
Physcomitrella patens Has Kinase-LRR R Gene Homologs
and Interacting Proteins
Yusuke Tanigaki1, Kenji Ito1, Yoshiyuki Obuchi1, Akiko Kosaka1, Katsuyuki T. Yamato1,

Masahiro Okanami1, Mikko T. Lehtonen2, Jari P. T. Valkonen2, Motomu Akita1*

1 Department of Biotechnological Science, Kinki University, Wakayama, Japan, 2 Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland

Abstract

Plant disease resistance gene (R gene)-like sequences were screened from the Physcomitrella patens genome. We found 603
kinase-like, 475 Nucleotide Binding Site (NBS)-like and 8594 Leucine Rich Repeat (LRR)-like sequences by homology
searching using the respective domains of PpC24 (Accession No. BAD38895), which is a candidate kinase-NBS-LRR (kinase-
NL) type R-like gene, as a reference. The positions of these domains in the genome were compared and 17 kinase-NLs were
predicted. We also found four TIR-NBS-LRR (TIR-NL) sequences with homology to Arabidopsis TIR-NL (NM_001125847), but
three out of the four TIR-NLs had tetratricopeptide repeats or a zinc finger domain in their predicted C-terminus. We also
searched for kinase-LRR (KLR) type sequences by homology with rice OsXa21 and Arabidopsis thaliana FLS2. As a result, 16
KLRs with similarity to OsXa21 were found. In phylogenetic analysis of these 16 KLRs, PpKLR36, PpKLR39, PpKLR40, and
PpKLR43 formed a cluster with OsXa21. These four PpKLRs had deduced transmembrane domain sequences and expression
of all four was confirmed. We also found 14 homologs of rice OsXB3, which is known to interact with OsXa21 and is involved
in signal transduction. Protein–protein interaction was observed between the four PpKLRs and at least two of the XB3
homologs in Y2H analysis.
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Introduction

Plants are frequently exposed to pathogens, against which they

can protect themselves in several ways, e.g., specific recognition

and subsequent expression of disease response genes, accumula-

tion of antibiotics, and elimination of the pathogen and infected

tissue by programmed cell death. These responses are triggered by

so-called disease resistance genes (R gene products). The R

proteins recognize virulence gene products of specific pathogens. R

genes can be categorized into several groups [1], [2]. The most

abundant group comprises the Nucleotide Binding Site (NBS) and

Leucine Rich Repeat (LRR) (NL) types, which are divided into

groups by their N-terminal domains: Toll/interleukin-1 like

receptor (TIR) or coiled coil (CC). The second group is called

the KLR type and has intracellular kinase, transmembrane (TM)

and extracellular LRR domains. The third and fourth groups are

composed only of intracellular kinases or membrane-anchored

LRRs. KLR type R gene products are predicted to be receptors and

the rice protein Oryza sativa Xanthomonas resistance 21 (OsXa21) is

one of the best studied examples. OsXa21 was the first kinase-

LRR (KLR) type R gene that was found in Oryza sativa [3] and

recognizes OsAx21 (activator of OsXa21-mediated immunity)

from Xanthomonas oryzae pv. oryzae [4]. It was reported that OsXa21

and OsAx21 are in the relation between so-called pattern

recognition receptors (PRRs) and pathogen associated molecular

patterns (PAMPs) [5]. KLR products are predicted to transduce

signals through their Ser/Thr kinase activity [6]. Two types of

kinase domains, non-RD (arginine aspartate) and RD kinases, are

found in KLRs [7]. RD kinases, e.g., CERK1 [8] of the chitosan

receptor and Arabidopsis thaliana BAK1 [9], have characteristic RD

residues at the activation site (R). RD kinases are regulated by

autophosphorylation [7]. Dardick et al. [10] showed that another

group of KLRs have a non-RD motif, e.g., OsXa21 and A. thaliana

flagellin sensitive 2 (FLS2) [11]. The kinase domains of OsXa21

and AtFLS2 have autophosphorylation function [12], [13]. In rice,

Xa21 binding protein 3 (OsXB3), which is an E3 ubiquitin, is

suggested to be involved in the OsXa21 signaling pathway.

