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Abstract

Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With
the evidence of ubiquity of temporal networks in our economy, nature and society, it’s urgent and significant to focus on its
structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We
develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism
of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a
temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which
are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive
relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node’s
controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness
and heterogeneity of the controlling centrality of nodes within temporal networks.
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Introduction

The recent outbreak of the A(H7N9) bird flu has caused much

panic in China, and most of us still remember the financial crisis

stretching from the USA to the world just a few years ago. These

two impressive events are typical examples of complex networks in

our economy, nature and society. Fortunately, considerable efforts

have been dedicated to discovering the universal principles how

structural properties of a complex network influence its function-

alities [1–4]. Not limited to understanding these statistical

mechanics, another urgent aspect is to improve the capability to

control such complex networks [5–10], and recent years have

witnessed the blossoming studies on structural controllability of

complex networks [11–21]. Classically, a linear time-invariant

(LTI) dynamical system is controllable if, with a suitable choice of

inputs, it can be driven from any initial state to any desired final

state within the finite time [22–24]. Structural controllability of a

linear time-invariant system, initiated by Lin [25] and further

developed by other researchers [26–30], assumes free (non-zero)

parameters of matrices A
0

and B in

_xx(t)~A
0
x(t)zBu(t) ð1Þ

cannot be known exactly, and may attain some arbitrary but

fixed values. A directed network, denoted as G(A,B), associated

with the above LTI system (A
0
,B) is said to be structurally

controllable, if (A
0
,B) is controllable with the existence of matrices 

and A
0
and B, respectively. Noting that

matrices and can be arbitrarily close to A
0
and B when (A

0
,B)

property in the sense that almost all weight combinations of a

given network are controllable, except for some pathological cases

with zero measure that occur when the parameters satisfy certain

accidental constrains [12,25,26]. In the existing literatures [11,12],

extensive efforts have been focused on the minimum number of

input signals of such a network. Based on Lin’s structural

controllability theorem [25], Liu et al. [12] stated that the

minimizing problem can be efficiently solved by finding a

maximum matching of a directed network, regarding a topolog-

ically static network as a linear time-invariant system. That is to

say, a maximum subset of edges such that each node has at most

one inbound and at most one outbound edge from the matching,

and the number of nodes without inbound edges from the

matching is the number of input signals required for maintaining

structural controllability. With the minimum input theorem, many

contributions to structural controllability of complex networks

have been presented [13–21]. Wang et al. [13] proposed to

optimize the structural controllability by adding links such that a

network can be fully controlled by a single driving signal. Liu et al.

[14] further introduced the control centrality to quantify the

controllability of a single node. Nepusz et al. [15] evaluated the

controllability properties on the edges of a network. Besides,

controlling energy [16], effect of correlations on controllability

[18], evolution of controllability [19], controllability transition [20]

and controlling capacity [21], have flourished very recently.

In our daily life, many networks fundamentally involve with

time. The examples include the information flow through a

distributed network and the spread of a disease in a population.
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Development of digital technologies and prevalence of electronic

communication services provide a huge amount of data in large-

scale networking social systems, including face-to-face conversa-

tions [31,32], e-mail exchanges and phone calls [33,34] and other

types of interactions in various online behaviors [35,36]. Such data

are collectively described as temporal networks at specific time

scales, where time-stamped events, rather than static ones, are

edges between pairs of nodes (i.e. individuals) [37]. More and

more evidences indicate that the temporal features of a network

significantly affect its topological properties and collective dynamic

behaviors, such as distance and node centrality [38,39], disease

contagion and information diffusions [40,41], characterizing

temporal behaviors and components [42–44] and scrutinizing

the effects and characteristics within different time resolutions [45–

47], which are interdependent on the edge activations of temporal

networks. However, to our best knowledge, a systematic study on

structural controllability as well as its characteristics of temporal

networks is still absent. In this paper, similar to the description of a

static network by a LTI system [12,25], a temporal network is

associated with a linear time-variant (LTV) system as:

