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Abstract

Previous studies mostly investigate player’s cooperative behavior as affected by game time-scale or individual diversity. In
this paper, by involving both time-scale and diversity simultaneously, we explore the effect of stochastic heterogeneous
interaction. In our model, the occurrence of game interaction between each pair of linked player obeys a random
probability, which is further described by certain distributions. Simulations on a 4-neighbor square lattice show that the
cooperation level is remarkably promoted when stochastic heterogeneous interaction is considered. The results are then
explained by investigating the mean payoffs, the mean boundary payoffs and the transition probabilities between
cooperators and defectors. We also show some typical snapshots and evolution time series of the system. Finally, the 8-
neighbor square lattice and BA scale-free network results indicate that the stochastic heterogeneous interaction can be
robust against different network topologies. Our work may sharpen the understanding of the joint effect of game time-scale
and individual diversity on spatial games.
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Introduction

Cooperation is ubiquitous in nature and it plays an important

role in the evolution of species [1–5]. However, understanding the

emergence and persistence of cooperative behavior among selfish

individuals remains an open and challenging problem [6], which

has been widely studied by biologists, physicists and sociologists

over the years [7]. Evolutionary game theory [1,8] provides a

powerful tool to investigate altruistic actions among selfish

individuals and the Prisoner’s Dilemma Game [9] (PDG) is a

frequently studied paradigm in the field. In the original PDG, two

players simultaneously choose to either cooperate (C) or defect (D).

They will both get a payoff R (P) if they are both cooperators

(defectors). If one cooperates and the other defects, a payoff S (T )

is given to the cooperator (defector). Here, the four payoff values

are arranged as TwRwSwP with precondition 2RwTzS. So,

for a rational selfish individual, the best strategy is to defect no

matter how the opponent acts. It is obvious that mutual

cooperation can get a lager payoff than mutual defection, and

thus there is a conflict of interest between what is best for the

individual and what is best for the group. This is the so called

‘‘social dilemma’’.

Traditionally, the evolutionary PDG is studied in a well-mixed

population where all individuals play games with each other. It is

shown that cooperation never survives evolution and defectors can

diffuse in well-mixed populations under replicator dynamics [5].

However, observations in the real world usually show the opposite.

To explain the emergence and maintenance of cooperative

behavior, several mechanisms have been proposed, such as kin

selection [10], direct [1] or indirect [11] reciprocity, punishment

[12], reputation [13], group selection [14], voluntary participation

[15], payoff aspiration [16] and so on (see Ref. [7] and infra).

Since Nowak and May [17] introduced spatial structure into the

evolutionary game, it has increasingly attracted interest from

different fields (see Ref. [18,19] and infra) as a significant extension

of the traditional well-mixed territory. In spatial games, the nodes

in the network indicate the game players and the edges linking two

players mean the interaction between them. Fruitful studies have

shown that the network topology [20,21] provides a powerful

boost in the evolution of cooperation, e.g., regular networks [22–

29], small-world networks [30–35] and scale-free networks [36–

42]. Recently, the player mobility [43–47], the adaptive networks

[48,49], as well as co-evolutionary strategy and network structure

[50,51] also exhibit promising influence on cooperative behavior.

As we know, both game time-scale [52] and individual diversity

[53] play important roles in the promotion of cooperation. In

terms of time-scale, Carlos theoretically studied the effect of time-

scales of interaction and selection on the outcome of evolution

[52]. Szolnoki [54] studied the effect of time separation by

introducing a simply co-evolutionary rule where the teaching

activity of a successfully reproduced player is increased. Wu [55]

studied the diversity of reproduction in time-scale models and

found that the cooperation level in spatial PDG is greatly

promoted. Tanimoto [56] studied the effect of strategy updating

time scale on network reciprocity. They found that a negative

correlation between degree and strategy updating speed brings an

extremely large cooperation-enhancing effect. Rong [57] studied

an adaptive strategy selection time-scale called ‘‘win-slower, lose-

faster’’ rule. Traulsen [58] studied the heterogeneity of game time-

scale. Chen’s work [59] found that interaction stochasticity
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supports cooperation in spatial PDG. Jiang studied the effect of

time-scale in mobile environments [60]. In particular, Cao [61]

studied two time-scales in a dynamic weighted network, i.e., the

strategy update time-scale and weight adjustment time-scale. On

the other hand, since the prestigious work in [62], individual

diversity is becoming one of the hottest focuses. Santos [53]

pointed out that diversity can be the diverse nature of human

interaction, contexts, preferences and social structures. Szolnoki

[63] studied the inhomogeneous teaching activity controlled by a

two-value pre-factor which is determined according to the type of

the player whom the strategy learned from. In [64], the authors

further studied the effect of teaching activity which is individual

diverse and time evolving. Yang [65] analyzed individual

heterogeneity in scale-free structures. Wu [66] investigated the

evolutionary PDG with dynamic preferential selection and found

that the proposed mechanism substantially promotes cooperation.