OsXB3 has a highly conserved ankyrin repeat domain and zinc

finger domain. When OsXa21 recognizes pathogens, the kinase

domain may interact with OsXB3 and induce signal transduction

[14]. However, the functions of KLRs in disease resistance are

largely unclear.

To understand the mechanisms of the plant disease response,

we have used a moss (Physcomitrella patens) as a model plant. This

moss has significant advantages for biological and evolutionary

studies. Specifically, a high-quality whole genome sequence is

available for this moss and information on the functions of its

genes has been quickly accumulated [15]. Although the disease

responses of mosses have begun to be studied only recently,

saprobic and parasitic interactions have been reported between

mosses and fungi, e.g., Hylocomium splendeus is infected by the

saprobic and parasitic fungi Coniochaeta velutina [16]. Pathogenic

fungi were isolated from Racomitrium japonicum and these fungi were

also able to infect higher plants and P. patens [17]. P. patens is also
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infected by Erwinia carotovora ssp. carotovora and Botrytis cinerea [18],

[19]. When P. patens is infected by Pythium, several disease response

related genes are induced [19]. We have also reported that P.

patens responds to chitosan elicitors and releases peroxidase [20],

[21]. Regarding R genes, we reported that P. patens possibly had

NL-type genes (PpC24, AB078154) [22]. PpC24 has the NBS

domains of TIR-type R genes, but the N-terminus is a Ser/Thr

kinase not a TIR. Wide sequence analysis indicated that P. patens

also has TIR-NL- and CC-NL-type R gene homologs [23], [24].

However, information about KLR-type R gene homologs in mosses

has to the best of our knowledge not been reported to date.

The aim of this study was to analyze R gene homologs in P.

patens. We found many kinase-like, NBS-like, and LRR-like

sequences in the P. patens genome. The relative positions of these

domains in the genome were analyzed and we predicted the

existence of kinase-LRRs in this moss. We also found OsXa21

homologs. By phylogenetic analysis, we detected four kinase-LRR

sequences that showed high similarity to OsXa21. These four

KLR homologs had TM domains like OsXa21. We also found

that the moss had homologs of the OsXa21-interacting protein

(OsXB3) and that these homologs could interact with the KLR

homologs of P. patens.

Materials and Methods

Plant material
P. patens ecotype Gransden Wood was grown in Petri dishes

(diameter 9 cm) on cellophane membranes (#300, RENGO,

Osaka, Japan) placed on agar BCD medium [1 mM MgSO4,

1.85 mM KH2PO4 (pH 6.5, adjusted with KOH), 10 mM KNO3,

45 mM FeSO4, 0.22 mM CuSO4, 0.19 mM ZnSO4, 10 mM

H3BO4, 0.10 mM Na2MoO4, 2 mM MnCl2, 0.23 mM CoCl2,

Figure 1. Alignment of conserved Ser/Thr kinase regions of the PpKLRs. The amino acid sequences were predicted from the Phytozome
database (See Table 2). Bars indicate conserved Ser/Thr kinase regions: sub-domain VIB (DLKXXN) and sub-domain VIII (G(T/S)XX(Y/F)XAPE) [32]. The
numbers indicate the putative kinase domain positions in the aa sequence. Shaded residues indicate similar amino acids.
doi:10.1371/journal.pone.0095118.g001

Figure 2. Phylogenetic analysis of PpKLR kinase regions and other plant kinases. The kinase domain sequences of PpKLRs that were
suggested to be CDSs in Phytozome (Ver 9.1) were compared with known plant kinases (Table S3) including Ser/Thr, Tyr, and His kinases. A
Chlamydomonas kinase (XP_001697921) was used as an outgroup. Phylogenetic trees were constructed by the neighbor-joining method. Numbers at
the nodes indicate bootstrap values from 1,000 replicates.
doi:10.1371/journal.pone.0095118.g002
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0.17 mM KI] [25] supplemented with 1 mM CaCl2, 45 mM

ethylenediaminetetraacetic acid disodium salt (Na2-EDTA), and

5 mM ammonium tartrate, and solidified with 0.8% agar. The

cultures were grown at 23uC with continuous light (ca.100 mmol

m22 s21 (PFD)).