_xx(t)~A
0
(t)x(t)zB(t)u(t) ð2Þ

where A
0
(t)[RN|N denotes the transpose of the adjacency

matrix of a temporal network, i.e., A
0
(t)~(A(t))T ,

x(t)~(x1(t),x2(t), � � � ,xN (t))T[RN captures the time-dependent

vector of the state variables of nodes, B(t)[RN|M is the so-called

input matrix which identifies how external signals are fed into the

Figure 1. The sequence of graphs representation of the contacts in Table I. In each discrete time point, the network has a different
formation shown as G1, � � � ,G6 .
doi:10.1371/journal.pone.0094998.g001

Table 1. The temporal network in Fig. 1 with the node pairs and active contacts.

Node Pair(Contact) Active Time Points Node Pair(Contact) Active Time Points

(A, B) [1,2,3,4] (B, C) [4,6]

(C, D) [2,3] (D, E) [3,4,5,6]

(E, F) [1,3] (B, F) [5,6]

(C, F) [4,5,6]

doi:10.1371/journal.pone.0094998.t001
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nodes of the network, and u(t)~(u1(t),u2(t), � � � ,uM (t))T[RM is

the time-dependent input vector imposed by the outside control-

lers. Meanwhile, by finding and classifying Temporal Trees of a

temporal network into different types with a combinational

method of graph theory and matrix algebra, we introduce an

index as the so-called controlling centrality to quantify the ability

of a single node in controlling the whole temporal network. With

analytical and experimental bounds, we point out the indepen-

dence of the relationship between aggregated degree and

controlling centrality, as well as the distribution of this centrality,

over different time scales. Besides, our method reserves as much

temporal information as possible on structural controllability of

temporal networks, which may shade new light on the study of

structural controllability as well as its characteristics without

wiping out information of the temporal dimension.

Results

A temporal network may include a sequence of graphs defined

at discrete time points. Given a set of N nodes, we denote the

sequence of graphs as G~fGt,t~1,2, � � � ,Tg, where T is the

sequence length, and Gt is a static graph sampled at time point t.
The adjacency matrix of a temporal network, G, can be denoted

by a N|N time-dependent adjacency matrix A(t), t~1,2, � � � ,T ,

where aij(t) are the elements of the adjacency matrix of the t ht

graph, Gt.

For example, a temporal network, G, with the set of contacts in

Table 1 can be sampled as a sequence of graphs at time points

t~1,2, � � � ,6, denoted as G~fG1,G2,G3,G4,G5,G6g and shown in

Fig. 1. We illustrate the propagation process taking place on the

temporal network as shown in Fig. 2. Actually, a message can only

arrive at nodes B, C and F (dotted nodes in Fig. 2) if its source is

located on node A, though each node can receive the same

message if the source is located on node D. This asymmetry (node

D reaches node A, while not vice versa) mainly due to the direction

of time evolution, highlights a fundamental gap between static and

temporal networks.

2.1 Structurally Controlling Centrality of Temporal
Networks

Generally, non-zero entries of a matrix A are free, and A is

structured if the free entries are (algebraically) independent. Two

matrices A and ~AA are same structured if their zero entries coincide.

Matrices A,B,C, � � � are independent if all free entries of these

matrices are (algebraically) independent. In particular, any

independent matrix must be structured, and any two entries of

two matrices must be distinct [25,30]. A temporal network is said

to be structurally controllable at time point t0 if its associated LTV

system described by Eq.(2), with a suitable choice of inputs u(t),
can be driven from any initial state to any desired final state within

the finite time interval ½t0,t1�, where the initial and finial states are

designated at time point t0 and tf (t0vtf ƒt1), respectively.