Perc [67] studied the effect of social diversity on cooperative

behaviors in PDGs, where different distributions are introduced to

determine the social diversity of players. Wang [68] found that

heterogeneous aspirations can promote cooperation in the game.

Zhang found that cooperation level can be remarkably promoted

when the heterogeneity of view radii is considered [43]. Cao [42]

concerned investment heterogeneity in scale-free structured

networks and proposed a PGG model to study the effect of

investment heterogeneity on cooperation level. Zhang [69]

investigated the evolution of cooperation on scale-free networks

with heterogeneous payoff allocation mechanism. Shigaki [70]

studied another interesting form of diversity, i.e., the initial

fraction of cooperators. As their work shown, different initial

proportion of population results in different END and EXP

behaviors as well as distinctive evolutionary snapshots and final

equilibrium. Tanimoto [71] studied the heterogeneous aspiration

in partner selection process and found that cooperation level is

remarkably enhanced by spatially distributed updating speed

among agents. A recent work by Sirakoulis [72] also studied

heterogeneity of the enhancement factor r in PGG in a power-

aware embedded system. To name but a few, the heterogeneity of

population acts as an important role on players cooperative

behavior (see Ref. [53] and infra).

However, to the best of our knowledge, joint research of time-

scale and individual diversity has not been studied before. As we

know, in the real world, not all interactions are effective [59] and

individuals always act heterogeneously [53]. Thus, as a natural

extension of previous works, in this paper, we explore the effect of

stochastic heterogeneous interaction on players’ cooperative

behavior. As for ‘‘stochastic’’, we mean that the interaction

between each pair of players is randomly occurring; in terms of

‘‘heterogeneous’’, we suggest that the randomly-occurring inter-

actions may accord with certain distributions globally. A detailed

discussion on interaction modes can refer to Refs. [73–75] and

infra.

This paper is organized as follows: in section 2, we describe the

model used in this work; section 3 presents the simulation results

and analysis; in section 4, we compare our result with some

previous works and finally conclude the paper.

Methods

In our work, we adopt the evolutionary PDG on a

N~100|100 4-neighbor square lattice with periodic boundary

conditions. Here we consider the re-scaled payoff matrix:

C D

C

D

1 0

b 0

 !

Namely, T~bw1, R~1, P~S~0, where b is the temptation to

defect.

Initially, all players choose their strategies at random, i.e.,

cooperation (C) or defection (D). Here, we use 0 to represent

cooperation and 1 for defection. Then, each player interacts with

its four nearest neighbors on the topology structure. Note that not

all the interactions are always in effect, a probability p[½0,1� is

introduced to conduct the game time-scale in each generation of

PDG interaction. Moreover, the diversity of time-scale is described

by following distributions [43,67]:

p~

1 fixed distribution

{2xz1 uniform distribution

{ ln x{1 exponential distribution

x{1
n{

n

n{1
,n~3 power{law distribution

ð1Þ

where x are random numbers following a uniform distribution

with unit interval. The resulting value of p generated from Eq.(1) is

not guaranteed to locate within [0,1], and is solved by taking some

normalization methods. Thus the ‘‘stochastic heterogeneous

interaction’’ can be stated as each interaction occurring with

random probability, and all these 2|N probabilities obeying

certain distributions (e.g., fixed, uniform, exponential and power-

law distribution) in the region of [0,1].