Extraction of RNA, cDNA synthesis, and PCR
Total RNA was extracted from 200 mg (FW) gametophore

tissue using an Agilent Plant RNA Isolation Mini Kit (Agilent

Technologies, Santa Clara, CA, USA) according to the manufac-

turer’s instructions. The RNA was treated with recombinant

DNase I (RNase-free; Takara, Otsu, Japan). After phenol

extraction and ethanol precipitation, cDNA was synthesized from

1 mg total RNA using ReverTra Ace (Toyobo, Osaka, Japan).

PCR analysis of the cDNA was performed using Herculase II

Fusion DNA Polymerase (Agilent Technologies) in a total final

reaction volume of 15 mL. GoTaq Green Master Mix (Promega,

Fitchburg, WI, USA) was used for insert checks of transgenic

Escherichia coli. Reaction mixtures (8 mL) contained 4 mL GoTaq

DNA Polymerase, 0.5 mL each primer (5 mM), and 3 mL of cell

suspension as the template. Primers for each PCR were designed

using Primer-BLAST and primer3 plus (http://www.

bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) (Table

S1).

Search for homologous genes
Genomic sequence of P. patens was obtained from the

Phytozome database (http://www.phytozome.net/). Homologous

gene searches of the P. patens genome were performed using the

BLAST system. Kinase and LRR domains were searched using

BLASTP with kinase, NBS and LRR sequences of PpC24

(BAD38895). Sequences in which the distance between each

domain was 2 kbp or less were selected and recorded as PpKNLs

(kinase-NBS-LRR domains) or PpKLRs (kinase-LRR domains). In

addition, kinase-LRR sequences were predicted by the homolog

search program of Phytozome against OsXa21 (U37133) and

AtFLS2 (NP_199445).

Sequence analysis
DNA sequences were determined using a CEQ2000XL (Beck-

man Coulter, Brea, CA, USA) following the company’s instruc-

tions. Some DNA sequences were entrusted to Operon Biotech-

nologies Inc. (Ota, Tokyo, Japan). The data were analyzed using

the Genetyx version 10 software (Genetyx, Tokyo, Japan).

Sequence alignment and phylogenetic analysis were carried out

using the ClustalW program in Genetyx. Phylogenetic analysis of

amino acid sequences was also carried out using the ClustalW

program available at DDBJ (http://www.ddbj.nig.ac.jp/). A

phylogenetic tree was built using Dendroscope. TM domains of

Figure 3. Expression of the four PpKLRs. Total RNA was extracted
from gametophyte tissues and treated with DNase before cDNA was
prepared. NC: negative control (H2O). Primers were designed according
to sequence data from the Phytozome database (see Table S1).
doi:10.1371/journal.pone.0095118.g003

Figure 4. Comparison of the predicted structures of the four PpKLRs with OsXa21. Numbers indicate the putative amino acid distance
from the predicted start codon. The striped, gray, white, and black boxes indicate predicted LRR N-terminal, LRR, transmembrane, and kinase
domains, respectively. Diamonds show predicted Ser/Thr kinase active sites (aspartic acids). The dotted box indicates the juxtamembrane domain of
OsXa21.
doi:10.1371/journal.pone.0095118.g004
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the PpKLRs were predicted using the SOSUI program (http://

bp.nuap.nagoya-u.ac.jp/sosui/).

Yeast two hybrid assay
Y190 strain yeast was grown on YPD medium [10 g/L yeast

extract (Nakalai tesque, Kyoto, Japan), 20 g/L peptone (Nakalai

tesque), and 20 g/L D-glucose (Nakalai tesque)] [26]. Co-

transformants were grown on SD-W, L medium (6.7 g/L DifcoTM

Nitrogen Base w/o Amino Acids (Becton, Dickinson and

Company, Franklin Lakes, NJ, USA) 2 g/L D-Glucose, 0.002%

adenine, 0.002% uracil, 0.03% Lys, 0.01% His) and selected on

SD-W, L, H medium (0.01% His in SD-W, L) containing 40 mM

3-Amino-1,2,4-triazole (3-AT).