For simplicity, we focus on the case of a single controller and

reduce the input matrix B(t) in Eq. (2) to the input vector b(o) with

only a single non-zero element, and rewrite Eq. (2) as

_xx(t)~A
0
(t)x(t)zb(o)u(t) ð3Þ

Figure 2. The illustration of information propagation on a temporal network. (a), (b), (c) and (d) denote different networks at different time
points, respectively. Red (gray) time points on edges denote the elapsed time, and the black (dark) time points denote the forthcoming time.
doi:10.1371/journal.pone.0094998.g002
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With non-periodic sampling of Eq. (3), we get its discrete version

with the recursive relationship for any two neighboring state

spaces of a temporal network

x(kz1)~Gkz1x(k)zHkz1u(k),(k~0,1, � � � ,T{1) ð4Þ

Define SM (o) the structurally controlling centrality of node o in

a temporal network:

SM (o) ~rank(Wc)~rank(½GT � � �G H2 1, � � � ,G HT T{1,HT �) ð5Þ

where Gkz1~IzTkz1A
0

kz1, Hkz1~Tkz1b(o), Akz1

0
is the

transpose of the adjacency matrix of the (kz1)th graph, I and

Tkz1~tkz1{tk are the identity matrix and the sampling interval,

respectively. SM (o) is a measure of node o’s ability to structurally

control the network, i.e. the maximum dimension of controllable

subspace (see Methods), and in this paper, Gkz1 and Hkz1 are

structured matrices of size N|N and N|1, respectively.

2.2 Graph Characteristics
Given a temporal network G(VG,EG), where VG and EG are the

collection of nodes and interactions, respectively, we associate G
with another acyclic digraph N(G,T). The vertex set of N(G,T)
consists of Tz1 copies, i.e., i1,i2, � � � , and iTz1, of each vertex

i[VG, and Tz1 copies, i.e., Io
0 ,Io

1 , � � � , and Io
T , of the single

controller Io, denoted as the red ones in Fig. 3 (b). The edge set of

N(G,T) consists of three types of edges: (i) the edges connecting

node i at neighboring time points, i.e., it?itz1, t~1,2, � � � ,T , for

each node i[VG, (ii) the edges it?jtz1, where

i?j[E tG , t~1,2, � � � ,T and (iii) the edges connecting the controller

Io, i.e., Io
t ?otz1,t~0,1, � � � ,T , where o[VG denotes the directly

Figure 3. The illustration of transformation of a temporal network to a static one. (a) Temporal Network with a single controller located on
node A, (b) The Time-Ordered Graph (TOG), (c) The temporal trees of (a) at time points 1, 2, 3 and 4, (d) the BFS spanning trees of TOG. The red
(dashed), black (dark) and blue (light) lines stand for the flows of time order, the connection with the single controller and the interactions of
individuals, respectively. The numbers with parenthesis in (c) denote time stamps. Weights of interactions (the blue ones) are labeled by characters
a11, a12 , � � � ,d41,d42 in (b), (c) and (d), and without loss of generality, we denote the weight of other edges (the red and black ones) as ‘‘1’’.
doi:10.1371/journal.pone.0094998.g003
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controlled node. These aforementioned three types of edges are

denoted as the red dotted ones, the blue ones and the black ones in

Fig. 3 (b), respectively. Such interpretation of a temporal network

is called the Time-Ordered Graph (TOG) model in [39], which

transforms a temporal network into a larger but more easily

analyzable static version. For example, we translate the temporal

network of Fig. 3 (a) to the corresponding time-ordered graph as

shown in Fig. 3 (b). With the TOG model, we first give the

definition of input reachability in a temporal network.

Definition 1. Consider subset S1~fIo
0 ,Io

1 , � � � ,Io
Tg and node

iTz1[S2~f1Tz1,2Tz1, � � � ,jVGjTz1g of N(G,T), which corre-

spond to node Io and node i[VG of G, respectively. If in N(G,T)
there exists a path to iT z1 , whose tail Io

t [S1, then node i of G is

reachable from node Io at time t, and the set of such reachable

nodes in VG is the reachable subset of the input signal Io of G.

