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Abstract

The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history
stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is
thus important to understand the effects of both developmental and evolutionary history on survival in stressful
environments. We present evidence of the effects of both developmental and evolutionary history on survival of a
freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared
the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well.
Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival
probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also
dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical
deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both
developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern
that may have widespread implications for the survival of animals increasingly impacted by substances with which they
have little evolutionary history.

Citation: Hopkins GR, Brodie ED Jr., French SS (2014) Developmental and Evolutionary History Affect Survival in Stressful Environments. PLoS ONE 9(4): e95174.
doi:10.1371/journal.pone.0095174

Editor: Daniele Canestrelli, Tuscia University, Italy

Received December 13, 2013; Accepted March 24, 2014; Published April 18, 2014

Copyright: � 2014 Hopkins et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported financially by the Utah State University (USU) Department of Biology and the Ecology Center. The USU Merril-Cazier
Library’s Open Access Funding Initiative and the USU Ecology Center kindly assisted with publication costs. The Natural Sciences and Engineering Research
Council of Canada (NSERC) provided additional financial support to GRH. The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gareth.r.hopkins@gmail.com

Introduction

Natural and anthropogenic stressors are commonplace through-

out the environment. The ways in which stressors impact

organisms, and their ability to successfully respond to these

stressors is of paramount importance to our understanding of

biological systems. For organisms with complex life cycles, the

ability to respond to a given stressor may vary depending on life

history stage, and there may be carry-over effects from one stage to

the next [1] (see Table S1 in Supporting Information). However,

organisms may or may not have an evolutionary history of

regulating the stressor in question, and this may also affect their

ability to effectively respond [2,3]. We propose that both an

organism’s developmental history of exposure to a stressor

(developmental history hypothesis) and its evolutionary history of

regulating that stressor (evolutionary history hypothesis) play

critical roles in the survival of organisms in stressful environments.

It has been suggested that the earlier in an organism’s life

history environmental stressors are experienced, the more severe

the lasting consequences will be [4–6], and there is strong

empirical evidence across animal taxa for this assertion (Table S1).

This forms the basis of our developmental history hypothesis. In

humans, for example, the environment of the womb can

significantly affect an individual’s chances of cardiac and other

diseases later in life [5,7,8]. In birds, the temperature at which eggs

are incubated can affect hatchling body composition, growth,

immunocompetence and thermoregulatory ability [4,9]. Develop-

mental temperature also affects survival, growth and behavior of

juvenile reptiles (e.g., [10]) (Table S1). Elevated CO2 as embryos

results in decreased larval settlement success of sea urchins [11],

and the ability of bryozoans to produce large, successful colonies is

dependent on their embryonic experience and growth [12]. Thus,

embryonic exposure to stressors can be critical to an animal’s

future fitness (Table S1).

Parsing critical life history stages, however, is not trivial, and

many studies have given contradictory evidence for the develop-

mental history hypothesis. For example, while multiple studies

have shown that embryonic environment can significantly affect

an individual’s chances of success in later life (Table S1), others

have shown that it is the larval or juvenile environment that has

the greatest influence on survival, growth, or reproduction (e.g.,

[13,14]). Still others have shown that while the embryonic

environment has a significant role to play in later life, its effect

may be dependent on the environment animals experience later in

life (e.g., [15,16,17]). Experiments are often not designed to isolate

the effects of environment on a specific life history stage from those

of another (e.g., [18,19–21]), and thus, consistent knowledge of the

environmental and carry-over effects across multiple life history

stages is lacking (but see [14,17,22,23]).

While there is a strong empirical basis for the developmental

history hypothesis (even with the conflicting evidence and

limitations identified above), there is much less known regarding
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the evolutionary history hypothesis. Organisms in most habitats

today face both natural stressors with which they have an

evolutionary history, and thus evolved physiological mechanisms

of regulating (e.g., CO2, temperature, NaCl), and novel stressors

with which they do not have this same evolutionary history (e.g.,

pesticides, flame retardants, commercial non-NaCl-based deicing

salts), and thus lack the physiological mechanisms to regulate. The

effects of developmental history must therefore be placed in this

environmental and evolutionary context. While many studies have

documented the significant effects of unfamiliar substances such as

pollutants on evolutionarily-naı̈ve organisms (e.g., reviewed by

[24] for amphibians), these cannot be directly compared to

stressors with which the organism has an evolutionary history, and

thus a means of regulating, as the nature of the two stressors is

usually very different (i.e., comparing the effect of a herbicide with

the effect of NaCl). At this point, we do not know how the

potentially important effects of an organism’s evolutionary history

with a stressor may interact with its developmental history of

exposure with the stressor.