Predicted kinase domain sequences of PpKLR36, PpKLR39,

PpKLR40, and PpKLR43 were amplified by PCR from cDNA and

these PCR products were cloned into the HincII site of the

pBlueScript SK plasmid. Primers were designed according to

sequence data from the Phytozome database (Table S1). The

plasmids were digested with PspXI/EcoRV and the fragments

were cloned into the pGBT9 vector (Clontech) at the PstI site. RT-

PCR products of PpXB3s were cloned into the pGAD10 vector

(Clontech) at the EcoRI site. The vectors were transformed into

yeast strain Y190 and the yeasts were incubated on SD-W, L

plates at 27uC. The transformed yeasts were incubated overnight

at 27uC in YPD liquid medium. After centrifugation at 10006g,

the pellets were washed twice with SD-W, L, H liquid medium.

After suspension in SD-W, L, H liquid medium, the turbidity was

adjusted to 0.2 at OD600. These suspensions were dropped on SD-

W, L, H plates and incubated at 27uC.

Results

P. patens has NL, KLR-type genes
PpC24 was predicted to be a kinase-NBS (Pp1s4_271V6.1) gene

but a LRR sequence (Pp1s4_269V6.1) was found at the C-terminus

adjacent region in the genome sequence. We detected that long

transcripts were transcribed through PpC24 (AB078154) including

several splicing variants, but all of them had a stop codon at the C-

terminal end of the NBS.

Figure 5. Alignment of OsXa21, PpKLR36, PpKLR39, PpKLR40, and PpKLR43 kinase domains. Amino acid sequences were obtained from
the Phytozome database. The numbers indicate the distance from the start of the putative kinase domain regions. Shaded residues indicate similar
amino acids: black and gray shading indicates identical and loosely identical residues, respectively. The blue box shows the predicted RD kinase
characteristic region [6].
doi:10.1371/journal.pone.0095118.g005

Table 4. Locations of PpXB3 genes in the P. patens genome.

Scaffold Location Gene ID

PpXB3-1 13 146040 - 151871 Pp1s13_27V6.1

PpXB3-2 55 925050 - 930635 Pp1s55_144V6.1

PpXB3-3 256 245844 - 250491 Pp1s256_42V6.1

PpXB3-4 325 196917 - 200229 Pp1s325_36V6.1

PpXB3-5 334 405014 - 410942 Pp1s334_81V6.1

PpXB3-6 335 156376 - 163283 Pp1s335_34V6.1

PpXB3-7 32 767300 - 769123 Pp1s32_124V6.1

PpXB3-8 70 1144035 - 1150387 Pp1s70_186V6.2

PpXB3-9 143 834497 - 839838 Pp1s143_115V6.1

PpXB3-10 14 2788528 - 2789352 Pp1s14_440V6.1

PpXB3-11 10 2999427 - 3003020 Pp1s10_383V6.1

PpXB3-12 432 102339 - 105483 Pp1s432_19V6.1

PpXB3-13 6 1705592 - 1711465 Pp1s6_158V6.1

PpXB3-14 60 1219662 - 1225189 Pp1s60_201V6.1

Scaffold and genomic numbers for XB3 genes in P. patens were obtained from the Phytozome database (Ver 9.1).
doi:10.1371/journal.pone.0095118.t004
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BLAST analysis using these putative kinase, NBS and LRR

