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Abstract

Many contagions spread over various types of communication networks and their spreading dynamics have been
extensively studied in the literature. Here we propose a general model for the concurrent spread of an arbitrary number of
contagions in complex networks. The model is stochastic and runs in discrete time, and includes two widely used
mechanisms by which a node can change its state. The first, termed the spontaneous state change mechanism, describes
spontaneous transition to another state, while the second, termed the contact-induced state change mechanism, describes
acquiring other contagions due to contact with the neighbors. We consider reactive discrete-time spreading processes of
multiple concurrent contagions where time steps are of finite size without neglecting the possibility of multiple infecting
events in a single time step. An essential element for making the model numerically tractable is the use of an approximation
for the probability that a node transits to a specific state given any set of neighboring states. Different transmission
probabilities may be present between each pair of states. We also derive corresponding continuous–time equations that are
simple and intuitive. The model includes many well-known epidemic and rumor spreading models as a special case and it
naturally captures spreading processes in multiplex networks.
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Introduction

Epidemiological models, developed as tools for analyzing the

spread and control of infectious diseases, have also been adapted

across many scientific fields such as ecology, immunology, social

science, computer science, marketing and economy. They focus on

modeling the dynamics of contagious entities (also called ‘‘memes’’

in the literature) as diverse as communicable diseases, cultural

characteristics (such as religious beliefs, fads or innovations),

addictions, or information spread (through rumors, e-mail

messages, web blogs, peer-to-peer computer networks, etc). Both

deterministic and stochastic epidemic models have been suggested,

addressing complementary questions [1–4]. Some well-known

classical models are deterministic, and include, for example, the

SIR (susceptible–infected–recovered) differential equation model

of Kermack and McKendrick, which has proven useful in

ascertaining gross factors affecting the rate of growth and the

final size of an epidemic [5]. Stochastic models are preferable

when studying a small community where the contact structure in

the community contains small complete graphs, with households

and other local social networks being common examples. But even

when considering large communities, at which deterministic

models primarily aim, some additional questions have been raised

that can only be addressed with stochastic models [4]. Determin-

istic counterparts, working with the expected values of the

corresponding stochastic models, are proposed for many of them

to answer one of the fundamental questions for the propagation of

a single contagion: will it infect a significant portion of the network

or will it die out fast? Specifically, the existence of threshold values

for the model parameters over which epidemic proportions can be

reached has been studied. Earlier approaches have used a mean-

field approximation [6], assuming homogeneous environments

which are suited for simple network topologies. Afterwards, a

heterogeneous mean-field (HMF) approximation has been intro-

duced, which assumes that nodes with same degree behave in the

same manner [7,8]. This approach can be applied to power-law

networks, but its main assumption is not empirically or phenom-

enologically justified and it can result in different levels of accuracy

[9]. One of the recent approaches, the so-called nonlinear

dynamical system (NLDS) approach, describing the evolution of

the probabilities of infection for every node [10–14] is widely

accepted. As the number of states in the Markov chain which

describes the dynamics of the whole network grows exponentially

with the number of nodes, independence between the marginal

distributions of the nodes is assumed in order to reduce the

complexity of the models. This turns out to be a valid assumption

in the vast majority of complex networks because the inherent

topological disorder makes dynamical correlations not persistent.

Regarding the spread of more than one contagious entity, both

deterministic as well as several stochastic models have been

suggested [15–28]. However, the spreading rules in these models

are specific to the problems the models are addressing. In [24] a

SIR-like consecutive spreading of multiple viruses on special

random networks has been introduced. It has afterwards been

adapted for concurrent spreading of multiple viruses, and

percolation analysis, which is suitable for SIR-like models, has

been used to predict the epidemic sizes [25]. A generalization of
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the SIR model for two infections, the S�I2V� model, is proposed

in [20], where a node’s state is classified in one of the three

categories: susceptible, infected or recovered (vigilant/vaccinated).

The SI1I2S model is introduced in [20], where a susceptible node

can become infected with or recover from one of two infections,

and an extension is later made where it is possible that a node

possesses both infections at the same time [19]. Spreading of

multiple contagions has also been studied in the context of

multiplex networks. Such examples are discussed in [27], [28] and

[29], where the interplay between two different SIS propagations

on two distinct layers of the multiplex network is considered.

Nonetheless, modeling the spread of multiple concurrent

contagions with a discrete-time reactive process presents a

significant distinct problem, and that is the question of how to

deal with multiple simultaneous infecting events by different

contagions in a single time step. Most of the proposed methods

avoid this problem by assuming infinitesimally small time step sizes

or asynchronous infections, allowing only a single event in a given

time step. We are not aware of any work that studies the interplay

between multiple competing contagions in networks and addresses

the aforementioned problem directly, without neglecting the

possibility of multiple simultaneous infecting events. The purpose

of this paper is to propose such a model. Regarding the case with

infinitesimally small time steps, we show that the differential

equations of our model, derived from the discrete-time equations,

naturally become simplified due to the lack of strong competition

between the contagions on the level of a single node. Also, our

work is among the first to propose a discrete-time stochastic model

for the spread of an arbitrary, but finite, number of contagions

which is general enough to describe a large class of spreading

processes. The model we propose has two mechanisms of

transition between two states of a node. The contact-induced

transition mechanism is infection with other contagions due to

contact with the neighbors, while the spontaneous transition

mechanism characterizes a spontaneous transition to another

model state without any contact with the neighbors. These two

mechanisms encompass what is commonly met in the literature of

modeling spreading processes and, as a result, our model

generalizes some well-known single- and multiple-contagion

spreading models.

As Daley and Kendall have pointed out, a mathematical model

for the spreading of contagious entities can be (and has been)

constructed in a number of different ways, depending on the

mechanism postulated to describe the growth and decay of the

actual spreading process [30]. Here we briefly describe two

constructions commonly met in the literature. Consider a finite

closed population of entities (agents) which is divided into three

mutually exclusive and exhaustive classes x, y, z. If we assume that

the only two transitions allowed are: from (x, y, z) to (x{1, yz1,

z) at a rate proportional to xy, and from (x,y, z) to (x, y{1, zz1)

at a rate proportional to y, then we obtain the deterministic

Kermack-McKendrick epidemic model or stochastic SIR model,

depending on what x, y, z are. On the other hand, assuming a

transition from (x, y, z) to (x, y{1, zz1) at a rate proportional to

yyzyz, one obtains the deterministic Daley-Kendall or Maki-

Thompson model of rumor spreading. In the first construction, as

is indicated by the transition rate xy, the growth in the number of

entities is in one of the classes involved in the interaction. This

particular interaction is between infected and susceptible individ-

uals, and as a result, the number of infected individuals grows. In

the second construction the increase in the number of entities in

class z is additionally a result of interaction between classes

unrelated to z, as is given with yy in the transition rate. In the

Daley-Kendall and Maki-Thompson models this is based on the

plausible hypothesis that an active spreader stops telling the rumor

because when contacting another spreader it learns that the rumor

has lost its news value. They both represent examples of the

contact-induced transition mechanism. The spontaneous transi-

tion mechanism is also present in the first construction, where the

transition rate from class y to z is proportional only to the number

of members in class y.

The model suggested in this paper has three main character-

istics. Firstly, it belongs to the class of stochastic discrete-time

models, applies to arbitrary graphs, and can quantify the

microscopic dynamics at the individual level by computing the

probability that any given node is in a given state. A key

instrument which we use to make this general model applicable for

simulations is an approximation for the exact probability that a

node will adopt a specific state from its neighbors. The

approximation overcomes the challenge presented by the possi-

bility of multiple simultaneous infections from the neighbors in a

given time step which is a consequence of the finite sizes of the

time steps.

Secondly, from the model one can derive its deterministic

counterpart, both in difference and in differential equation form.

Indeed, by assuming that the states of each node are independent

random variables, one can derive a system of probability

equations, which, in fact, represents a deterministic nonlinear

dynamical system. Further, using a homogeneous or heteroge-

neous mean-field approximation for these deterministic dynamical

systems, one can obtain models of differential equations describing

the macroscopic spreading phenomena.

Thirdly, the model generalizes the stochastic SIR, SIS and

SIRS models for an arbitrary number of contagions or states and

also suggests a stochastic microscopic Markov chain version of the

deterministic Maki-Thompson model for an arbitrary number of

rumors. It is general enough to capture spreading in multiplex

networks as well.