To address these concerns, we tested the effects of develop-

mental and evolutionary history on survival in stressful environ-

ments. We chose the rough-skinned newt (Taricha granulosa Skelton;

Caudata: Salamandridae) as our model, an osmotically sensitive

organism, and salinity as its stressor. Specifically, we tested the

effects of both NaCl and MgCl2 on the post-hatching survival of

newt larvae that had either been exposed to salt as both embryos

and larvae or just as larvae. Salinity is an excellent stressor to use

to test our two hypotheses, as it is a naturally occurring abiotic

component of aquatic habitats, and is known to have significant

carry-over effects from the embryonic to post-hatching life-stages

in a variety of organisms, [15,23,25–27] (Table S1). We used salt

concentrations that were within environmentally relevant limits of

freshwater aquatic systems impacted by either natural (i.e.,

estuaries) or anthropogenic (i.e., road deicing salts) sources of

salts [29,30]. The two most common sources of salinity in North

America today are two different salts, NaCl and MgCl2, only one

of which most organisms have an evolutionary history of

regulating. Sodium chloride (NaCl) is one of the most common

osmolytes, and organisms have an evolutionary history of

regulating this in a variety of habitats, whereas MgCl2 has not

been identified as a common vertebrate osmolyte [31], and Mg2+

is not found in substantial concentrations in most freshwater

habitats, nor the precipitation that feeds them (including in the

newts’ range) [32]. Therefore, animals do not have the same

evolutionary history of physiological regulation of this ion.

Nevertheless, MgCl2 is now the second most commonly used

road deicer in North America (behind NaCl), and is used

exclusively in some areas of the continent [33]. Thus, there is

the potential that organisms will encounter MgCl2 in substantial

quantities in their environment. We found that both salts caused

significant developmental carry-over effects from the embryonic

environment on larval survival, but that the salts differed in their

effects on larval survival, according to the differential evolutionary

history that amphibians have with regulating the two stressors. As

more and more freshwater animals, mostly maladapted to salt, will

be forced to cope with increasing salinization of their habitats due

to the application of road deicing salts [34,35–36], landscape

modification and agricultural waste [37–40], and rising sea-levels

[41–43], understanding the effects of both developmental and

evolutionary history of salinity exposure will have important

implications for both life history and evolutionary theory, as well

as conservation efforts.

Materials and Methods

Ethics Statement
Adult rough-skinned newts (Taricha granulosa) (not an endan-

gered or protected species) were collected by dip-net and hand

from Soap Creek ponds (44u40913.220N, 123u16939.650W) under

Oregon Department of Fish and Wildlife Scientific Taking Permit

#062-11. Access to these ponds was granted by Joe Beatty,

Oregon State University. The Utah State University Institutional

Animal Care and Use Committee (IACUC) approved the

collection and use of animals in this research, and all experimental

protocols (approved protocol #1524). Animals were euthanized at

the completion of experiments with MS-222, in accordance with

the approved IACUC protocol (#1524).

Experimental Procedure
As reported in a previous study ([44] for detailed methods on

habitat, field collection, rearing eggs and preparing salt solutions),

we reared eggs from 16 different gravid wild-caught female rough-

skinned newts (Taricha granulosa) from a single, salt-naı̈ve popula-

tion from Benton County, Oregon, in a laboratory environmental

control chamber at 7uC. This population is truly salt-naı̈ve [44],

being highly philopatric to freshwater ponds that are separated by

hundreds of meters from small county roads that are not salted

(Kendal Weeks, Oregon Department of Transportation Road

Maintenance, personal communication; Kent Mahler, Benton

County Road Maintenance, personally communication). While

MgCl2 is widely used in Oregon as its exclusive deicer, it is also not

applied to the nearest stretch of highway to these ponds, located

over 4 km away (Kendal Weeks, Oregon Department of

Transportation Road Maintenance, personal communication).