sequences revealed 603 kinase, 475 NBS and 8594 LRR-like

sequences in the moss genome. The distances between each

domain are commonly less than 500 bp in R genes and their

homologs; e.g. PpC24+LRR (described above), Nicotiana tabacum N

(BAD12594) and TIR-NL of A. thaliana (At5G44510 and

NM_001125847). Since the possibility of splicing had not been

eliminated, we compared the positions of the predicted coding

regions and collected sets of tentatively predicted kinase-NBS-LRR

gene sequences in which the distance between each domain was

less than 2 kbp. As a result, we found 17 kinase-NLs (Table 1). The

distances between each domain were less than 780 bp in the

genome. The kinase and NBS domains of these 17 kinase-NLs had

conserved Ser/Thr kinase and TIR-type NBS sequences. Kinase-

NL-type genes such as PpC24 [22] have been reported in moss

[23] and also as an R gene of wheat [27], although the function of

the wheat R gene is not clear. We also found four TIR-NL

sequences (Table 2) by BLAST analysis using A. thaliana TIR-NL

Figure 6. Phylogenetic analysis of PpXB3s and E3 proteins of other plants. Sequence names correspond to E3 protein sequences listed in
Table S4. Phylogenetic trees were constructed by the neighbor-joining method. Numbers at the nodes indicate bootstrap values from 1,000
replicates.
doi:10.1371/journal.pone.0095118.g006

Figure 7. Alignment of OsXB3 and PpXB3-1 and -2. Amino acid sequences were obtained from the Phytozome database. The numbers indicate
position from the putative start codon. Shaded residues indicate similar amino acids: black and gray shading indicates identical and similar residues,
respectively. (A) Alignment of putative Ankyrin repeat domains. (B) Alignment of putative zinc finger domains.
doi:10.1371/journal.pone.0095118.g007
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(NM_001125847) as the query. The TIR-NL sequences had

tetratricopeptide repeats (TNL1 and 2) or a zinc finger domain

(TNL3) in their C-terminus. These structures could be unique

because no R genes having these domains in the C-terminus have

been reported. However, TNL4 had a premature stop codon at

the 39-end of the NBS, indicating that a TIR-NBS transcript could

be produced.

Analysis of the 603 putative kinases indicated that 29 of them

had conserved Ser/Thr kinase sequences as PpC24 (Table S2).

We then searched for sequences in which the kinase domain was

adjacent to a putative LRR domain by applying a similar strategy

used to search for KNLs. We checked the orientation of each

domain and/or the existence of stop codons and finally predicted

no kinase-LRR sequences by this strategy. We also searched for

KLRs based on similarity with OsXa21and AtFLS2. Whereas no

sequences similar to the AtFLS2 kinase were found, the BLAST

results indicated that there were 45 KLR homologs of OsXa21

(PpKLR1-PpKLR45). However, 34 OsXa21 homologs showed

low similarity in each domain and/or had not been annotated in

the Phytozome or NCBI databases as kinase-LRRs. We then

checked whether these unannotated OsXa21 homologs were

expressed using RT-PCR. We found that the PpKLR25

(AB872938) and PpKLR45 (AB872937) sequences were tran-

scribed, but two or more stop codons were predicted in all frames.

Therefore, these PpKLRs were excluded from further study.

Finally, we analyzed 11 OsXa21 homologs from the P. patens

genome (Table 3). Note that the length of the LRR domain in

these 11 sequences varied significantly (see below). Figure 1 shows

the conserved regions predicted to be kinase domains in the

PpKLRs. We also tried to search for RLK5-type LRR-RLK

candidates of counterpart peptides that had a characteristic

structure in which the length was shorter than the LRR [6], but

we found no RLK5-type genes. The relationship between the

putative amino acid sequences of the kinases in the PpKLRs and

other plants kinases was phylogenetically analyzed. An A. thaliana

kinase (XP_002983016) and His and Tyr kinases of Zea mays,

(NP_56527) and (NP_566335), respectively, formed different

clusters from the PpKLRs. PpKLR31 formed a single root. Other

PpKLRs, except for PpKLR36 (Pp1s172_87V6.1), PpKLR39

(Pp1s247_8V6.1), PpKLR40 (Pp1s27_27V6.1) and PpKLR43

(Pp1s48_171V6.1), formed clusters with other plant genes

(Figure 2). PpKLR36, PpKLR39, PpKLR40 and PpKLR43

branched earlier than the other PpKLRs and plant genes and

formed a cluster with OsXa21 and P. s. tomato (Pto) [28]. Since

this result indicated that the relationships of PpKLR36,

PpKLR39, PpKLR40, and PpKLR43 to OsXa21 were stronger

than those of the other PpKLRs, we focused on these four

PpKLRs. Their expression was confirmed by RT-PCR (Figure 3).