After playing one shot of the game, each player will learn from

one of its adjacent neighbors and update its strategy. As reported

in Ref. [76], players have different attractiveness in society. So

when players choose neighbor for updating strategy, we consider

individual’s inhomogeneous attractiveness which is in proportion

to their payoffs. We define the selection probability of player x

selecting one of its neighbors, y as following function:

Px?y~
PyP

z[Vx
Pz

ð2Þ

where Py represents the payoff of player y, and
P

z[Vx
Pz means

the sum of payoffs running through all the neighbors of x. IfP
z[Vx

Pz~0, we solve the problem with a solution in which

player x randomly chooses one player y from its neighbors. The

partner selection process is unequivocally important to the

promotion of cooperation. In realistic scenario, for example,

people are much more likely to follow a successful individual than

someone who is struggling to get by. This implies that more

powerful neighbor (e.g., with larger payoff) gets a bigger chance to

be chosen. While under certain circumstances, it is also possible

that individuals will be inspired to copy their less successful

partners. Thus, a tunable factor should be defined to control these

situations [68,71,77]. In our work, we focus the highlight on

intermittent gaming (e.g., stochastic heterogeneous interaction),

thus adopting the relative simple partner selection rule depicted in

[76], i.e., the probability of selection is positive correlation with

payoff.

Next, player x adopts the selected neighbor’s strategy with a

probability calculated by the following function [78]:
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W~
1

1zexp½{(Px=kx{Py=ky)=k� ð3Þ

Here, ki, i[fx,yg, indicates the degree of player i, Pi=ki means the

average payoff of player i and k indicates the noise effect.

Following [78], we set k~0:04.

Results and Analysis

In what follows, we show the simulation results carried out on a

4-neighbor square lattice of size 100|100. At the beginning, the

strategies of cooperation and defection are randomly distributed in

the population with an equal probability of 0.5. The key level of

cooperation is characterized by the fraction of cooperators rc in

the whole population. In the following simulations, rc is obtained

by averaging over the last 1,000 generations of the entire 10,000

generations. 300 individual runs are subsequently averaged

together to eliminate stochasticity and return the final datum.

First we present the cooperation level as a function of

temptation b for different distributions of p, as shown in

Figure 1. We find that, as b increases, cooperation level will

decrease or vanish irrespective of different interaction distribu-

tions. For power-law distribution, the cooperation always stays at a

high level, even when b approaches 2.0, about 90% of cooperators

still survive. Although cooperation level decreases in the region of

bw1:4, the slope is smooth. For exponential distribution,

cooperation drops gradually when bw1:4. We can also find that,

for uniform distribution, the cooperation levels decline to zero

sharply, and when bw1:3 the system is filled with defectors. In

case of fixed distribution, i.e., without game time-scale and p~1,

even when b is very small, there are still some defectors in the

system; while in the other three distributions, the system is in all-

cooperators state when bv1:1. The rank of the effect of

promoting cooperation of four discussed distributions is arranged

as power-law w exponential w uniform w fixed.

To qualitatively explain the nontrivial results in Figure 1, we

first study the relationship of Pc, Pd , Pb
c ,Pb

d in the equilibrium

state, where Pc (Pd ) stands for the mean payoffs of cooperators

(defectors) in the whole population; Pb
c (Pb

d ) represents the mean

payoffs of cooperators (defectors) along the cooperator-cluster

(defector-cluster) boundary. The results are summarized in

Figure 2. For all the four graphs describing the mean payoffs,

the cooperators obtain a larger payoff than defectors. The four

inset graphs describe the mean boundary payoffs. In fixed

distribution (Figure 2(a)) and uniform distribution (Figure 2(b)),

the mean boundary payoffs of cooperators are larger than those of

defectors; while in exponential distribution (Figure 2(c)) and

power-law distribution (Figure 2(d)), Pb
d§Pb

c holds. As Figure 2

shows, in fixed distribution, as b increases, Pc,Pd ,Pb
c and Pb

d

monotonously decline to zero. And when bw1:3, the system is full

of defectors, resulting in Pc~Pd~Pb
c~Pb

d~0. In uniform

distribution, when b is small, the system is saturated with

cooperators, and Pd~Pb
c~Pb

d~0. As b increases, the number

of defectors (cooperators) increases (decreases), and when bw1:3,

the system is full of defectors, which is similar to the fixed

distribution. Notice that in the region of 0vbv1:3, Pd increases

to a local maximum and then decreases to zero, this is caused by

evolution of mean cooperator neighbors of defectors. In exponen-

tial distribution, when bv1:3, the system is filled with cooperators,

thus Pd~Pb
c~Pb

d~0. As b increases, the defectors take over

neighboring cooperators gradually and finally seize the whole

network. Here, there is also a local maximum of Pb when b&1:5.