See [44] for additional details on this habitat. Eggs from wild-

caught females were randomized to one of six different salt

treatments, made with laboratory grade NaCl (Thermo Fisher

Scientific, Fair Lawn, NJ, USA), MgCl2 (Acros Organics, Fair

Lawn, NJ, USA) and distilled water (Low NaCl, Low

MgCl = 1.0 g/l Cl2; Medium NaCl, Medium MgCl2 = 1.5 g/l

Cl2; High NaCl, High MgCl2 = 2.0 g/l Cl2) and a control (20%

Holtfreter’s Solution = 0.7 g/l Cl2 [45]). Those eggs that survived

these treatments were used in the present experiment. At hatching,

the size (total length) and developmental stage [46] of hatchlings

were recorded (see [44] for full methods and results).

Eggs that were reared in a salt treatment remained in that salt

treatment as larvae (Fig. 1). Approximately 7 times more control

eggs were reared than salt treatment eggs, so that control eggs

could be randomized to new larval treatments in the present

experiment (similarly to [26]) (Fig. 1). Eggs were monitored daily

and all larvae were transferred to their new treatment solution

within 12 hours of hatching. This direct transfer, following a

similar protocol of Petranka and Doyle [47], was meant to mimic

the sharp spike in Cl2 concentrations found in road-side

environments that immediately occurs within hours of a deicing

event or snowmelt [48–50], where minimal to no time is allowed

for acclimation. While gradual acclimation of low salinity levels

have led to increased tolerance in some amphibians (e.g., [51]) it

has also led to increased susceptibility in others [52], and is less

environmentally relevant to examining the sudden spikes of

salinity seen in habitats due to road deicing salt application. In

addition, while the salt concentrations used were typical for those

immediately resulting from deicing events [48,53], they were also

well below recorded NaCl and MgCl2 LD-50 values for other

amphibian larvae [37,54,55].

Larvae were housed in sibling groups of up to 5 individuals

(keeping offspring from different female and treatment combina-
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tions separate) in 12.5 cm diameter, 10.5 cm deep round plastic

containers, filled with 400 ml of solution. Each container was

randomized to a location in a growth chamber set at 7uC, with a

12 h light: dark photoperiod. Containers were checked daily for

larval survival, and dehydration. Dead larvae were noted and

removed, and a small amount of distilled water was added to each

container if necessary, to compensate for evaporation. Taricha

granulosa larvae retain some embryonic yolk for up to approx-

imately two weeks after hatching, and do not engage in feeding on

prey before then. As we did not want to confound our survival

results with possible negative effects of the salt treatments on larval

prey, we only conducted this experiment for 15 days post-

hatching; if a larva was alive at day fifteen, it was recorded as alive

for the purposes of the analysis. A similar endpoint has also been

used in a previous study on post-hatching survival of frog larvae in

road deicing salt [47].

Statistical Analysis
For survival analyses, individual larvae were treated as

subsamples within containers, which were treated as subsamples

nested within individual female. Larval survival was analyzed

using a binomial distribution, with a generalized linear mixed

model blocking on individual female as a random effect. We first

compared the survival of control newts (i.e., those reared in control

as eggs and larvae) to newts in all other treatments for each salt,

and then ran separate models to compare survival among salt

treatments (minus control) for both larvae that were reared in

control and those reared in salt as eggs, with Tukey-adjusted

multiple comparisons among individual treatment levels, when an

overall significant effect of treatment was found. We were,

however, primarily interested in comparing and contrasting the

effects of embryonic and larval environment on larval survival. As

we did not have a complete factorial design in this study (e.g.