Proposition 1. The reachability of the input signal of G is

equivalent to the reachability of subset S1, i.e. the (tz1)th row of

(Tz1{t)th power of adjacency matrix of N(G,T), and the

controlled rows of dynamic communicability matrices of G starting

at different time points t, denoted as fQtgo ,V , where

t~1,2, � � � ,T .

Proof. Denote partitioned matrix AN(G,T) (size (jVGjz1)
|(jVGjz1)) as the adjacency matrix of N(G,T), and for each

block B( i, j) (size (Tz1)|(Tz1)) of matrix AN (G,T), if there’s a

directed edge it?jtz1 in N(G,T), where t~1,2, � � � ,T , then we

have fB(i,j)gt,tz1=0 and fAN(G,T)gi(Tz1)zt,j(Tz1)ztz1=0. Recall

the dynamic communicability matrix [40] to quantify how

effectively a node can broadcast and receive messages in a

temporal network, defined as:

Q : ~(IzaA1)(IzaA2) � � � (IzaAT ) ð6Þ

Here, matrix At is the adjacency matrix of the tth graph, and

0vav1=r (r denotes the maximum spectral radius of matrices).

Similarly, we define the communicability matrix starting at

different time points to quantify the reachability of the controller,

written as:

Qt~(I�zatA
�
t )(I�zatz1Atz1

�
) � � � (I�zaT A�T ) ð7Þ

where A�t ~
0 (b(o))

0

0N|1 At

� �
is the adjacency matrix of the tth

graph with a single controller Io located on node o, and

I�~
0 01|N

0N|1 IN|N

� �
. Note that a non-zero element (i,j) of

a product of matrices, such as (A)k, is the reachability from node i
to node j if f(A)kgi,j=0, and the length of paths in graph N(G,T)

is never more than Tz1. Therefore, the reachability of node Io
t in

S1~fIo
0 ,Io

1 , � � � ,Io
Tg is the (tz1)th row of (Tz1{t)th power of

AN (G,T), i.e., f(AN(G,T))
Tz1{tgtz1,V, where t~0,1, � � � ,T . For

each column of matrix Wc, we have GT � � �G2H1~

½(GT � � �G2)
0 �
0
H1~½G

0

2 � � �G
0
T �
0
H1~½(IzA2) � � � (IzAT )�

0
H1,

and with the definition of matrix Qt, we know that fQtgi, j

describes the reachability from node i to node j. Therefore, the

rechability of controller Io at time t is equivalent to the controlled

row, i.e. the oth row, denoted as fQ tg o,V, of matrix Q t.

With Proposition 1, we rewrite matrix Wc in the form of

reachability as:

W �~½( fQ1go ,V)
0
,( fQ2go )

0
, � � � ,( fQTgo )

0 �~
01|T

Wc

� �
ð8Þ

Figure 4. Three examples of the homogeneously structured temporal trees. (a) Independent trees, (b) and (c) Interdependent trees. For the
two homogeneously structured trees in (b), there are three same interactions, i.e (B,C,5), (B,D,5) and (B,E,5), but there are only two such interactions,
i.e (B,C,5) and (B,D,5), for the trees in (c). The trees in (b) and (c) are both interdependent according to our definition. The numbers in parenthesis
denote active time points of interactions and characters a1,a2,b,b1,b2,c,c1,c2,d,d  and d1 2 denote the weights of interactions.
doi:10.1371/journal.pone.0094998.g004
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where fQtg1 denotes the reachability of the controller at time

point t, and we have rank(W �
c )~rank(Wc). As shown in Fig. 3,

we easily get fQ1g1,V~½0, 1za21c31b42, a21, a21c31zb41, a21d41�,
fQ2g1,V~½0,1,0,b41,0�, fQ3g1 ~½0,1,0,b41,0�, and fQ4g1 ~