In power-law distribution, the cooperators and defectors coexist

when bw1:3.

According to Figure 2, the cooperative behavior in Figure 1 can

be explained as follows (taking Figure 2(c) for example): the mean

payoff of cooperator (defector) Pc(Pd ) can be calculated as:

Pc~
SiN

i
cc|1

Nc

, Pd~
SjN

j
dc|b

Nd

ð4Þ

where Ni
cc (N

j
dc) is the total number of cooperator i’s (defector j’s)

cooperative neighbors and i (j) goes through all Nc cooperators

(Nd defectors). Rewriting Eq.(4), we get

Ncc~
SiN

i
cc

Nc

~Pc, Ndc~
SjN

j
dc

Nd

~
Pd

b
ð5Þ

where Ncc (Ndc) is the mean number of cooperator’s (defector’s)

cooperative neighbors. The mean number of cooperator’s

(defector’s) cooperative neighbors as a function of b underlying

exponential distribution is shown in Figure 3. From Figure 3, we

can see that as b increases, the mean number of cooperator’s

cooperative neighbors Ncc decreases. As the C-C link occurs only

inside of C-clusters, the decrease of Ncc indicates that a C-cluster

is shrinking. On the other hand, because the D-C link occurs only

along of the boundaries of D-clusters, so the increase of Ndc in the

region of bv1:5 indicates the expansion of D-cluster. However,

after a local maximum of Ndc, the mean number of defector’s

cooperative neighbors gradually decreases to zero. We contend

that after the local maximum of Ndc, the D-cluster is still

expanding, however the behavior is different. The adjacent

expanding D-clusters merge into a larger D-cluster, and thus

Ndc decreases. The evolution of C-cluster and D-cluster is

described in Figure 4.

To carry further our description of the evolutionary behavior,

we draw the transition probabilities between cooperators and

defectors by increasing b for different interaction distributions in

Figure 5. Here we use Pc?d denoting the transition probability

from cooperators to defectors and Pd?c denoting the opposite

transition probability. The inset graphs in each sub-figure

correspond to the boundary transition probability of cooperators

Figure 1. The cooperation level as a function of b for different
distributions of p, i.e., fixed, uniform, exponential and power-
law distribution.
doi:10.1371/journal.pone.0095169.g001
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to defectors (Pb
c?d ) and defectors to cooperators (Pb

d?c). The

dynamic evolution process can then be described as follows (taking

Figure 5(c) for example): firstly, the system is full of cooperators,

thus Pc?d~Pd?c~Pb
c?d~Pb

d?c~0. As b increases, transitions

between cooperators and defectors coexist. However, we now have

NC&ND, and thus leads to Pd?c§Pc?d . At this time, small

portion of defectors are almostly surrounded by cooperators, and

thus the defectors’ payoffs increase (see Figure 2(c)), which results

in Pc?d increasing simultaneously. The local maximums of Pd in

Figure 2(c) and Pd?c in Figure 5(c) indicate the turning point

where the defectors, who are spreading over the ocean of

cooperators, now have the maximum number of mean cooperative

neighbors, and after which both of them will decrease. However,

the curve of Pc?d will keep on increasing after the local

maximums of Pd?c. This is because the local maximum of Pc?d

will locate at the maximum value of (Pb
d{Pb

c) (see the inset graph

of Figure 2(c)). The crossing point of Pc?d curve and Pd?c curve

indicates the state of rc~50%, after which defectors will

outperform cooperators, and thus Pd?cvPc?d .

To sum up, the answer to why the rank power-law w

exponential w uniform w fixed holds is stated as follows: (I)

fixed v uniform. We contribute the cooperation rate improve-

ment to the introduction of our stochastic heterogeneous

interaction mechanism. In particular, by introducing game time-

scale, the mean probability of game interaction becomes 50% in

uniform distribution. So, compared with the fixed case, the payoffs

for cooperators and defectors are also reduced to 50%. Thus,

according to the update rule, i.e., Eq.(3), the transition probability

Pc?d (Pd?c) decreases (increases), resulting in an improvement of

rc. Similarly, we can also prove fixed v exponential and fixedv

power-law. (II) uniform v exponential. In exponential distribu-

tion, it is shown that the decreasing slope to the all-defectors state

is smoother and slower than in uniform distributions. This is

because defectors lying around boundary in exponential distribu-

tions hold a payoff advantage over cooperators (see inset graph of

Figure 2. The mean payoffs of cooperators and defectors in the whole population and along the boundary, respectively obtained
by simulations as a function of b, for four different interaction distributions. (a) fixed distribution, (b) uniform distribution, (c) exponential
distribution and (d) power-law distribution.
doi:10.1371/journal.pone.0095169.g002
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Figure 2(c)). As we know a defector will have a higher payoff if he