embryonic low MgCl2 + larval high NaCl treatment combination),

for this analysis, we analyzed the effects of the two different salt

types separately, using embryonic and larval treatments as fixed

effect factors in our models. We then analyzed the effect of

embryonic versus larval environment on larval survival for each

salt [56]. In these analyses, larval treatment had three levels, low,

medium and high, and embryonic treatment had two levels,

control and salt. This enabled a direct statistical comparison to be

made of larval survival between animals that were reared as eggs

in control or, for example, low MgCl2, for larvae that were reared

in low MgCl2. We conducted Tukey-adjusted multiple compar-

isons, specifically comparing larval survival in each salt treatment

level between eggs that were reared in either that salt treatment or

control, for cases in which an overall significant effect of either

embryonic treatment, larval treatment, or their interaction was

Figure 1. Outline of experimental design. Embryonic and larval environments, salinity concentrations, treatment names, and sample sizes are
shown. Newt eggs were reared in either a freshwater control, or one of six salt treatments. Upon hatching, embryos that were reared in salt stayed in
that salt, whereas embryos reared in control either stayed in control or were randomized to one of the six salt treatments for the larval environment.
The name of each treatment combination is listed, and sample sizes are given under each larval environment (numbers outside of parentheses
indicate total number of individuals in the treatment, whereas numbers inside parentheses indicate number of containers in the treatment (up to five
sibling larvae were reared in the same container, and individuals within containers were treated as nested subsamples. See Methods for more details).
doi:10.1371/journal.pone.0095174.g001
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found. Analyses were conducted using PROC GLIMMIX in SAS

software version 9.3, with significance set at a= 0.05.

As embryonic exposure to salt affected the size and develop-

mental stage at hatching of newts, as did differences among

individual mothers (females) [44], we wanted to further assess the

potential contribution of these variables, as well as embryonic and

larval treatments in general, in explaining any overall effects of salt

treatment in either embryonic or larval environments on larval

survival. To do this, we conducted multivariate classification

analyses, which measure variable importance in a model’s ability

to correctly classify larvae as having died or survived. As only one

out of 778 newt larvae died after being reared in control as both an

embryo and larvae (see Results), we restricted our analyses to

larvae reared in salt post-hatching. We used three validated

classification procedures [57], logistic regression, Classification

Trees [58] and Random Forests [57,59], and in each case assessed

variable importance by examining the relative classification

performance of models incorporating or not incorporating key

variables.

Specifically, we assessed the ability of the models to correctly

classify larvae as having died (sensitivity). For the full model, we

included all larval and embryonic variables of potential interest,

including: larval treatment, embryonic treatment, length at

Figure 2. Percentage (mean ± SE) of larvae that died in each
salt treatment. (A) NaCl, (B) MgCl2. Only 1 out of 778 larvae in Control
died, and thus only results for mortality in salt treatments are shown.
Direct comparisons are made between the mortality of larvae reared as
embryos in salt (open squares) or control (closed circles). Asterisks
indicate significant differences (Tukey-adjusted multiple comparisons)
between the percentages of larvae died in each of these treatments
(i.e., for the larval treatment Medium NaCl, significantly more larvae
died when reared as eggs in that salt, than did larvae reared as eggs in
control). ‘‘ns’’ = no significant difference between treatments.
doi:10.1371/journal.pone.0095174.g002
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hatching, developmental stage at hatching, and female identity.

We then withdrew the larval treatment variable, and reassessed

the model’s sensitivity, withdrew all embryonic variables (leaving

only larval treatment and individual female) and again reassessed

the model’s sensitivity, to assess the potential relative contribution

of larval environment in predicting larval mortality. As well as

assessing variable importance in this manner, all three classifica-

tion methods also provide separate indicators of variable

importance [57]. This is achieved through a variable importance

plot in Random Forests, a classification plot in Classification

Trees, and the variable with the largest Wald Chi-Square value in

logistic regression. We chose the most important variable

identified in each of these methods from the original full model,

and reinserted it back into the model including only larval

treatment and female identity, and assessed whether the inclusion

of this identified variable increased model performance. Classifi-

cation analyses were completed in SAS (logistic regression) and R

(R Development Core Team, 2008, www.R-project.org) (Classi-

fication Trees and Random Forests). Finally, as length at hatching

was identified as a key variable of importance in predicting larval

mortality (see Results), we compared the mean length at hatching

of larvae that died versus survived in each treatment using t-tests in

SAS software version 9.3, with significance set at a= 0.05.

Results

After 14 days, only one out of 778 larvae reared in control as

both egg and larva (‘‘control’’ treatment) died in this treatment,

which was significantly fewer than in any other treatment (all p,

0.001). The survival of the remaining larvae, all experiencing salts

in their larval environment, was then compared. There was a

significant effect of larval salt treatment on larval survival for both

newts that were reared embryonically in salt (F5,74 = 16.54, p,

0.0001) and control (F5,73 = 7.81, p,0.0001). For animals that

were reared as eggs in salt and stayed in that salt as larvae,

significantly more larvae died in low and medium MgCl2 than in

those corresponding concentrations of NaCl (all Tukey adjusted

multiple comparisons p,0.0001), with a similar percentage of

larvae dying in high MgCl2 as high NaCl (Tukey adjusted

p = 0.98). For animals that were reared as eggs in control and then

transferred to salt as larvae, marginally more larvae died in low

MgCl2 than low NaCl (Tukey adjusted p = 0.0698), and signifi-

cantly more larvae died in medium and high MgCl2 than the

corresponding concentrations of NaCl (Tukey adjusted p,0.02).