We stress that although it is apparent that some, or even all of

the real-world spreading phenomena do not fit into general

simplified schemes and require special consideration of their

details as they have characteristic modes of transmission, we

believe that studying simple models may nevertheless be useful for

understanding underlying principles of the spreading processes. At

last, for the purpose of term unification, we shall refer to the

contagious entities whose spread we model as infections or

contagions, by analogy with the epidemiology literature, while also

bearing in mind the generality of the model to describe the

spreading of any other kind of entities through a network. We will

often refer to them as states as well, from the representation of the

dynamics of each node as a Markov chain.

The Model

Single-contagion spreading models
Before we define the model, we briefly turn our attention to the

susceptible-infected-susceptible (SIS) model which we use as a

paradigmatic model for the spread of one infection in a population

of individuals connected in an arbitrary topology. The network of

connections is represented by a simple, undirected and connected

graph of N nodes whose adjacency matrix A~½aij �N|N is a binary

valued matrix stating whether nodes i and j are connected (aij~1)

or not (aij~0). An individual, which is represented by a node in

the network, can be in either a susceptible (S) or infected (I ) state.

A susceptible node is healthy and it can receive the infection from

infected neighbors. An infected node transmits the infection with

probability b when contacting a neighbor. A successful transmis-

sion to a susceptible node causes it to become infected, and a

Multiple Concurrent Contagions on Networks
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successful transmission to an infected node has no effect. The

probability that an infected node is cured and reverts back to the

susceptible state is d.

Depending on the number of contacts a node makes, several

spreading processes have been studied [12]. The one most often to

be found in the literature is the reactive process. In this process an

infected node contacts all of its neighbors and attempts to transmit

the infection to each of them with probability b. Hence, a

susceptible node can receive the infection from more than one

neighbor. In this case, it chooses one of the successful transmissions

and adopts the infection transmitted by that contact. Since the SIS

model describes the spread of only one infection in the network, it

is irrelevant which particular successful contact a node chooses in

order to adopt the infection.

A discrete-time stochastic mathematical model of the thus

described process is as follows. The state of node i at time t is

described by a state vector containing a 1 in the component

corresponding to the current state of the node, and 0 in the other:

si(t)~ si,S(t) si,I (t)½ �:

The probability mass function which states the probability of

being in each of the states is given with the probability vector

pi(t)~ pi,S(t) pi,I (t)
� �

:

The model equations describing the time evolution of the

probability vector for each node are:

pi,S(tzDt)~si,S(t)(1{f I
i (t))zdsi,I (t)

pi,I (tzDt)~si,S(t)f I
i (t)z(1{d)si,I (t):

where f I
i (t) is the probability that node i receives the infection

from at least one infected neighbor. When writing an expression

for f I
i (t), it is commonly assumed that transmission events in the

current or past time steps are independent of each other. The

specific spreading process determines the form of f I
i (t) and for the

reactive process it reads

f I
i (t)~1{P

N

j~1
(1{baijsj,I (t)): ð1Þ

The product in (1) is the probability of the event that none of the

infected neighbors (aijsj,I (t)~1) transmits the infection to node i.

Hence, f I
i (t) is in fact given with the probability of the opposite

event, which is that at least one infected neighbor manages to

transmit the infection to node i. The state diagram that

summarizes the Markov chain diagram for the dynamics of a

single node in the SIS model is given in Fig. 1.

In order to infer the analogy of this (reactive) spreading process

where a single contagious entity spreads in a network to the one

where more contagious entities spread simultaneously, we use the

binomial theorem to rewrite (1) for a node i with d infected

neighbors:

f I
i (t)~1{P

N

j~1
(1{baijsj,I (t))~1{(1{b)d

~(bz(1{b))d{(1{b)d

~
d

d

 !
bd (1{b)0z

d

d{1

 !
bd{1(1{b)1z . . .

z
d

1

 !
b1(1{b)d{1

~
Xd

k~1

d

k

 !
bk(1{b)d{k:

ð2Þ

Equation (2) clearly shows that the probability f I
i (t) of receiving

the infection from the neighbors is the sum of the probability that

exactly k neighbors have successfully transmitted the infection to

node i, where k goes from 1 of the infected neighbors to all d of

the infected neighbors. The binomial coefficient takes into account

all combinations of k successful transmissions out of possible d

transmissions. The term (1{b)d which corresponds to the event

that no infected neighbor successfully transmitted the infection is

canceled out in (2).

Here we stress that when exactly k neighbors have successfully

transmitted the infection, node i chooses only one of these, which

means that the probability of receiving the infection from one of

those k successful transmissions is 1
k

d

k

� �
bk(1{b)d{k. Since

there are k successful transmissions, the probability of receiving

the infection from any one of those is

k 1
k

d

k

� �
bk(1{b)d{k~

d

k

� �
bk(1{b)d{k, which is how the

terms in the sum in (2) are obtained. This happens since all

transmission events have the same probability b of occurring,

which, in turn, leads to the possibility to write f I
i (t) in the product

form as in (1).

On the other hand, when more contagions spread in the

network simultaneously and have different transmission probabil-

ities, the fact that a node chooses only one of the k successfully

transmitted, generally different, contagions makes it impossible to

write the corresponding probability of infection f I
i (t) in the

product form as in (1). The expression for f I
i (t), as we shall see in

the following, will be analogous to (2), where all combinations of

neighbors infected with different contagions will be included.

Figure 1. State diagram for the SIS model. The diagram shows the
dynamics of a single node. A susceptible node can become infected by
contacting its infected neighbors, with probability f I

i (t). On the other
hand, infected nodes spontaneously recover with probability c, and
become susceptible again. The contact-induced transition mechanism
is represented by a curvy arrow, whereas the spontaneous transition
mechanism is represented by a less curvy arrow.
doi:10.1371/journal.pone.0095669.g001
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Model description
We study the following discrete-time stochastic process for the

spreading of multiple contagions in a network. The network is

represented by a simple, undirected and connected graph

G~(V ,E) with node set V and link set E. The graph’s adjacency

matrix is A~½aij �N|N , where N is the number of nodes in the

network. We assume that every node i f1,2, . . . ,Ng in the

network is in a certain state k f1,2, . . . ,mg. A state k can

represent the healthy state or the recovered state, as in the classical

epidemic models, or it can denote that the node is infected with a

certain contagion k. Node i’s state vector at time t is represented

by

si(t)~ si,1(t) si,2(t) . . . si,m(t)½ �,

where si,k(t), k~1, . . . ,m, is a Bernoulli random variable

indicating whether node i is in state k. A node can be in only

one of the model states at a time, meaning that only one

component of the state vector is 1 and all others are 0 for each t.

This is known as the 1-of-m coding scheme. The probability mass

function corresponding to the state vector si(t) is

pi(t)~ pi,1(t) pi,2(t) . . . pi,m(t)½ �,

where pi,k(t) is the probability that node i is in state k at time step

t. Naturally,
Pm

k~1 pi,k(t)~1 holds.

The current state of a node can be changed by one of two

mechanisms, as is illustrated in Fig. 2. The first mechanism is

spontaneous transition to another state, without any contact with

the neighbors. A node spontaneously abandons state k and transits

to state l with probability dkl ½0,1�. Note that
Pm

l~1 dklƒ1 and

that in general dkk=0. The process is equivalent to the rolling of a

loaded (mz1)-sided dice, where the outcome of the roll is the

state to which node i spontaneously transitions, and the (mz1)th
side is the event that node i does not spontaneously change its

state. This mechanism is analogous to node curing in epidemic

models where nodes change from an infected to a healthy state.

Should the node not make a spontaneous change, it proceeds with

the second mechanism. The second mechanism is transition to

other state due to contact with the neighbors and we also refer to it

as the contact-induced state change mechanism. This mechanism

is analogous to node infecting with a contagion from its neighbors.

The transmission probability bkl[½0,1�, is the probability that a

node in state k will change its state when contacting a neighbor in

state l. After a successful transmission, the receiving node may

transit to state l or, stimulated by the communication, adopt

another state. To simplify the modeling process, we make the usual

assumption that transmission events between separate pairs of

nodes are independent of each other.