is surrounded with cooperators. In exponential distributions, we

have Pb
dwPb

c , this implies that a certain number of boundary

cooperators exist, which slows down the decrease of cooperation

rate. (III) exponential v power-law. We argue that the joint effect

of Pb
dwPb

c and Pc?dwPd?c results in a high final cooperation

level. As in exponential distribution, Pb
dwPb

c slows down the

transition from cooperators to defectors; and Pc?dwPd?c makes

cooperators keep their advantage over defectors (i.e., according to

Figure 5, before the Pc?d curve and Pd?c curve cross, we have

NcwNd and rcw50%).

We then investigate the cluster formation process at different

time step t for b~1:8 and four different interaction distributions,

as plotted in Figure 6. At the beginning, cooperators and defectors

are randomly distributed on the square lattice with equal

probability. For fixed distribution, as t increases, the size of a

cooperator cluster decreases quickly and vanishes at discrete time

step t~20. For uniform distribution, the evolution process is

slower than fixed distribution, i.e., fewer cooperators are

distributed through the population when t~20. For exponential

and power-law distributions, the sizes of cooperator clusters are

larger. The power-law distribution has greater effect on the

formation of cooperator clusters than exponential distribution and

its cooperators occupy the whole population when time step

t~10000. Figure 7 shows the evolution time series for b~1:2 and

b~1:8 of the four distributions, respectively.

To explore the robustness of our stochastic heterogeneous

interaction over different network topologies, we examine the

cooperative behavior on a regular lattice with Moore neighbor-

hood (i.e., average connectivity 8) [e.g., Figure 8(a)] and on a

Barab´ si-Albert scale-free network [62] [e.g., Figure 8(b)] with

different values of b. We find that the general cooperative

tendency is the same as that shown in Figure 1, indicating that our

stochastic heterogeneous interaction can be robust against

different network topologies.

Discussion

In general, players achieve payoffs through interaction with

their neighbors, either locally or globally. More precisely, in our

work, an interaction process can be further divided into game-step

(which generates payoffs) and reproduction-step (which generates

offspring). The speed (time-scale) of game and reproduction is

always assumed to be equal. However, in natural systems,

individuals do not always deterministically interact with others in

the population, e.g., an individual can interact many times before

the end of its lifetime [55]. In this situation, the speed of

reproduction is slower than that of game. In [54], the co-

evolutionary parameter also acts as the role of reproduction time-

scale. In [56], distributed reproduction time-scale is studied. In

[57], a coevolving reproduction time-scale is studied. On the other

hand, the speed of reproduction can also be faster than game.

Previous works [58,59] introduce game-step time-scale to achieve

payoff heterogeneity, however the realistic significance of such

assumption has not been indicated. In [60], the authors suggest a

reasonable assumption for game-step time-scale: when it’s time to

play game with neighbors, the player has multiple choice, i.e., with

probability p to play game and with probability 1-p to migrate. In

[74,75], the reputation-based conditional interaction is also

another form of game-step time-scale. No matter what external

forms they present, theses previous works [54–60] have one thing

intrinsically in common: the time-scale is node-level applied. The

probability, either in game step or reproduction step, reflects the

willingness of the player. In reproduction step, this willingness is

unidirectional. Reproduction will happen as long as the probabil-

ity is satisfied. However, in game step, this willingness must be

bidirectional, i.e., the game will not take place until both of the

player accept the probability (game-step time-scale) of playing the

game [43,74,75]. Our model extends the node-level time-scale to

the edge-level time-scale in game-step aspect. In our work, not

node, but each edge is assigned with a probability. This simple

setting makes our model distinctive and powerful. The game

Figure 3. The mean number of cooperator’s (defector’s)
cooperative neighbors as a function of b underlying exponen-
tial distribution.
doi:10.1371/journal.pone.0095169.g003