½0,1,0,0,0�. According to Proposition 1, W �~½(fQ1g1 )
0
,

(fQ2g1 )
0
,(fQ3g1 )

0
,

(fQ4g1 )
0 �~

0 0 0 0

1za21c31b42 1 1 1

a21 0 0 0

a21c31zb41 b41 b41 0

a21d41 0 0 0

0
BBBB@

1
CCCCA.

Definition 2. A temporal tree, denoted as TTt, of a temporal

network G(VG,EG) is a Breadth-First Search (BFS) spanning tree,

denoted as STt, of its corresponding static network N(G,T) (TOG

model) rooted at node Io
t [S1~fIo

0 ,Io
1 , � � � ,Io

Tg.
Remark. The Breadth-First Search (BFS) is a classical

strategy for searching nodes in graph theory, and a BFS spanning

tree contains all the nodes and edges when the BFS strategy is

applied at some node. A distinctive property of N(G,T) is that

there’s no cycles in it, and each path’s length is no more than

Tz1, so it’s easy to apply the BFS strategy to find trees rooted at

some designated nodes in N(G,T). Obviously, the one-one

mapping between a temporal tree of a temporal network and a

BFS spanning tree of the TOG is guaranteed by the one-one

mapping between G(VG,EG) and N(G,T). For the temporal

network in Fig. 3 (a), each of the three temporal trees, as shown

in Fig. 3 (c), of this temporal network exists a unique

corresponding BFS spanning tree, as shown in Fig. 3 (d).

Proposition 2. Denote RTT1
,RTT2

, � � � , and RTTT [
R(VGz1)|1 as the reachability vector of each temporal tree from

the controller Io, and matrix W R~½RTT1
RTT2

� � �RTTT
�

[R(VGz1)|T , we have rank(W R)~rank(W �).
Proof. With Proposition 1 and Definition 2, we know there’s a

temporal tree TTt of each STt in TOG, and each STt is a leading

tree when compared with STt (refer to the definition of BFS

spanning tree with the TOG model). Therefore, each temporal

tree TTt is a leading tree when compared with TTt . Two

strategies are adopted to yield a leading temporal tree: i) Adding

new nodes into TTt, i.e., we have jVTTt
jwjVTTt j, ii) Adding

new paths to the existing nodes, i.e., we have jVTTt
j~jVTTt j. In

the case of strategy i), if there’s only one temporal tree, we

obviously have rank(W R)~rank(RTT )~rank(W �)~1; if the

Figure 5. Controlling centrality of artificial networks. (a), (b), (c) and (d) denote network with 40, 60, 80 and 100 nodes, respectively. For each
of the four networks, we randomly generate an interaction between a pair of nodes with probability 0.002, and repeat it for all the N(N{1)=2 pairs
of nodes at a specified time point. repeat this process for 100 rounds at 100 different time points, i.e. t~1,2, � � � ,100. The value of controlling
centrality, denoted as ’Calculated’, is straightly calculated by the computation of matrix Wc in Eq. (19), and the upper and lower bounds, denoted as
’Upper Bound’ and ’Lower Bound’, respectively, are given by the analytical results in Eq. (16).
doi:10.1371/journal.pone.0094998.g005
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number of temporal trees is n, and rank(W �)~rank(W R)~n,

then when the number of temporal trees is nz1, we have

rank(W R)~rank

01|n 0

W �
n|n ({)n|1

0(jVGj{n)|n ({)(jVGj{n)|1

0
@

1
A~rank(W �)~

nz1, where ({) denotes a nonzero vector. In the case of strategy

ii), each new interaction in leading tree TTt, which isn’t included

in temporal tree TTt , contributes to new paths to the existing

nodes. By some linear superposition of columns of matrix W � and

W R, we find there’s no impact on the maximum rank of matrix

W � if we cut down and drop those ‘‘old’’ interactions, which

means we only need to take the leading temporal

tree, i.e. TTt, into consideration. Therefore, we have

rank(W R)~rank(P1W RT1)~rank(W �)~rank(P2W �T2),
where P1, P2, T1 and T2 are properly defined linear transforma-

tion matrices.