The model equations are

pi,l(tzDt)~
Xm

k~1

si,k(t)dklz
Xm

k~1

si,k(t) 1{
Xm

h~1

dkh

 !
gl

i,k(t)

zsi,l(t) 1{
Xm

h~1

dlh

 !
g0

i,l(t),

ð3Þ

where

gl
i,k(t)~

Xm

h~1

f h
i,k(t)tl

kh, ð4Þ

f l
i,k(t)~

Xmdi {1

q~0

X2di {1

h~0

p(eh,cq)

Xdi

j~1
½eh�j s

cq
j,l (t)Xdi

j~1
½eh�j

, ð5Þ

p(eh,cq)~P
j[Ni

bkrj
½eh�jz(1{bkrj

)(1{½eh�j)
h i

s
cq
j,rj

(t), ð6Þ

g0
i,l(t)~P

N

j~1
(1{aij

Xm

h~1

blhsj ,h(t)): ð7Þ

Equation (3) describes the time evolution of the probability that

node i will be in state l in the next time step. The first term of the

right-hand side of (3) gives the probability with which node i

spontaneously transits to state l from its current state (first panel of

Fig. 2). The second term encompasses the probability that,

provided no spontaneous transition occurs, node i will adopt state

l due to the second mechanism of state change (second and third

panel of Fig. 2). The probability of this event is

1{
Pm

h~1 dkh

� �
gl

i,k(t), where gl
i,k(t) is the probability that node

i which is currently in state k transits to state l due to contact with

the neighbors. The third term states the probability with which a

node currently in state l is not affected by any of the two

mechanisms of state change. This event happens when the node

does not spontaneously transit to any other state, and does not

receive any other state or contagion when contacting the

neighbors, the probability of which is g0
i,l(t) (fourth panel of Fig. 2).

The probability gl
i,k(t) of state transmission, or infection with

contagion l, due to communication with the neighbors, given with

(4), takes into account the two possible constructions of the

contact-induced state change mechanism described previously in

the introduction. The first one is typical for well-known epidemic

models where node i can transit to state l directly by contacting a

neighbor in state l, and this is depicted in the second panel of

Fig. 2. The second one is encountered in social spreading

processes, where the exposure of node i to another state h upon

contact with the neighbors stimulates it to adopt state l. This is

illustrated in the third panel of Fig. 2. Such is the case, for

example, in the Maki-Thompson model where, upon contact of

two informed nodes, one becomes a stifler since it loses interest in

the rumor it possesses. Another, more complex, example would be

the case where a single state is represented as a set of multiple

distinct features, like in the language evolution models in [31,32].

Upon successful infection from neighbor j, node i may copy only a

fraction of the features from node j that it does not possess itself,

effectively adopting a state that differs from node j’s state. A

similar example is presented in [19], where exposure of an infected

node to the other infection in the network causes it to transit to a

third state which signifies that it possesses both infections

simultaneously.
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In (4), f h
i,k(t) is the probability that state h will cause change to

node i in state k from any combination of its infectious

neighboring links and is the analogue of (1) for the SIS model.

tl
kh[f0,1g is an indicator variable which states whether the

exposure of a node in state k to state h will stimulate it to adopt

state l. Note that when node i in state k transits to state l only by

receiving it directly from its neighbors, tl
kh~1 for h~l and tl

kh~0

for all h=l. Hence, we have gl
i,k(t)~f l

i,k(t), which is the most

common case in the existing models. The sum in (4) goes over all

states h which can stimulate a node in state k to adopt state l. In

essence, gl
i,k(t) is a generalization of f l

i,k(t) for the purpose of

encompassing the second construction. A slightly more general

case is the one when tl
kh are parameters such that

Pm
l~1 tl

kh~1

and tl
kh[½0,1�. This makes tl

kh, for l~1, . . . ,m, to act as weights to

the transitioning states instead of indicator variables. Again, a

good example would be the case with states which describe the

possession of multiple features, where upon successful infection a

node may have multiple possible courses of action, regarding the

choice of copying individual features. We do not treat such cases in

this paper.

The specific spreading process determines the form of f l
i,k(t). In

this paper we concentrate on generalizing the reactive process as

indicated in [12] for an arbitrary number of node states. As

mentioned previously, this is the type of process most often to be

found in the literature. In the reactive process, a node contacts all

of its neighbors in every time step and tries to spread its current

contagion to all of them, i.e. it tries to convince the neighbors to

adopt the state that the node is currently in. As stated above, the

probability of transmission bkl depends on the states k and l of the

contacting nodes (receiving and sending node, respectively). The

link over which a successful transmission has occurred is said to be

infectious at the given time step. As transmissions are independent of

each other, multiple infectious links may occur in a single time step

at a receiving node. Most of the papers in the literature avoid this

problem by assuming infinitesimally small time steps, virtually

avoiding multiple simultaneous infection events. For node i with a

Figure 2. An illustration of the two mechanisms of state change of a node. The number of different states that exist in the network is m~4.
Solid colored arrows indicate successful state transmissions, i.e. infectious links, and dashed lines indicate an unsuccessful state transmission. The
probabilities of the realized transmission events are depicted next to each line. Solid gray lines indicate that the nodes have not been in contact at
the given time step; a spontaneous transition has taken place instead. From top to bottom panel, descriptions go as follows. Panel 1: node i changes
its state spontaneously to state 2 after previously having been in state 1. The probability of state change with this mechanism is d12. Panel 2: Node i
does not make a spontaneous transition, and changes its state as a result of getting infected with state 3 from its neighbors. Note that a neighbor in
state 2 also makes successful transmission, however, node i chooses state 3 transmitted from one of the other two successful transmissions. The

probability of state change with this mechanism is (1{
Pm

k~1 d1k)f 3
i,1(t), where f 3

i,1(t)~ 2
3

b12b2
13(1{b14). Panel 3: node i changes its state as a result of

getting infected with state 4 from its neighbors, a contact which stimulates it to adopt state 2. The probability of state change with this mechanism is

(1{
Pm

k~1 d1k)f 4
i,1(t)t2

14, where f 4
i,1(t)~(1{b12)(1{b13)2b14 and t2

14~1. Panel 4: node i maintains its state since none of the two mechanisms of state

change caused it to make a transition. The probability of this event is the product of the probability that no spontaneous transition occurs and no

state is transmitted upon contact with the neighbors (1{
Pm

k~1 d1k)g0
i,1(t), where g0

i,1(t)~(1{b12)(1{b13)2(1{b14).

doi:10.1371/journal.pone.0095669.g002
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set of neighbors Ni, where di~jNij is the node degree, there are

2di possible events as a result of whether each of the di links

becomes infectious or not. Hence, it is convenient to represent

each such event eh, h[f0,1, . . . ,2di {1g, as a vector of length di

where each component ½eh�j is equal to 1 if the link with the

corresponding neighbor is infectious, and 0 otherwise. For

example, the specific event which has happened to node i on

Fig. 2, second panel, is represented by e14~½1 1 1 0�T . The

numbering of the vectors eh is given by the numerical (decimal)

value corresponding to the binary number comprised of the

components of eh, where the least significant digit in the binary

number is the last component of eh. The probability of occurrence

of event eh, p(eh), depends on the state of each neighbor and the

state of the node i. For node i with degree di and a total of m

different states in the network, there are mdi possible configura-

tions (variations with repetition) of states that the neighbors of

node i can be in. We denote each configuration with cq, where

q[f0,1, . . . ,mdi {1g. For example, the configuration of states on

the second panel of Fig. 2 is c155~½3 2 3 4�T . Analogously,

the numbering of each configuration cq is given by the decimal

number corresponding to the base-m number comprised of the

components of cq subtracted by one (for zero-based numbering

purposes).

Now, the probability f l
i,k(t) that node i which is in state k adopts

state l from any combination of its infected neighbors for the

reactive process is given with (5). Equation (5) goes over every

possible configuration of states cq at the neighbors of node i and

every possible event eh. The terms s
cq

j,l(t) and ½eh�j are used to filter

only the combinations where state l is involved. s
cq

j,l(t) is simply the

Bernoulli random variable which indicates whether node j is in

state l in the configuration cq. When there are multiple successful

infectious links in eh, i.e. a total of
Pdi

j~1 ½eh�j infectious links, node

i chooses one of the transmitted states to adopt, with uniform

probability 1Pdi

j~1
½eh�j

.

In order to provide the expression (6) for p(eh,cq) we denote the

current state of each neighbor j with rj(t). Since we make the

assumption that a transmission between contacting nodes is

independent of other transmissions in the network in the current

or past time steps, the probability that event eh occurs at node i is

simply a product of the probabilities that the respective links in the

event have become infectious or not. bkrj
is the probability that the

link with neighbor j becomes infectious. The argument from rj(t)

is omitted for brevity (we make the same omissions in the rest of

the text).

Lastly, g0
i,l(t) in (3), given with (7), is the probability that node i

in state l does not adopt any state from its neighbors, i.e. no

infectious links occurred in the current time step.