Increased salt concentration, in both the embryonic and larval

environments, generally resulted in increased larval mortality (with

the exception of high MgCl2) (Fig. 2). For both salts, larval survival

was significantly affected by embryonic environment (Table 1). For

the majority of treatment levels, larvae that were reared as eggs in

control solution survived significantly better than larvae that were

reared as eggs in salt treatments (Fig. 2). For NaCl, both

embryonic and larval treatments significantly affected survival of

larvae in this salt, but for MgCl2, only embryonic treatment

significantly explained larval survival (Table 1). There were no

significant interacting effects of embryonic and larval environ-

ments on larval survival (Table 1).

Eggs that were reared in salt water resulted in smaller larvae at

hatching than those reared in control [44]. Classification analyses

with three different methods all revealed length at hatching as the

consistently most important variable in determining larval survival

(Table 2), further strengthening the evidence of the importance of

embryonic environment on survival post-hatching. Although

Classification Trees and Random Forests had better sensitivity

than logistic regression (as was expected [57]), the ability of

models, using any of the classification methods, to correctly classify

larvae as having died declined dramatically with the exclusion of

embryonic variables (i.e., larval treatment and female identity

alone was a very poor classifier of larval survival), but recovered

substantially with the re-inclusion of length at hatching as a

predictor variable (Table 2), further identifying it as a critical

Table 2. Classification analyses for predicting whether or not newt larvae died (‘‘sensitivity’’), for data excluding control data (i.e.,
only newts in salt as larvae).

Model
Classification
method

Model sensitivity (%) (percent
larvae correctly classified as
having died)

Change in model sensitivity
from full model sensitivity
(%)

Most important
variable identified

Full (Larval Treatment, Egg Treatment,
Length & Stage at Hatching, Female)

Logistic Regression 47.70 . Length at Hatching

Classification Trees 69.65 . Length at Hatching

Random Forests 64.78 . Length at Hatching

Just Embryonic Variables (Egg Treatment,
Length & Stage at Hatching, Female)
(not Larval Treatment)

Logistic Regression 39.82 27.88 Egg Treatment

Classification Trees 64.39 25.26 Length at Hatching

Random Forests 59.26 25.52 Length at Hatching

Just Larval Treatment and Female Logistic Regression 13.67 234.03 Larval Treatment

Classification Trees 19.84 249.81 Larval Treatment

Random Forests 14.32 250.46 Larval Treatment

Just Larval Treatment, Female,
& Length at Hatching

Logistic Regression 44.42 23.28 Length at Hatching

Classification Trees 61.76 27.89 Length at Hatching

Random Forests 52.56 212.22 Length at Hatching

Three multivariate classification methods were utilized (logistic regression, Classification Trees, and Random Forests) to determine the most important variables
predicting larval survival in salt. See Methods and Results for more details regarding these analyses and their interpretation.
doi:10.1371/journal.pone.0095174.t002

Development, Evolutionary History, and Survival

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e95174

www.R-project.org


variable for predicting larval survival. Larvae that survived, in

each of the treatments, were significantly larger at hatching, on

average, than larvae that died (Fig. 3; for all t-tests, p,0.01).

Discussion

Developmental and evolutionary history each significantly

affected the survival of newt larvae in salts, and thus the

importance of both hypotheses was supported. Eggs appear to

be a critical life history stage for this amphibian in osmotically

stressful environments. Animals that were exposed to salt as

embryos and survived hatched at a smaller size than animals that

did not experience embryonic salinity. Stunting of embryonic

growth put amphibian larvae at greater risk for salt-induced

mortality (Table 2). However, our results show that it is also

important to understand the evolutionary history an organism has

with a stressor. Even though there was no difference in egg

mortality between embryos reared in NaCl or MgCl2 [44], more

larvae died in MgCl2 than in NaCl (Fig. 4). While newt larvae

have evolved with natural sources of NaCl in their environment,

which they can osmoregulate, such common regulation of MgCl2
does not appear to have evolved. Understanding this evolutionary

history, as well as parsing critical life history stages is imperative to

understand the effects of stressors on the life history of an

organism.