Since the target sequences of the RT-PCR were designed to span

the two domains, PpKLR36, PpKLR39, PpKLR40 and

PpKLR43 could all be expressed as a single sequence, as predicted

in the Phytozome database.

Structure of PpKLRs
We compared the predicted structures of PpKLR36, PpKLR39,

PpKLR40, and PpKLR43 with OsXa21. The conserved Ser/Thr

kinase active site was observed in all four PpKLRs: D1274 and

D1292 for PpKLR36, D829 for PpKLR39, D1045 and D1063 for

PpKLR40, and D1200 and D1218 for PpKLR43 (Figure 4). The

kinase domains of PpKLR36, PpKLR39, PpKLR40, and

PpKLR43 shared 74%, 86%, 84%, and 76% similarity with the

kinase domain of OsXa21 in their amino acid sequences. In

Figure 8. Yeast two hybrid analysis of PpKLR36, PpKLR39, PpKLR40, and PpKLR43 (AD) with PpXB3-1 and PpXB3-2 (DBD). Y2H
analysis of PpXB3-1 with PpKLR36, PpKLR39, PpKLR40, and PpKLR43 was performed three times and produced the same results. This figure shows a
representative example. PpKLR kinases and PpXB3s were expressed with the activation domain (AD) and DNA-binding domain (DBD) in yeast,
respectively. Detection of the interactions and elimination of false positive results required that the test was made more stringent by application of
40 mM 3-AT in the culture medium. (A) Yeast cells were spotted on SD-W, L, H medium plates. (B) Yeast cells were spotted on SD-W, L, H medium
with 40 mM 3-AT plates.
doi:10.1371/journal.pone.0095118.g008
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addition, PpKLR39 was predicted to be a so-called non-RD

kinase [10] like OsXa21 (Figure 5). The predicted maximum

length of the LRR domains of the PpKLRs varied significantly.

The lengths of the LRR domains of PpKLR36, PpKLR43, and

PpKLR40 were ca. 400–900 aa. The full-length and LRR region

of PpKLR39 were predicted to be 976 and 475 aa, respectively

(Figure 4); these lengths were similar to those of OsXa21.

However, PpKLR39 did not have the LRR N-terminal motif

that was observed in OsXa21 and the other three PpKLRs

mentioned above. All four of these PpKLRs had a predicted

transmembrane domain.

P. patens has PpKLR-interacting proteins
Because OsXa21 was reported to interact with Xa21-binding

protein 3 (XB3), which has an ankyrin repeat and a zinc finger

domain, we attempted to search for XB3 homologs in the P. patens

genome. We found that P. patens had at least 14 XB3 homologs

(PpXB3s) (Table 4). PpXB3-1, PpXB3-2 and PpXB3-3 were

predicted to have highly conserved ankyrin repeat and zinc finger

domains. In phylogenetic analysis, three big clusters were

suggested. One of the clusters included PpXB3-1, PpXB3-2,

PpXB3-3, Glycine max E3 (GmE3, XP_003556093), A. thaliana E3

(AtE3, NP_180450), Vitis vinifera E3 (VvE3, XP_002283965),

Triticum monococcum E3 (TmE3, AGH18690) and OsXB3 (Figure 6).

High similarity between PpXB3-1 and PpXB3-2 was also observed

in both the putative ankyrin repeat and zinc finger domains

(Figure 7).

In rice, OsXa21 interacts with OsXB3 and transduces signals

[14]. To investigate whether the PpXB3s could interact with

PpKLRs, we performed yeast two hybrid analysis (Figure 8). In

this experiment, the kinase domains of PpKLR36, PpKLR39,

PpKLR40, and PpKLR43 were inserted into the pGBT10 vector

(Prey) and PpXB3-1 and PpXB3-2 were inserted into the pGAD9

vector (Bait). In SD-W, L, H medium without 3-AT, yeast growth

was observed for all of the combinations. On 40 mM 3-AT

medium, the AD (empty vector) and DBD (empty vector), AD and

DBD-PpKLRs, AD-PpXBs and DBD combinations produced

small colonies, whereas strong growth was observed for the DBD-

PpKLR36, PpKLR39, PpKLR40, PpKLR43 and AD-PpXB3-1,

PpXB3-2 combinations. These results indicate that PpKLR36,

PpKLR39, PpKLR40 and PpKLR43 interact with PpXB3-1 and

PpXB3-2.