The computational complexity of (5) is of order di(2m)di . Due to

the exponential dependence on the degree di of node i, the

probability f l
i,k(t) becomes numerically intractable for nodes of

high degree. Therefore, further in the text we give an approxi-

mation for (5) which allows the application of the model for

networks with high-degree nodes. We also speculate that the

difficulty in finding a suitable expression for the probability f l
i,k(t)

which is numerically feasible is the reason why a general model of

this kind has not appeared so far.

The model has three types of parameters: the transmission

probabilities B~½bkl �m|m, the probabilities of spontaneous

transition D~½dkl �m|m, and the indicator variables

T~½tl
kh�m|m|m. Although the number of parameters is large,

for most of the models in the literature that we generalize, these

matrices adopt a sparse structure. In the rest of the paper we

continue with the implicit assumption we have made so far, that

the parameters are the same for every node. However, node

dependence of the parameter values is easily incorporated by

making the parameters different for each node.

Approximation
The complete derivation of the approximation, which is given in

Section S1 of Text S1, leads to the following approximate

expression for the probability f l
i,k(t) given with Eq. (5):

~ff l
i,k(t)~

bkl

XN

j~1

aijsj,l(t)

1{ 1
2

aij

Xm

h~1
bkhsj (t)

XN

j~1

aij

Xm

h~1
bkhsj,h(t)

1{ 1
2

aij

Xm

h~1
bkhsj,h(t)

1{g0
i,k(t)

� 	
: ð8Þ

The derivation process was conducted while bearing in mind

the compatibility with the deterministic counterpart, where instead

of state vectors there are probability vectors. Hence, Eq. (8) can

naturally be used for the deterministic case. As a result, it takes

slightly complex form. However, we can make a simplification for

the stochastic case. Let d
(h)
i (t) be the number of neighbors of node

i that are in state h; let mkh~
bkh

1{ 1
2

bkh

. Then Eq. (8) can be

rewritten in a more compact form as

~ff l
i,k(t)~

mkld
(l)
i (t)Xm

h~1
mkhd

(h)
i (t)

(1{g0
i,k(t)): ð9Þ

Observe that when mkh~mkq, i.e. bkh~bkq, for all h,q, we have

~ff l
i,k~f l

i,k for all l. We stress that the term

Xdi

j~1
½eh�j s

cq

j,l(t)Xdi

j~1
½eh�j

in (5),

which represents the fraction of neighbors in state l, is primarily

the term that is approximated. As already mentioned, for models

where only one state is being transmitted by the contact-induced

mechanism, this fraction is equal to 1 and the probability of

receiving the state can also be written in the product form (1). The

nonlinearities in the model arise from the product term in (6). In

existing models for the spread of a single contagion, this product is

most often linearized using a general form of the Weierstrass

product inequality for the purpose of model analysis. Particularly,

Eq. (1) is usually substituted by b
XN

j~1
aijsj,I (t), an approxima-

tion which holds only for b%1.

An assessment of the accuracy of the approximation is presented

in the section where we discuss our generalization of the SI1I2S
model and further in the section where we present an example

numerical model. We compare the non-approximated and

approximated version of the deterministic counterpart of our

model, described in the following section. Additional assessments

are also given in the supporting material (Section S2 of Text S1).

Results indicate that the absolute value of the error is of order

10{4 to 10{2 for a single node, depending on the specific scenario.

Increasing the number of neighbors with one of the states

produces a lower precision of the approximation when the state

transmission probabilities are high (w0:25) than when they are
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low. Also, the approximation usually overestimates the actual

probabilities for states with high transmission probabilities when

they interplay with states with low transmission probabilities, for

which the actual probabilities are underestimated as a result. On

the other hand, the approximation error is very low when the set

of state transmission probability values has a small variance. An

important result is that the error does not seem to accumulate over

time and individual errors do not influence each other signifi-

cantly. This has been observed in the SI1I2S model and its altered

version, as the predictions of the fixed points produced by the

approximated version are in agreement with those produced by

the non-approximated version. Further, the numerical example

showed that the approximation is accurate throughout the time

evolution even when the spreading dynamics showed oscillatory

behavior. This was also the case for a network with high degree

nodes.

Besides making the model numerically tractable, the approxi-

mation also allows for the estimation of the model parameters and

their joint posterior distribution when data about the process being

modeled are available. The joint posterior distribution of the

parameters is a high-dimensional distribution which can be

approximated by Markov Chain Monte Carlo sampling methods,

such as the the Metropolis-Hastings algorithm. The posterior

distribution is proportional to the likelihood of the observed data

(in this case, the states of the nodes in the network at certain time

steps), and the probability mass vectors for each node (obtained by

running Eq. (10)) are required to calculate the likelihood. The

probability mass vectors, in turn, depend on the probabilities f l
i,k(t)

which can easily be calculated using the approximation ~ff l
i,k(t).

Using Bayesian inference, an analysis of any function of the

parameters can be performed.

The deterministic counterpart of the model and its
continuous-time form

By applying the expectation operator to Eq. (3), and taking into

account the assumption of independence of transmission events in

the current or past time steps, as well as the fact that

pi,k(t)~E½si,k(t)�, from Eqs. (3)–(7) a deterministic discrete-time

version of the model is obtained, which is basically a discrete-time

nonlinear dynamical system:

pi,l(tzDt)~
Xm

k~1

pi,k(t)dklz
Xm

k~1

pi,k(t) 1{
Xm

h~1

dkh

 !
gl

i,k(t)

zpi,l(t) 1{
Xm

h~1

dlh

 !
g0

i,l(t),

ð10Þ

where

gl
i,k(t)~

Xm

h~1

~ff h
i,k(t)tl

kh, ð11Þ

~ff l
i,k(t)~

bkl

XN

j~1

aijpj,l(t)

1{ 1
2

aij

Xm

h~1
bkhpj,h(t)

XN

j~1

aij

Xm

h~1
bkhpj,h(t)

1{ 1
2

aij

Xm

h~1
bkhpj,h(t)

1{g0
i,k(t)

� 	
, ð12Þ

g0
i,l(t)~P

N

j~1
(1{aij

Xm

h~1

blhpj,h(t)): ð13Þ

For brevity, we only presented the approximated equations of

the model here, while the non-approximated version is analogous

to Eq. (5). This deterministic discrete-time version of the model

describes the dynamics of expected-value quantities of the

stochastic model. Instead of running just one stochastic realization

with the stochastic version of the model, or running sufficiently

many to produce average results, one can use the deterministic

model to obtain the average dynamics of the spreading process

and make predictions as to its future state. Hence, we expect that

the deterministic results will be comparable with those obtained

from the mean values of the stochastic realizations in the limit of

large network sizes. Furthermore, it also allows for a simpler

analysis of the dynamical behavior of the model, which we leave

for future work. For example, using a classical result for the weak

ergodicity of time-inhomogeneous Markov chains by Wolfowitz

[33], one can determine conditions by which the deterministic

version of the model has a globally stable fixed point, which means

that the average dynamics of the stochastic model stabilize. Such

an analysis is given in [20], for instance.

In order to obtain a deterministic continuous-time, i.e.

differential equation, model, the product in (13) is typically

linearized, which holds for blh%1,V l,h. Rearranging the terms in

Eq. (10) in a way that one can calculate the limit
dpi,l(t)

dt
~ limDt?0

pi,l(tzDt){pi,l(t)

Dt
,Vl, the deterministic differ-

ential equations for the evolution of the probability mass function

of node i are obtained (derived in detail in Section S3 of Text S1):

dpi,l

dt
~
Xm

k~1

pi,kd̂dklz
Xm

k~1

pi,k

Xm

h~1

b̂bkhtl
kh

XN

j~1

aijpj,h{pi,l

Xm

k~1

d̂dlk

{pi,l

XN

j~1

aij

Xm

h~1

b̂blhpj,h,

ð14Þ

or in the case when th
kh~1, Vh, it reads

dpi,l

dt
~
Xm

k~1

pi,kd̂dklz
Xm

k~1

pi,kb̂bkl

XN

j~1

aijpj,l{pi,l

Xm

k~1

d̂dlk

{pi,l

XN

j~1

aij

Xm

h~1

b̂blhpj,h,

ð15Þ

where each parameter that represents a probability in the discrete-

time model is substituted by its respective rate (e.g. b̂bklDt~bkl , for

time step Dt). The first and the second term on the right hand side

of Eqs. (14) and (15), which increase the rate of change of pi,l ,

correspond to transitions from other states to state l due to the

spontaneous and contact-induced state change mechanism

respectively, while the other two terms correspond to the

respective state transitions in the opposite direction. One can also

note that the second term on the right hand side of Eq. (15) has a

simpler form than the corresponding term from the discrete-time

case (Eqs. (10)–(13)). Specifically, the continuous-time one depends

only on the components of the neighbors’ probability vectors that
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correspond to state l. This is due to the infinitesimally small time

step size which prevents the occurrence of more than one

transmission event in any given time instance. Equation (15)

written in matrix form reads

dP

dt
~PD̂Dz(PB̂B)0(AP){P0(1N|mD̂D

T ){P0(APB̂BT ), ð16Þ

where the operator 0 represents the Hadamard (or element-wise)

product. The matrix P has the probability vectors of the nodes as

rows, while the matrices D̂ and B̂B have the rates of the spontaneous

and the contact-induced transition mechanism as elements,

respectively. 1N|m is an all-ones matrix with N rows and m

columns. A is the adjacency matrix of the network, as mentioned

earlier.