Figure 4. The evolution of C-cluster (red) and D-cluster (blue) in a 10|10 square lattice.
doi:10.1371/journal.pone.0095169.g004
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proceeds under the guidance of the probability attached with each

edge. The player can be relaxed from calculating the tolerance (or

range) of the game. Actually, it is hard to formulate convictive

criteria to decide whether to play the game in node-level time-

scale. To help understand the intrinsic meaning of edge-level time-

scale, one can draw such a scenario: an L|L lattice made of

conductor, and it is DC charging. Moreover, each edge can be

replaced with a nonconductor. As a result, when the edge is made

of conductor, there is current going through; when the edge is

replace with nonconductor, the current is blocking. The proba-

bility of what material the edge is made of indicates the edge-level

time-scale. In the real world, the semiconductor can also be

considered as a special kind of edge-level time-scale.

In our model, ‘‘stochastic’’ means that the interaction between

each pair of players is randomly occurring. Each edge in the

system is attached with a random probability. This setting also

distinguishes our work from the previous ones. In works [55,58–

60], the time-scale is fixed for all the nodes in the system during

the evolutionary process. In works [54,57,74,75], the time-scale is

initially set as constant. However, the authors introduced co-

evolutionary strategies to make the time-scale stochastic. In our

work, the time-scale is initial randomly distributed, and as the

game proceeds, they do not change. But we carry 300 individual

runs (i.e., 300 different sets of time-scale probability) and average

together to get the final datum. From this perspective, we can say

the time-scale changes in our work as well. It should point out that

our work differs from Tanimoto’s [56] in the aspect that we focus

on the game-step time-scale while their work concerns the

reproduction time-scale. Further work may introduce co-evolu-

tionary strategy on edge-level time-scale into our stochastic

heterogeneous interaction model. Note that in some work,

although a probability parameter is discussed, it is not within the

category of time-scale [73]. As we know, the interaction patterns is

an important element behind the emergence of cooperation [66].

Traditionally, there are two types of networks determining the

population structure: the interaction network and the replacement

network. The interaction network focus on the game step, i.e., with

whom individual will play game; while the replacement network

Figure 5. The probability of cooperators and defectors transmuting into each other, as a function of b. (a) fixed distribution, (b) uniform
distribution, (c) exponential distribution and (d) power-law distribution. The inset graphs are the (b) corresponding boundary transition probabilities.
doi:10.1371/journal.pone.0095169.g005
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cares about from whom one will learn strategy in the update

process. In [73], the probability control the game or reproduction

range of the player, the speeds of game and reproduction are set as

equal and the total number of opponents is invariable. As far as

time-scale concerns, we believe it is meaningless to study game-

step time-scale and reproduction time-scale jointly. Indeed, a ratio

between game and reproduction time scales is enough [52]. When

this ratio is greater than 1, it corresponds to the game time-scale

being faster than the reproduction time-scale, and vice versa.

When this ratio approaches to zero, the game recovers the round-

robin procedure. It should point out that the two time-scales

studied in [61] is different from previous works as well as our work.

In their paper, bS is reproduction time-scale. However, the other

time-scale bW is not game-step time-scale; it is the time-scale for

network adaption. So their joint research of both the two

parameters is not redundant. It’s also worth mentioning that the

reproduction time-scale can only be node-level, or the node-level is

enough. As we pointed, unlike game time-scale, which must get

approval from both sides, the reproduction process is individual’s

unilateral willingness.

As we know, cooperation among individuals can be enhanced

by diversity among them. There always exists a hub node to attract

and maintain cooperative clusters. One form of diversity is

represented by well-designed functions [42,63–66,68,69]. In this

area, researchers mainly concentrate on the relationship between

the degree of diversity and the population’s cooperation degree. It

is found that too much diversity will not promote cooperation,

because the defectors will take over the hubs, and there exists an

optimal level of diversity for maximal degree of cooperation.

Different from these works, our ‘‘heterogeneous’’ is characterized

by stochastic distributions motivated by some previous works. In

[43,67], the authors add stochastic vibrations to the basal value.