For example, according to Definition 2, the reachability of

temporal tree TT1 of Fig. 3 (c) is RTT1
~½0,1,a21,a21c31,a21d41�

0
.

Similarly, we have RTT2
~½0,1,0,c41,0�

0
, RTT3

~½0,1,0,c41,0�
0

and

RTT4
~½0,1,0,0,0�

0
for temporal trees TT2, TT3 and TT4,

respectively. Therefore, we easily reach P1W RT1~P1½RTT1
,RTT2

,

RTT3
,RTT4

�T1~P1

0 0 0 0

1 1 1 1
a21 0 0 0

a21c31 b41 b41 0

a21d41 0 0 0

0
BBBB@

1
CCCCAT1~

0 0 0 0
0 0 0 1

a21 0 0 0

a21c31 0 b41 0

a21d41 0 0 0

0
BBBB@

1
CCCCA, and P2W �T2~

P2

0 0 0 0

1za21c31b42 1 1 1

a21 0 0 0
a21c31zb41 b41 b41 0

a21d41 0 0 0

0
BBBB@

1
CCCCAT2~

0 0 0 0
0 0 0 1

a21 0 0 0

a21c31 0 b41 0

a21d41 0 0 0

0
BBBB@

1
CCCCA.Obviously, rank(W R)~rank(P1W RT1)

~rank(W �)~rank(P1W �T1), which is consistent with Proposition

2.

Figure 6. The gap of upper and lower bounds of controlling centrality. (a) HT09 (b) SG-Infectious (c) Fudan WIFI. For the dataset of ’HT09’,
two temporal networks are generated: i) a temporal network (113 nodes and 9865 interactions) with all nodes and interactions within record of
dataset, denoted as ’all range’, ii) a temporal network (73 nodes and 3679 interactions) with nodes and interactions after removing the most powerful
nodes (nodes with the largest controlling centrality) in the temporal network of i), denoted as ’removed’. For the dataset of ’SG-Infectious’, three
temporal networks are generated: i) a temporal network (1321 nodes and 20343 interactions) with nodes and interactions recorded in the first week,
denoted as ’Week 1’, ii) a temporal network (868 nodes and 13401 interactions) with nodes and interactions recorded in the second week, denoted as
’Week 2’, iii) a temporal network (2189 nodes and 33744 interactions) with nodes and interactions recorded in the first two weeks, denoted as ’Week
1&2’. For the dataset of ’Fudan WIFI’, three temporal networks are generated: i) a temporal network (1120 nodes and 12833 interactions) with nodes
and interactions recorded in the first day, denoted as ’Day 1’, ii) a temporal network (2250 nodes and 25772 interactions) with nodes and interactions
recorded in the second day, denoted as ’Day 2’, iii) a temporal network (1838 nodes and 27810 interactions) with nodes and interactions recorded at
Access Point No. 713, denoted as ’713 point’. The upper and lower bounds of the controlling centrality are given by analytical results in the main text,
and the gap is given by the absolute value of the difference of the upper and lower bounds. The aggregated degree of a node is the number of
neighbored nodes whom it interacts within the corresponding temporal network. All the gaps are minor when compared with the sizes of these
temporal networks.
doi:10.1371/journal.pone.0094998.g006
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Definition 3. Temporal trees TT1,TT2, � � � are homoge-

neously structured if their corresponding adjacency matrices,

denoted as ATT1, ATT2 ,� � �, are same structured. Otherwise, they

are heterogeneously structured.