Special Cases of the Model

In this section we present some well-known models which the

proposed model generalizes. Since the model equations (3)

constitute an inhomogeneous Markov chain for each node, we

give the state diagrams of the Markov chains for each of the

models in Figs. 1–6. The models discussed are the widely known

SIS, SIR and SIRS epidemic spreading models; the Maki-

Thompson rumor spreading model; and the SI1I2S model where

two contagions spread concurrently in the network, for which we

also assess the accuracy of our approximation. We present the

natural extension of our model on multiplex networks, as well.

Although the model equations appear to be complex in the general

case, we can observe that they reduce to much simpler ones due to

the sparsity of the parameter matrices of the presented models. For

the discrete-time forms of each of the models, the parameters

which represent probabilities are used in Eq. (3) and Eq. (10), while

for the continuous-time forms the respective rate parameters are

used in Eq. (14). Other models which we have met in the literature

and which the proposed model generalizes are given in [19,20].

The epidemic spreading models
The SIS model. The SIS model is described in the previous

section. Its state diagram is presented in Fig. 1. Recall that the

state of node i at time t is described by a state vector of length

m~2 for the SIS model, specifying whether it is in the susceptible

(S) or infected state (I). The model equations (3) for the evolution of

the probability mass function become:

Figure 3. State diagram for the SIR model. The diagram shows the
dynamics of a single node. A susceptible node can become infected by
contacting its infected neighbors, with transmission probability b. On
the other hand, infected nodes spontaneously recover with probability
c and they remain permanently immune to the infection. The contact-
induced transition mechanism is represented by a curvy arrow, whereas
the spontaneous transition mechanism is represented by a less curvy
arrow.
doi:10.1371/journal.pone.0095669.g003

Figure 4. State diagram for the SIRS model. The diagram shows
the dynamics of a single node. A susceptible node can become infected
by contacting its infected neighbors, with transmission probability b.
On the other hand, infected nodes spontaneously recover with
probability c. However, they only obtain temporal immunity which
they lose with probability a. The contact-induced transition mechanism
is represented by a curvy arrow, whereas the spontaneous transition
mechanism is represented by a less curvy arrow.
doi:10.1371/journal.pone.0095669.g004

Figure 5. State diagram for the Maki-Thompson model of
rumor spreading. The diagram shows the dynamics of a single node.
An ignorant node can become a spreader by contacting its neighbors
that spread the rumor, with rate b. On the other hand, spreader nodes
become stiflers by contacting other spreaders or stiflers with rate a, or
by spontaneously transitioning to the stifler state with rate d. The
contact-induced transition mechanism is represented by a curvy arrow,
whereas the spontaneous transition mechanism is represented by a less
curvy arrow. The dashed arrow denotes that tR

SS , i.e. spreader becomes
stifler by contacting other spreaders with rate a.
doi:10.1371/journal.pone.0095669.g005

Figure 6. State diagram of a node for the SI1I2S model. The
diagram shows the dynamics of a single node. Curvy arrows depict
state change due to contact with the neighbors, while less curvy arrows
depict spontaneous state change.
doi:10.1371/journal.pone.0095669.g006
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pi,S(tzDt)~si,S(t)dSSzsi,I (t)dISzsi,S(t)(1{dSS{dSI )gS
i,S(t)

zsi,I (t)(1{dIS{dII )gS
i,I (t)z

zsi,S(1{dSI{dSS)g0
i,S(t)

pi,I (tzDt)~si,S(t)dSIzsi,I (t)dIIzsi,S(t)(1{dSS{dSI )gI
i,S(t)z

zsi,I (t)(1{dIS{dII )gI
i,I (t)

zsi,I (1{dII{dIS)g0
i,I (t):

ð17Þ

Now, since the contact-induced transition mechanism of the SIS

model is infection spread from infected nodes to susceptible nodes,

and the spontaneous transition mechanism involves spontaneous

transition only from the I to the S state, the parameters of the

model are:

B~
bSS bSI

bIS bII


 �
~

0 b

0 0


 �
, D~

dSS dSI

dIS dII


 �
~

0 0

c 0


 �
:

The parameters for the continuous-time case, B̂B and D̂, are

defined analogously. Note that in the SIS model no interaction

with a given state stimulates a node to adopt a state other than the

given one involved in the interaction. Therefore, th
kh~1, Vk,h, so

we have tI
SI~1. This means that gI

i,S(t)~f I
i,S(t). Also, as noted

previously, when a node can be affected by only one infection

through the contact-induced mechanism, no approximation is

needed to write out (5) and f I
i,S(t)~~ff I

i,S(t) can be written in the

product form as in (2). This gives gS
i,I (t)~0, gS

i,S(t)~0, gI
i,I (t)~0,

and gI
i,S(t)~~ff I

i,S(t)~1{g0
i,S(t)~1{P

N

j~1 (1{baijsj,I (t)). Tak-

ing all of the aforementioned into account, we find that (17)

reduces to the known equations for the SIS model:

pi,S(tzDt) ~ si,I (t)czsi,S(t)P
N

j~1
(1{baijsj,I (t))

pi,I (tzDt) ~ si,S(t)½1{P
N

j~1
(1{baijsj,I (t))�zsi,I (t)(1{c):

ð18Þ

Similarly, using the parameters B̂B and D̂ with Eq. (14), we

obtain the continuous-time equations of the SIS model:

dpi,S

dt
~ pi,I ĉc{pi,Sb̂b

XN

j~1
aijpj,I

dpi,I

dt
~ pi,Sb̂b

XN

j~1
aijpj,I{pi,I ĉc

ð19Þ

The SIR model. The SIR, or susceptible-infected-recovered

model, is used to describe the spread of an infection for which

permanent immunity is obtained after the end of the infectious

period. The state diagram that describes its Markov chain is

given in Fig. 3. A node can be in one of three states: the

susceptible (S), infected (I) and recovered (R) state, hence

si(t)~ si,S(t) si,I (t) si,R(t)½ � for a given node i. The general

model equations (3) for the SIR model are:

pi,S(tzDt)~si,S(t)dSSzsi,I (t)dISz

si,R(t)dRSzsi,S(t)(1{dSS{dSI{dSR)gS
i,S(t)

zsi,I (t)(1{dIS{dII{dIR)gS
i,I (t)z

si,R(t)(1{dRS{dRI{dRR)gS
i,R(t)

zsi,S(1{dSS{dSI{dSR)g0
i,S(t)

pi,I (tzDt)~si,S(t)dSIzsi,I (t)dIIz

si,R(t)dRIzsi,S(t)(1{dSS{dSI{dSR)gI
i,S(t)

zsi,I (t)(1{dIS{dII{dRI )gI
i,I (t)z

si,R(t)(1{dRS{dRI{dRR)gI
i,R(t)

zsi,I (1{dIS{dII{dIR)g0
i,I (t)

pi,R(tzDt)~si,S(t)dSRzsi,I (t)dIRz

si,R(t)dRRzsi,S(t)(1{dSS{dSI{dSR)gR
i,S(t)

zsi,I (t)(1{dIS{dII{dIR)gR
i,I (t)z

si,R(t)(1{dRS{dRI{dRR)gR
i,R(t)

zsi,R(1{dRS{dRI{dRR)g0
i,R(t)

ð20Þ

According to the description of the model, the parameters of the

model are

B~

bSS bSI bSR

bIS bII bIR

bRS bRI bRR

2
664

3
775~

0 b 0

0 0 0

0 0 0

2
664

3
775,

D~

dSS dSI dSR

dIS dII dIR

dRS dRI dRR

2
664

3
775~

0 0 0

0 0 c

0 0 0

2
664

3
775:

The parameters for the continuous-time case, B̂B and D̂D, are defined

analogously. As in the SIS model, the contact-induced transition

mechanism in the SIR model exists only in the interaction between

susceptible and infected nodes, and the number of infected nodes is

increased as a result. This implies f I
i,S(t)~~ff I

i,S(t). No interaction with

a given state stimulates a node to adopt a state other than the given

one involved in the interaction. This means that th
kh~0 Vk,h, so we

have tI
SI~1. Similarly to the SIS model, we have that gh

i,k(t)~0,

Vk,h, except for gI
i,S(t)~~ff I

i,S(t)~1{g0
i,S(t)~1{P

N

j~1 (1{

baijsj,I (t)). Taking all of the aforementioned into account, the

equations (20) reduce to
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pi,S(tzDt) ~ si,S(t)P
N

j~1
(1{baijsj,I (t))

pi,I (tzDt) ~ si,I (t)(1{c)zsi,S(t)½1{P
N

j~1
(1{baijsj,I (t))�

pi,R(tzDt) ~ si,I (t)czsi,R(t)

ð21Þ

Similarly, using the parameters B̂B and D̂D with Eq. (14), we

obtain the continuous-time equations of the SIR model:

dpi,S

dt
~ {pi,Sb̂b

XN

j~1
aijpj,I

dpi,I

dt
~ pi,Sb̂b

XN

j~1
aijpj,I{pi,I ĉc

dpi,R

dt
~ pi,I ĉc

ð22Þ

The SIRS model. The SIRS, or susceptible-infected-recov-

ered-susceptible model, is used to describe the spread of an

infection for which temporary immunity is obtained after the end

of the infectious period. The state diagram that describes its

Markov chain is given in Fig. 4. It is very similar to the SIR model,

the only difference being the addition of a spontaneous transition

link from the recovered to the susceptible state that describes the

temporary immunity. Having the same states as the SIR model,

the general model equations (3) for the SIRS model coincide with

those of the SIR model, Eq. (20). As mentioned earlier, the only

difference in the model parameters is that dRS~a in the SIRS

model, whereas dRS~0 in the SIR model. Hence, the equations

(3) reduce to

pi,S(tzDt) ~ si,R(t)azsi,S(t)P
N

j~1 (1{baijsj,I (t))

pi,I (tzDt) ~ si,I (t)(1{c)zsi,S(t)½1{ j~1 (1{baijsj,I (t))�
pi,R(tzDt) ~ si,I (t)czsi,R(t)(1{a)

ð23Þ

Similarly, the continuous time equations of the SIRS model

read

dpi,S

dt
~ pi,Râa{pi,Sb̂b

XN

j~1
aijpj,I

dpi,I

dt
~ pi,S b̂b

XN

j~1
aijpj,I{pi,I ĉc

dpi,R

dt
~ pi,I ĉc{pi,Râa

ð24Þ

The Maki-Thompson model for rumor spreading
The Maki-Thompson model [34] is a popular variant of the

classical model of rumor spreading of Daley and Kendall [35]. In

both models, which operate in continuous time, each node can be

in one of three different states: ignorant (I), spreader (S) and stifler

(R). Nodes in state I are uninformed, or ignorant, of the given

rumor and are thus susceptible to it. Nodes in state S actively

spread the rumor, while nodes in state R are aware of the rumor,

but they have lost interest in it and no longer spread it. When an

ignorant node contacts a spreader, it becomes a spreader as well

with rate l. If, on the other hand, a spreader contacts a stifler or

another spreader, it becomes a stifler at a rate a. The two models,

Maki-Thompson and Daley-Kendall, differ in the contact

mechanism. The Daley-Kendall model adopts a pair-wise contact

mechanism, i.e. for a given neighboring pair only one commu-

nication is assumed, which can affect both nodes simultaneously.

For example, two neighboring spreaders either both become

stiflers due to a single successful transmission or otherwise they

both remain spreaders. Our model does not generalize such

models. On the other hand, the Maki-Thompson model adopts a

directed contact mechanism, i.e. only the node which initiates the

contact can change its state. Hence, separate contacts will be

initiated for both directions in every time step for the discrete time

case, as we work with a reactive process. Both models assume a

homogeneously mixed population or an undirected network;

however, the Maki-Thompson model can easily be applied on

directed networks as well. Also note the resemblance between the

ignorant, spreader and stifler state in the Maki-Thompson model

and the susceptible, infected and recovered state in the SIR model.

The difference with the epidemic models is the part of the contact-

induced transition mechanism which comes from contacts initiated

by the spreaders. The mechanism of spontaneous transition to

another state is absent from the original versions of both models.

A more recent study has supplemented both models with a

mechanism of spontaneous rumor forgetting with rate d by which

spreader nodes can also become stiflers [36]. The state diagram

describing the Markov chain of this version of the Maki-

Thompson model is given in Fig. 5. Here we show that the

proposed model reduces to the Maki-Thompson model with

rumor forgetting. Moreover, we recover the differential

equations that have actually been used in [36]. The state of

a node is described by a vector of length m~3:

si(t)~ si,I (t) si,S(t) si,R(t)½ �, and so is the probability mass

function which gives the probability of being in each state.

Regarding the model parameters, note that l, a and d are rates,

and the corresponding probabilities are obtained by multiplying

these with the length of the time step Dt in which a contact occurs.

Hence, the parameters are

B~

bII bIS bIR

bSI bSS bSR

bRI bRS bRR

2
664

3
775~

0 lDt 0

0 aDt aDt

0 0 0

2
664

3
775,

D~

dII dIS dIR

dSI dSS dSR

dRI dRS dRR

2
664

3
775~

0 0 0

0 0 dDt

0 0 0

2
664

3
775:

This means that f I
i,I (t)~0, f R

i,I (t)~0, f I
i,S(t)~0, f I

i,R(t)~0,

f S
i,R(t)~0 f R

i,R(t)~0, while f S
i,I (t)=0, f S

i,S(t)=0 and f R
i,S(t)=0 in

general. The contact-induced transition mechanism in the Maki-

Thompson (and Daley-Kendall) model describes the increase in

the number of both the S–nodes and the R–nodes. The increase in

the number of spreaders is achieved by the interaction of nodes in

states I and S, which is an infectious spread of the S state. The

increase in the number of stiflers occurs because of interactions

between nodes in states S and R, which can be viewed as an

infectious spread of the R state, and because of interactions

between nodes in state S, where the contact stimulates a node to

adopt the R state. Therefore, th
kh~1, Vk,h, except for k~h~S,

where tS
SS~0 and tR

SS~1, which results in gS
i,R(t)~0,
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gS
i,I (t)~f S

i,I (t) and gR
i,S(t)~f R

i,S(t)zf S
i,S(t). Taking all of the

aforementioned into account, the equations for the Maki-

Thompson model become

pi,I (tzDt) ~si,I (t)g0
i,I (t)

pi,S(tzDt) ~si,I (t)f S
i,I (t)zsi,S(t)(1{dDt)g0

i,S(t)

pi,R(tzDt) ~si,S(t)dDtzsi,S(t)(1{dDt) f R
i,S(t)zf S

i,S(t)
h i

zsi,R(t):

ð25Þ

Now note that although the contact-induced mechanism

practically describes two states spreading in a network, the two

of them cannot affect a node simultaneously, i.e. do not have to

compete for a node, since I–nodes can only transit to S–nodes via

the contact-induced mechanism, and S–nodes can only transit to

R–nodes. In effect, from a node’s viewpoint, each state spreads as

if it is the only contagion in the network. Thus, there is no need to

approximate (5) and f S
i,I (t), f R

i,S(t) and f S
i,S(t) can be written in the

product or sum form as in (2):

f S
i,I (t)~1{P

N

j~1 (1{lDt aijsj,S(t)),

f R
i,S(t)~1{P

N

j~1 (1{aDt aijsj,R(t)),

f S
i,S(t)~1{P

N

j~1 (1{aDt aijsj,S(t)):

The probabilities g0
i,I (t) and g0

i,S(t) of not changing the current

state given with (7) become

g0
i,I (t)~P

N

j~1 (1{lDt aijsj,S(t)),

g0
i,S(t)~P

N

j~1 1{aDt aij(sj,S(t)zsj,R(t))
� �

,

and g0
i,R(t)~1, which gives rise to the term si,R(t) in the last

equation of (25).