The majority of organisms have complex life cycles, and the

experiences of one life stage can have profound impacts on those

in subsequent stages [1] (Table S1). Embryonic salinity is known to

affect the post-hatching survival, growth and development of

marine and estuarine invertebrates, such as barnacles [23], crabs

[15,25,27], horseshoe crabs [26] and tunicates [28]. While all life

history stages of amphibians have, individually, repeatedly been

found to be extremely sensitive to salt [21,47,54,55,60–68], with a

few notable exceptions such as Fejervarya cancrivora [69,70], the

relative sensitivity of each life history stage, and potential down-

stream effects of salinity from one stage to the next, have been less

studied. In one of the only other studies on amphibians to examine

embryonic carry-over effects of salinity, frog larvae (Lithobates

sylvaticus) reared in salt water (NaCl-based) as eggs had reduced

survival in salt compared to larvae that were reared in freshwater

as eggs [47]. This study also found that growth and development

of larvae that survived was depressed in those animals reared

embryonically in salt, also suggesting carry-over effects of

embryonic exposure to salt [47]. Snodgrass et al [21] also found

that Bufo americanus toadlets exposed to stormwater pond sediment

(which had an increased conductivity mainly due to road deicing

salt) as embryos were smaller at metamorphosis than embryos and

larvae exposed to freshwater (although the relative effects of

embryonic vs. larval exposure were not separated). Other studies

have also shown potential carry-over effects of larval salinity

exposure on metamorphic traits important for adult fitness

[37,60]. These results all clearly show that Qiu and Qian’s [23]

statement regarding marine invertebrates, that ‘‘osmotic stress

experienced in one life-stage can be passed over to the next life-

stage’’, can apply to freshwater vertebrates as well.

This pattern of decreased post-hatching survival as a conse-

quence of embryonic exposure has also been found in amphibians

Figure 4. Mortality of newt eggs (black bars) and larvae (grey
bars) in each salt treatment. This figure shows only larvae that were
reared as both eggs and larvae in salt. The percentage of individuals
that survived in each treatment is indicated in white. All percentages
are calculated based on the total number of eggs that started in each
treatment (Control = 2577, low NaCl = 363, medium NaCl = 366, high
NaCl = 345, low MgCl2 = 369, medium MgCl2 = 369, high MgCl2 = 354;
[44]), some of which either died (black bars), or survived to hatching
and were reared in salt, where they either died (grey bars) or survived
(white bars).
doi:10.1371/journal.pone.0095174.g004

Figure 3. Mean (±SE) lengths at hatching (mm) of larvae that
died (closed circles) or survived (open circles) in each salt
treatment. (A) NaCl, (B) MgCl2. In all treatments, larvae that survived
averaged larger at hatching than those that died (all t-tests, p,0.01).
See [44] for full results on length at hatching.
doi:10.1371/journal.pone.0095174.g003
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in response to other stressors, such as nitrite [71] and pesticides

[22]. Thus, studies that do not examine effects at each life history

stage and do not consider the potential for cascading effects across

stages may seriously underestimate the cumulative effects of

exposure to stressors [19,71–73].

One of the primary ways that osmotic stress affects the

embryonic stage to influence post-hatching survival is through

the retardation of growth and development. Newt eggs that were

reared in salt water hatched sooner, smaller and less developed

than newts reared in a freshwater control [44], and this resulting

reduced length at hatching appears to be the single most important

variable in predicting next-stage (larval) survival in salt water

(Table 2). Size at hatching/birth is well known to have important

implications on larval, juvenile, and adult health and survival in a

wide variety of taxa, ranging from sea snails [74] and bryozoans

[12], to birds [75] and humans [7]. Furthermore, this link between

size and fitness has been identified as key to life history theory [12].

Among amphibians, hatching early, smaller and less developed, is

known to affect larval survival, the onset of feeding competence,

competitive and predatory interactions, and larval growth rate and

timing of metamorphosis [6,76–80]. Similar to our findings, small,

less developed amphibian larvae are more susceptible to pollutants

than are large larvae [81,82]. Smaller larval rough-skinned newts

are also more vulnerable to be injured and die in predatory

encounters with dragonfly nymphs [83]. Thus, even if smaller

hatchlings are able to survive short-term in osmotically stressful

environments (which seems unlikely from our results (Fig. 3)), or

even if compensatory growth occurred later in development, a host

of other fitness consequences of this initial stunted embryonic

growth and development are still likely later in life [84], further

emphasizing the importance of the embryonic environment for

life-time fitness.