The vibration can be both negative and positive, and the integral

average of vibration is restrained to be zero. Similarly we

stochastically generate the probability set. However, in our model,

the generated heterogeneity must be positive. Moreover, in

Figure 6. Snapshots of typical distributions of cooperators (red) and defectors (blue) on 4-neighbor square lattice for b~1:8 and
four different interaction distributions. (a) fixed distribution, (b) uniform distribution, (c) exponential distribution and (d) power-law distribution.
doi:10.1371/journal.pone.0095169.g006
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addition to guarantee the integral average of probability be zero,

their value must lie in the closed interval of [0,1]. Interestingly, we

observed that the rank of the effect of promoting cooperation is

arranged as power-law w exponential w uniform w fixed. It is

conceptually analogous to the observations in [43]. Our result is

also in accordance with scale-free diversity studies [36–42], which

is explain through Figures 2–6 in detail. It’s also worth pointing

out that different from previous works, in our model the

heterogeneity is edge-level applied. We say that our interaction

mode is also edge-level executed. In node-level game models,

during the interaction process, we pick up individuals, and let

them play game with their neighbors. The total number of

interaction times is calculated as Siki. Here ki is the degree for

individual i, and i runs through all the nodes in the system. In

edge-level game model, we pick up edges, and let the two

individual attached play the game. The total number of

interaction times is Spj
. Here pj is the edge-level time-scale, i.e.,

Eq. (1), and j runs through all the edges in the system.

It is worth mentioning that the PD game we discussed in the

paper is the so-called weak prisoner’s dilemma. Under this model,

we control the dilemma strength by a single parameter b, which

simplifies our discussion. But, we have to admit that this particular

game class is limited, since there is only Chicken-type dilemma but

none of Stag Hunt-type dilemma [79], which might cause our

results be less universal. Further work could reference to Donor

Recipient (D&R) games, where Dg~T{R,Dr~P{S and

Dg~Dr [56,70,71] is assumed.

One more thing to clarify is the reciprocity between intermittent

gaming (e.g., our stochastic heterogeneous interaction) and partner

selection rule (e.g., Eq.(2)) in the paper. As we know cooperative

individuals can form C-clusters to prevent the inner from being

invaded by outside defectors. Here, along the boundary of C-

Figure 7. Evolution time series for b~1:2 (a) and b~1:8 (b) of fixed, uniform, exponential and power-law distributions.
doi:10.1371/journal.pone.0095169.g007

Figure 8. Simulation results of our stochastic heterogeneous interaction on: (a) 100|100 regular lattice with Moore neighborhood;
(b) Barab

0
si-Albert scale-free network with network size N~1000 and m~m0~3.

doi:10.1371/journal.pone.0095169.g008
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clusters, a ‘‘moat’’, i.e., the edge-level time-scale, is guarding. Such

moat can slow down cooperators’ interaction frequency with the

outside detectors; sometimes even isolate their communication,

e.g., p?0. On the other hand, the partner selection rule

determines individual’s opponent from whom the strategy is

learned. In our model, the probability of selection is positive

correlation with payoff. That is to say, if a defective neighbor has

higher payoff than a cooperative neighbor, then the former will be

chosen for updating. When C-D game happens, the defector gains

larger payoff than cooperator, e.g., bw1. However, controlled by

our stochastic heterogeneous interaction, the frequency of C-D
game is reduced, which consequently decreases defector’s accu-

mulated payoff. Thus, the probability of selecting a defective

neighbor is reduced, the C-cluster survives and holds under the

jointly effect of stochastic heterogeneous interaction and partner

selection. The mechanism can be summarized as follows:

‘‘stochastic heterogeneous interaction’’ isolates individuals [

defectors’ payoff is reduced [ ‘‘positive correlated partner

selection rule’’ prefers to choose cooperators [ cooperation

survives and maintains.

In summary, we have studied the effect of stochastic heteroge-

neous interaction on the evolution of cooperation with spatial

prisoners dilemma game model. We assume that the interaction

between each pair of players happens with a probability, and the

probability satisfies certain distribution. The simulation results

show that heterogeneous interaction probability can promote

cooperative behavior. The rank of the effect of promoting

cooperation of four discussed distributions is arranged as power-

law w exponent w uniform w fixed . We also find that the

stochastic heterogeneous interaction can be robust against

different network topologies. The most significant contribution

of the paper is the discussion of edge-level time-scale. In future

work, it would be interesting to introduce co-evolutionary strategy

on time-scale into our stochastic heterogeneous interaction model.
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