Regarding the continuous-time case, using the rate parameter

matrices, B̂B and D̂D, with the matrix T and Eq. (14), we obtain the

following deterministic differential equations for the evolution of

the probability mass function of node i, which are the same as the

ones from [36]:

dpi,I

dt
~{lpi,I

XN

j~1
aijpj,S

dpi,S

dt
~lpi,I

XN

j~1
aijpj,S{api,S

XN

j~1
aij pj,Szpj,R

� �
{dpi,S

dpi,R

dt
~api,S

XN

j~1
aij pj,Szpj,R

� �
zdpi,S

Further, if we use a homogeneous mean-field approximation,

which means that we assume that every node i has the same

degree �kk~
XN

j~1
aij , and hence the same dynamical behavior,

i.e. pi(t)~p(t) for all i[f1, . . . ,Ng, one obtains

dpI

dt
~{l�kkpI pS

dpS

dt
~l�kkpI pS{a�kkpS pSzpRð Þ{dpS

dpR

dt
~a�kkpS pSzpRð ÞzdpS:

Lastly, the original version of the Maki-Thompson model is

obtained for d~0.

The SI1I2S model
As a suitable example for assessing the accuracy of our

approximation, we present our discrete-time generalization of

the continuous-time SI1I2S model [26]. The state diagram that

describes a node’s transition probabilities is presented in Fig. 6. In

this model, there is a competition between two different contagions

(I1 and I2, or states 1 and 2, respectively), in the sense of which

contagion will infect a given susceptible node (in state S, or state

0). Their respective transmission probabilities are b1 and b2. Also,

once infected, a node can become susceptible again with a

probability d1 or d2, with respect to I1 and I2. Taking all of this

into account, the discrete-time model equations (10) for the

deterministic SI1I2S are

pi,0(tzDt) ~pi,1(t)d1zpi,2(t)d2zpi,0(t)g0
i,0(t)

pi,1(tzDt) ~pi,1(t)(1{d1)zpi,0(t)~ff 1
i,0(t)

pi,2(tzDt) ~pi,2(t)(1{d2)zpi,0(t)~ff 2
i,0(t),

ð26Þ

where

~ff l
i,0(t)~bl

XN

j~1

aijpj,l(t)

1{ 1
2

(b1pj,1(t)zb2pj,2(t))

XN

j~1

aij(b1pj,1(t)zb2pj,2(t))

1{ 1
2

(b1pj,1(t)zb2pj,2(t))

1{g0
i,0(t)

� 	
, ð27Þ

for l[f1,2g, and

g0
i,0(t)~P

N

j~1 1{aij(b1pj,1(t)zb2pj,2(t))
� �

: ð28Þ

We can derive the corresponding continuous-time model equa-

tions (15) as well, which read
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dpi,0

dt
~pi,1d̂d1zpi,2d̂d2{pi,0

XN

j~1
aij(b̂b1pj,1zb̂b2pj,2)

dpi,1

dt
~pi,0b̂b1

XN

j~1
aijpj,1{pi,1d̂d1

dpi,2

dt
~pi,0b̂b2

XN

j~1
aijpj,2{pi,2d̂d2

ð29Þ

Equation (29) coincides with the one derived in [26].

In order to assess the accuracy of the approximation of our

model for the discrete-time case (Eqs. (10)–(13)), we compare it

with the actual non-approximated version on several small

networks (complete, star, ring and lattice graphs). The limitation

on the network size comes as a result of the computational

complexity of the non-approximated version. We calculate the

macroscopic fixed points, i.e. percentage of nodes in each of the

states, produced by both versions of the model for a given set of

parameters. The norm of the error vector for every combination of

b1 and b2 is calculated. As the approximation refers to the contact-

induced state change mechanism, we keep d1 and d2 fixed at 0:075
and 0:05, respectively. The results show that our approximation

produces the same macroscopic fixed points as the non-approx-

imated version, for almost every combination of b1 and b2. This

can be expected, since in this model, as shown in [26], there is

always a clear winner except for the case when
b1
d1

~
b2
d2

, which is

the line where our approximation does not produce zero error.

This is shown in Fig. 7, for the complete graph, the star graph and

the lattice graph.

A model with more complex behavior can be easily constructed,

and it will help in assessing the accuracy of our approximation. We

alter the aforementioned SI1I2S model by replacing the sponta-

neous transition links with contact-based transition links. The state

diagram of this model is presented in Fig. 8. The process that we

model can be thought of as a competition between two political

parties (I1 and I2). As before, a person that does not support either

party can become a supporter by contacting other supporters of

one of the parties. Also, a voter can decide not to vote by

contacting other such persons, having previously supported one of

the parties (unlike the previous model, where such state change

can only be made spontaneously). The macroscopic fixed points

were compared for the approximated and the non-approximated

version of our model, for every combination of b01 and b02.

Similarly as before, we kept b10 and b20 fixed at 0:075 and 0:05,

respectively. In this model a clear winner is not always found. The

approximation refers to the contact-induced state change mech-

anism of the susceptible node, the same as in the original SI1I2S
model. The results of the comparison between both versions,

presented in Fig. 9, demonstrate how much the individual

approximation errors influence each other and accumulate over

time. They clearly indicate the regions where our approximation

works best. For relatively comparable values as well as for small

values (v0:25) of both of the parameters b01 and b02 our

approximation produces a negligibly small error on every graph.

We find these results satisfactory as working within these regions

has been standard practice in the literature. The error in the other

regions is low as well. The results for the ring graph are not shown,

since the error is significantly smaller than the errors for the other

graphs.

An example model for the spread of three innovations
While the previous example model was suitable for presenting

the regions where our approximation very closely matched the

non-approximated deterministic version of our model, the

macroscopic behaviors always converged to a fixed point where

one of the states had vanished from the system. We observed that

the deterministic behaviors did not show oscillations, due to the

simplicity of the model. In order to test the approximation on a

system with oscillatory behavior, we introduce an example model

for the spread of three innovations, whose state diagram is shown

in Fig. 10. Here, each node possesses one of the three innovations

(there is no susceptible state in this model), and contact-induced

Figure 7. Comparison of the macroscopic fixed point values produced by the approximated and non-approximated version of the
discrete-time generalization of the SI1I2S model. The norm of the error vector, whose components are the differences between the
macroscopic fixed point values (percentage of nodes in each state) of both versions, is calculated for each combination of the parameters b1 and b2 .
d1 and d2 parameters are fixed at 0:075 and 0:05, respectively. Three different graphs are examined with three random initial state assignments of the
nodes: a complete and a star graph with 6 nodes, and a lattice graph with periodic boundary conditions of 9 nodes. Our approximated version

produces the same fixed points as the non-approximated version, except for the line b1

d1
~

b2

d2
that depicts the area where there is no clear winner.

doi:10.1371/journal.pone.0095669.g007

Figure 8. State diagram of a node for the altered SI1I2S model
that operates only with the contact-based mechanism. The
diagram shows the dynamics of a single node. Curvy arrows depict
state change due to contact with the neighbors.
doi:10.1371/journal.pone.0095669.g008
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transitions can occur between any two states, including transitions

to the same state. The parameter matrix B that was used is

B~

b11 b12 b13

b21 b22 b23

b31 b32 b33

2
64

3
75~

0:225 0:225 0:123

0:17 0:145 0:363

0:362 0:156 0:125

2
64

3
75

Relatively large values were selected to establish whether our

approximation works well even for the parameters where the error

was not zero in the previous assessments (Fig. 9). Also, as

mentioned earlier, they were selected to create oscillatory, i.e.

cyclic-like, behavior. More specifically, should we leave only the

maximal element of each row of the matrix B, the respective state

diagram will depict a cycle graph. The link widths in the state

diagram (Fig. 10) are proportional to the corresponding param-

eters from the matrix B as well. A sample execution on a lattice

network with periodic boundary conditions of 65536 (256|256)

nodes is presented in Fig. 11, that demonstrates the oscillatory

behavior. Snapshots of the system state at eight different time steps

are given.

Due to the large number of parameters in this model, a

comparison of the fixed point values is inappropriate. However,

another suitable way for assessing the accuracy of our approxi-

mation is to compare the actual simulations of the stochastic

model, which are described by the non-approximated version of

the model (Eqs. (3)–(7)), with the approximated version of the

model (Eq. (9)). While comparing the non-approximated and

approximated deterministic models is not possible for large

networks and networks with high-degree nodes (due to the

computational complexity of the non-approximated version of

the model), it is easily done with the stochastic model. For a lattice

network with periodic boundary conditions of 16384 (128|128)

nodes, the comparison results are shown in Fig. 12, left panel.

They were produced by averaging over 1000 executions. The

markers display the execution results of the approximated version,

while the lines display the results of the non-approximated version,

i.e. the actual model simulations. Although we selected relatively

large values for the parameters, our approximated version

matched the non-approximated version very closely. To prove

that this is also the case for networks that have nodes with large

degrees, we performed the same comparison on a power grid

network [37] of 4941 nodes and 13188 links, whose largest degree

is 19. Results, shown in Fig. 12, right panel, again indicate that the

approximation works well. At last, we performed similar compar-

isons on models with smaller parameter values, and the results,

which we do not present here, showed that the approximated

version matched the non-approximated version even better.

