. Faulty samples
can be easily identified from the healthy ones by using a simple
threshold (yellow line) between them.
doi:10.1371/journal.pone.0095679.g010
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and alarms can be observed. Beside the vertical SR axis on the left,

an extra confidence level axis is also provided. It is calculated as

100% minus the SR value. It gives the users extra information

about the alarms triggered. The lower the SR value is, the higher

confidence the alarm is correct. For each faulty sample, the first

warning occurs at about 7 seconds and the first alarm occurs at

about 8.5 seconds for etching step 1. Considering all faulty

samples, early-stage fault detection is achieved with 100%

accuracy. No alarm is triggered at the beginning of etching step

1, transition from step 1 to step 2, or at the end of the step. This

phenomenon is consistent with the etching feature that optical

emission is weak at these three time periods, so no significant

difference can be found between samples.

We note that sigma number selection is an important factor

which impacts the fault detecion results significantly. Accurate

fault detection results presented in Figure 8 validate that the

method for sigma number selection (the smallest sigma number whose

minimum SR value should be higher than FD_SRW_Threshold plus a safety

margin.) is successful. If FD_SRW_Threshold is still set to 90% but

sigma number 4 is chosen by mistake, for example, instead of 7,

corresponding fault detection results are shown in Figure 9. The

results show that incorrect sigma number selection leads to

multiple false alarms (green letter A in plot) triggered by healthy

samples.
Post-process SR. The average SR values for a complete

etching process are also calculated based on the full SR time-series.

The result is presented for training samples, healthy testing

samples and faulty testing samples separately in Figure 10. All

training samples and healthy testing samples have average SR

values of around 98%. All faulty testing samples have average SR

values of around 68%. Faulty samples can be easily identified from

the healthy ones by using a simple threshold between them.

Compared with the SR time-series, a fault reporting strategy like

the 3W1A is not needed, and a bigger SR gap provides a more

reliable fault detection result overall. An average SR may be a

good option, when the early-stage fault detection is not required.

Conclusions

We have shown that the proposed SRA method is effective for

early-stage fault detection with a real manufacturing OES dataset

from a plasma etching process. For these types of processes, early-

stage detection can help to reduce overall process cost. In our

method, spectrum scans are not limited to certain time points but

use all available time-domain data, where process shift is

accounted for by using a windowing method. Based on a trade-

off between the potential cost caused by false alarms and time

delay before correct alarms are raised, users can customise the

sensitivity of the model.

Our future work will extend the SRA method. Firstly, fault

classification can be realised based on the features of time-series

SR from faulty samples (e.g. time when fault occurs, key

wavelengths which significantly contribute to low SR values).

This could help to quickly identify the underlying reasons causing

the system failure. Sensitivity of the SR could also be improved, if

wavelength numbers can be narrowed down for a certain fault

type. Secondly, the SRA method could be combined with

dimension reduction methods to reduce the input data size, which

could accelerate system response times. Thirdly, SRA will be

further developed and tested with additional system monitoring

variables besides OES data, such as temperature in the processing

chamber.
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