While the effects of the two salt types were not significantly

different on embryonic survival [44], there were differences in the

larval stage, whereby MgCl2 had relatively greater effects on

survival (Fig. 4). This is in spite of the fact that embryos actually

hatched slightly larger at MgCl2 than at NaCl [44]. Although most

amphibian eggs, like those of many other aquatic organisms [85],

have little means of osmoregulating at the salt concentrations used

in this study [37,63,86], and thus the effects of NaCl and MgCl2 at

this life history stage are equally destructive (any affect of

evolutionary history is minimized in the absence of regulatory

ability), amphibian larvae have evolved to osmoregulate Na+ and

Cl2 ion concentrations in their body through the use of

integumental and gill Na+ pumps [31,87–90]. Larvae have not

evolved this same ability to regulate Mg2+ ions, however, and thus

larvae in NaCl were able to attempt osmoregulation to survive in

this solution whereas larvae in MgCl2 were not. In addition to

lacking this evolutionary history of osmoregulation, Mg2+ has also

been shown to be inhibitory to important osmoregulatory skin ion

pump functioning in other amphibian larvae [91]. Whereas the

effects of NaCl on larvae act in a typical dose-response fashion

(Fig. 2a), it appears that any concentration of MgCl2 is detrimental

to larvae (Fig. 2b), as they have less means to regulate it. This may

explain why larval salinity concentration significantly influences

larval survival for animals in NaCl, but not those in MgCl2
(Table 1). The fact that Mg High had lower mortality than Mg

Low or Medium (Fig. 2b) may be due to a number of possible

reasons, including hormesis [92]. In the only other studies on the

effects of MgCl2 on amphibian larvae to date, both Dougherty and

Smith [62] and Harless et al [54] also found that this emerging

deicing salt was more toxic to frog tadpoles than NaCl.

Magnesium chloride may in fact, be more toxic than NaCl to

life in general, as studies have found that otherwise salt-tolerant

plants [93,94] and archaea [95] are often intolerant of MgCl2, and

the threshold for biological processes in MgCl2 is lower than other

salts, including NaCl [95]. These results make sense from an

evolutionary perspective, given the small quantities of Mg2+

generally found in most aquatic ecosystems, relative to the higher

quantities of Na+ found in precipitation and the ocean [32], and

thus many organisms may not have an evolutionary history of

regulating Mg2+ in high concentrations in their environment.

Vulnerability of a particular life history stage can be described

as the ability of that life history stage to regulate the stressor in

question. Using this criterion, it appears that eggs are the most

vulnerable life history stage to salts overall in amphibians (this

study; [61,65,66,96]) and effects on embryonic development at this

stage have profound survival consequences in later life history

stages, even possibly affecting population viability indirectly

through influencing post-embryonic (larval) mortality [97]. Sim-

ilarly, amphibian larvae cannot successfully osmoregulate in

MgCl2, and thus all life history stages are particularly vulnerable

to this evolutionarily novel but emerging deicing agent, which is

now the second most commonly used road deicer in North

America [33].

Conclusions
Understanding the evolutionary history of an organism with its

stressor, and the differential sensitivity of life history stages to that

stressor are critical in assessing the vulnerability of organisms to

stressful environments. It is now apparent that embryonic

exposure to a stressor can have profound implications on the

post-hatching survival and fitness of organisms in practically all

animal taxa (Table S1), through influencing growth and develop-

ment in this critical life history stage. In post-hatching individuals,

however, even the largest, best-developed organism can only

successfully deal with stressors that they have evolved to regulate.

As the world of these organisms becomes increasingly impacted by

anthropogenic factors, understanding this evolutionary history and

its survival implications at and across different life history stages

will be critical for the future conservation of animals in

increasingly stressful environments.

Supporting Information

Table S1 Animal phyla where components of the embryonic

environment have been demonstrated to have significant carry-

over effects post-hatching. This list is not exhaustive, but is

representative of the diversity and breadth of this phenomenon

throughout the animal kingdom.
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