Spreading in multiplex networks
To demonstrate the broad applicability of our model, we

present the multiplex adaption of our model as a special case. A

multiplex, or composite network, is a network whose nodes are

interconnected with various types of links (Fig. 13, first panel) [38].

Each link type corresponds to a different layer in the network

(Fig. 13, second panel), however, a node can only be in one single

state over all layers in a given time step. Depending on how the

multiplex network is defined, different variations may exist, e.g. a

node’s state can be depicted by a separate state for each layer. We

focus on the single state case. As before, multiple contagions or

states can spread in the network. However, the transmission

Figure 9. Comparison of the macroscopic fixed point values produced by the approximated and non-approximated version of the
discrete-time generalization of the altered SI1I2S model that operates only with the contact-based mechanism. The norm of the error
vector, whose components are the differences between the macroscopic fixed point values (percentage of nodes in each state) of both versions, is
calculated for each combination of the parameters b01 and b02. b10 and b20 parameters are fixed at 0:075 and 0:05, respectively. Three different
graphs are examined with three random initial state assignments of the nodes: a complete and a star graph with 6 nodes, and a lattice graph with
periodic boundary conditions of 9 nodes. Results show that the approximation is accurate in the regions where both b01 and b02 are small and also
where they are roughly the same.
doi:10.1371/journal.pone.0095669.g009

Figure 10. State diagram of a node for the I1I2I3 model that
operates only with the contact-based mechanism. The diagram
shows the dynamics of a single node. Curvy arrows depict state change
due to contact with the neighbors. The arrow notations are omitted for
brevity. The arrow widths are proportional to the parameter values of
the contact-based transitions between the respective states.
doi:10.1371/journal.pone.0095669.g010
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probabilities between the states are layer-dependent, i.e. each of

the contagions spreads differently on a different layer. Specifically,

we have multiple adjacency matrices Af1g,Af2g � � �AfLg that

describe the connectivity in each of the L layers of the multiplex

network. We also have multiple contact-induced transition

mechanism matrices Bf1g,Bf2g � � �BfLg, one for each layer,

respectively, as shown in Fig. 13, third panel. Hence, the multiplex

spreading equation for the probability that node i will be in state l

aligns with Eq. (10) with

~ff l
i,k(t)~

XL

q~1

b
fqg
kl

XN

j~1

a
fqg
ij pj,l(t)

1{ 1
2

Xm

h~1
b
fqg
kh pj,h(t)

XL

q~1

XN

j~1

a
fqg
ij

Xm

h~1
b
fqg
kh pj,h(t)

1{ 1
2

Xm

h~1
b
fqg
kh pj,h(t)

1{g0
i,k(t)

� 	
, ð30Þ

and

Figure 11. Snapshots of one sample execution of the I1I2I3 model on a lattice network with periodic boundary conditions of 65536
(256|256) nodes. The snapshots were taken at different time steps, as indicated below each individual snapshot. Cyclic-like behavior is clearly seen.
doi:10.1371/journal.pone.0095669.g011

Figure 12. Comparison of the macroscopic behavior simulated by the approximated and non-approximated stochastic version of
the model. Percentage of nodes in each of the states is displayed for each time step. The left panel shows the comparison results on a lattice
network with periodic boundary conditions of 16384 (128|128) nodes. The right panel shows the comparison results on a power grid network of
4941 nodes and 13188 links, whose highest degree is 19. The results were produced by averaging over 1000 executions. The markers display the
execution results of the approximated version, while the lines display the results of the non-approximated version, i.e. the actual model simulations.
For brevity only 40 markers are displayed for each state.
doi:10.1371/journal.pone.0095669.g012
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g0
i,l(t)~P

L

q~1

(1{a
fqg
ij

Xm

h~1

b
fqg
lh pj,h(t)): ð31Þ

Analogously, the differential equations read

dpi,l

dt
~
Xm

k~1

pi,kd̂dklz
Xm

k~1

pi,k

XL

q~1

Xm

h~1

b̂b
fqg
kh tl

kh

XN

j~1

a
fqg
ij pj,h{

pi,l

Xm

k~1

d̂dlk{pi,l

XL

q~1

XN

j~1

a
fqg
ij

Xm

h~1

b̂b
fqg
lh pj,h

ð32Þ

As can be seen, the model is powerful enough to capture

spreading in multiplex networks. One example of such spreading is

the multiplex variant of the SI1I2S model [27]. There, two

contagions (or memes) spread on two separate layers of the

multiplex network. Mutual exclusivity is assumed between the

contagions, i.e. a node infected with one of the contagions is

immune to the other. The state diagram describing the model is

presented in Fig. 13, third panel, and it coincides with the previous

example. However, in this case, an infection has zero transmission

probability on the layers it does not spread on. Hence, b
f2g
01 ~0,

b
f1g
02 ~0, b

f1g
01 ~b1 and b

f2g
02 ~b2; d10~d1 and d20~d2. As a result,

the equations (30) and (31) reduce to

~ff l
i,0(t)~

bl

XN

j~1

a
flg
ij

pj,l(t)

1{ 1
2

b1pj,1(t)

XN

j~1

a
f1g
ij

b1pj,1(t)

1{ 1
2

b1pj,1(t)
za

f2g
ij

b2pj,2(t)

1{ 1
2

b2pj,2(t)

 ! 1{g0
i,0(t)

� 	
,
ð33Þ

for l[f1,2g, and

g0
i,0(t)~P

N

j~1 1{a
f1g
ij b1pj,1(t)

� 	
1{a

f2g
ij b2pj,2(t)

� 	
: ð34Þ

The corresponding differential equations read

dpi,0

dt
~pi,1d̂d1zpi,2d̂d2{pi,0

XN

j~1
(a
f1g
ij b̂b1pj,1za

f2g
ij b̂b2pj,2)

dpi,1

dt
~pi,0b̂b1

XN

j~1
a
f1g
ij pj,1{pi,1d̂d1

dpi,2

dt
~pi,0b̂b2

XN

j~1
a
f2g
ij pj,2{pi,2d̂d2

ð35Þ

Conclusions

In summary, this work has two main contributions. Firstly, we

have proposed a general model for the spread of an arbitrary

number of infections or contagions on networks, in which several

contagions can simultaneously compete to infect a node. The

model is stochastic and runs in discrete time, since difference

equations are used to describe the evolution of the probability of

being in each state. It can describe the spread of not only

biological infections, but also social contagions such as information

and rumors, cultural characteristics such as innovations and

languages, and other systemic entities whose spread on networks

can be described by the two mechanisms of state change

incorporated in the model, which we refer to the spontaneous

and the contact-induced state change mechanism. The first

mechanism describes spontaneous transition to another state,

and corresponds to the curing mechanism in classical epidemic

models, while the second mechanism describes infection with other

contagions or states due to contact with the neighbors, and

corresponds to the spreading process in classical epidemic models.

Secondly, an essential step for making the model applicable for

simulations on networks is that we use the approximation (8) for

the exact probability (5) that a node will adopt a specific state from

its neighbors, which may possess any of the states in the network.

The approximation showed high accuracy in most of the tested

cases.

The proposed model generalizes classical epidemic models such

as the SIS, SIR and SIRS models. Additionally, the contact-

induced state change mechanism in the model accounts for

spreading processes where the interaction with a given state can

stimulate a node to adopt a state other than the one that is being

interacted with. This extends the type of processes that can be

modeled beyond epidemic spreading, and so the model also

generalizes, for example, the Maki-Thompson rumor spreading

Figure 13. A multiplex network. Different link types correspond to different layers in the multiplex network. We assume that transmission
probabilities depend on the link type, i.e. each contagion or state propagates differently over each layer. This is depicted by coloring the contact-
induced transition mechanism links differently for each separate layer. In the adaptation of the SI1I2S model for multiplex networks both contagions

spread only on their respective layers. Hence, we have b
f2g
01 ~0 and b

f1g
02 ~0.

doi:10.1371/journal.pone.0095669.g013
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model, a popular variant of the well-known Daley-Kendall rumor

spreading model. The model allows for the transition to an

equivalent discrete- or continuous-time, deterministic model of

difference or differential equations, respectively, describing the

spreading process which is being modeled. This may be useful for

the study and comparison of stochastic and deterministic models of

the same process. Spreading dynamics on multiplex networks is

naturally captured by the model, as well.
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