Discussion

In this study, we searched for NL- and KLR-type R gene

homologs in the P. patens genome. We found that P. patens had 17

kinase-NBS-LRR and four TIR-NBS-LRR-type R gene homologs. In

comparison, Xue et al. [23] indicated that P. patens has six kinase-

NLs. This discrepancy could be a result of differences in prediction

procedures, because we searched for individual domains using a

kinase-NL sequence (PpC24 and LRR) as the query and then

compared distances between them. Three out of the four TIR-NL-

type homologs have tetratricopeptide repeats or a zinc finger

domain in the C-terminal region. Until now, TIR-NL-type R genes

that have this C-terminus structure have not been reported.

However, the remaining one has a premature stop codon at the C-

terminus of the NBS. We also found that P. patens has 11 KLR-like

genes in the genome. Their kinase domains all show high sequence

similarity to plant Ser/Thr kinases. In addition, there is a

possibility that each of the PpTNLs, PpKNLs, and PpKLRs has

several splicing variants, especially in the LRR region. Figure S1

shows the splicing pattern that was detected in PpKNL6

(Pp1s17_234V6.1), but it may be difficult to determine all of the

potential LRR variants because of the significant repetition.

In particular, we found four putative PpKLRs (PpKLR36,

PpKLR39, PpKLR40, and PpKLR43) that have high similarity to

OsXa21. Because all four of these PpKLRs have TM domains,

they could be membrane-anchored proteins. We also found 14

homologs of OsXB3, which has E3 ubiquitin ligase activity and

interacts with Xa21 in rice. Among these, at least two (PpXB3-1

and PpXB3-2) can interact with the four PpKLRs. Our findings

indicate that P. patens could have a rice Xa21-like KLR-type

sensing system to detect specific molecules, but the target

molecules are still unknown.

In the phylogenetic tree, the four PpKLRs are located near the

branch for Pto [28] of Solanum lycopersicum. Akita and Valkonen

(2002) reported that the kinase region of PpC24 was similar to that

of Pto. However, the putative kinase domains of the four PpKLRs

are more similar to Pto than PpC24 (74%, 76%, 72%, 75%, and

63% for PpKLR36, PpKLR39, PpKLR40, PpKLR43, and

PpC24, respectively). In a BLASTP analysis of the kinase domains

of the four PpKLRs, higher similarity was only observed against

receptor kinases that were classified as kinase-LRR type. Although

the four PpKLRs have conserved kinase motifs and predicted

kinase active sites aside from the RD region, we did not detect

clear kinase activity for the cloned domain (Figure S2). The

activity of membrane-bound kinases has been reported to be

facilitated by their juxtamembrane domains [29], [8]. OsXa21

actually has a juxtamembrane domain (22 aa in length), but none

of the four PpKLRs were predicted to have such a domain. These

results suggest that the four PpKLRs we have discussed above may

have no kinase activity by themselves. Further research will be

needed to determine whether the PpKLRs have kinase activity

with other proteins such as PpXB3, since some receptor kinases,

e.g. BRI1 [30], are reported to require specific proteins for

catalysis.

We searched the whole genome sequence of P. patens and found

NL- and KLR-type R gene candidates. In particular, we identified

the possible existence of KLR-type receptor-like kinases (PpKLRs)

and their interacting proteins (PpXB3s). It has been demonstrated

that KLR proteins are involved in a broad range of biological

processes such as responses to environmental stress. However,

information on KLRs in P. patens is currently quite limited (e.g.,

[31]). Our findings will contribute to analyzing the functions of

receptor-like kinases in plants because of the valuable properties of

P. patens for molecular biology. Further research will be required to

identify what molecules are specific ligands for the PpKLRs and

also to determine the biological functions of the PpKLRs and

PpXB3s.
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