We rewrite matrix W R as:

W R~ W D W S
� �

~
01|TD 0

1|TS

W D
c W S

c

� �
ð9Þ

In Eq. (9), matrix W D~ 0TD|1(W D
c )

0� �0
of size (jVGjz1)|TD

denotes the part of heterogeneously structured trees, and matrix

W S~ 0TS|1(W S
c )
0� �0

of size (jVGjz1)|TS denotes the part

of homogeneously structured trees, respectively. Obviously,

TDzTS~T .

2.2.1 Heterogeneously Structured Trees
Definition 4. If heterogeneous trees TTD1,TTD2 , � � � consist

of same nodes, i.e., VTTD1
~VTTD2

~ � � �, then they are called

heterogeneous trees with same nodes. Otherwise they are

heterogeneous trees with different nodes.

To determine the rank of matrix W D, we rewrite it as:

W D~

0
1|TD

S1

0
1|TD

S2

� � � 0
1|TD

Sk

0
1|TD

Skz1

W D
S1

W D
S2

� � � W D
Sk

W D
Skz1

0
BB@

1
CCA ð10Þ

In Eq. (10), each W D�

Sl
~ 0TD

Sl
|1(W D

Sl
)
0� �0

, l~1,2, � � � ,k, of size

(jVGjz1)|TD
Sl

denotes a collection of heterogeneous

trees with same nodes (VW D�
Sl

=VW D�
S

l
0

for Vl=l
0
), and

W D�
Skz1

~ 0TD
Skz1

|1(W D
Skz1

)
0� �0

~½RD
TT1

,RD
TT2

, � � � ,RD
TT

TD
Skz1

� of size

(jVGjz1)|TD
Skz1 denotes heterogeneous trees with different

nodes.
P

TD
Sl

~TD.

Case 1. Heterogeneous trees with same nodes.

Proposition 3. Given matrix W D�
Sl

as a collection of

heterogeneous trees with same nodes, we have

rank(W D�
Sl

)~min(jVW D�
Sl

j,TD
Sl

), l~1,2, � � � ,k, where jVW D�
Sl

j de-

notes the number of nodes in matrix W D�

Sl
.

Proof. According to the definition of heterogeneous trees with

same nodes, these trees always have the same reachability with

different paths to reach the same node, which means for each

heterogeneously structured temporal tree with same nodes, there

exists at least one independent parameter (interaction). When

TD
Sl

~1, rank(W D�

Sl

½1� )~1. When TD
Sl

~nƒjVWSl

D� j, we get a

triangular matrix with its diagonal elements non-zeros by some

linear transformations. Therefore, we have rank(W D�

Sl
)~TD

Sl
~n.

Similarly, when jVW jƒTD
Sl

~n, we get rank(W D�

Sl
)~jVW D�

Sl

j.
In short, we reach rank(W D�

Sl
)~min(jVW D�

Sl

j,TD
Sl

).

Case 2. Heterogeneous trees with different nodes.

Proposition 4. Given matrix W D�

Skz1
as heterogeneous trees

with different nodes, we have rank(W D�

Sk
)~TD

Sk
.

Proof. When TD
Sk

~1, we easily have rank(W D�½1�

Sk
)~1. If

TD
Sk

~n, and rank(W D�½n�

Sk
)~n, then when TD

Sk
~nz1, it’s

equivalent to add a tree with different nodes into matrix W D�½n�

Sk
to

get matrix W D�½nz1�

Sk
. Therefore, there always exists

at least one new nonzero entry with its column index

nz1 and row index r(nvrƒjVGjz1) in matrix

W D�½nz1�

Sk
, and

Figure 7. The statistical relationship between node’s aggregated degree and the average controlling centrality. (a) HT09 (b) SG-
Infectious (c) FudanWIFI. All the temporal networks are the same as those in Fig. 6. Each point in this figure is an average controlling centrality of
nodes with the same aggregated degree, and there’s a positive relationship between the aggregated degree and its controlling centrality, even with
some structural destructions or time evolutions.
doi:10.1371/journal.pone.0094998.g007
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Sl

D�

z1

z1

z1

z1

z1

z1

z1

z1

z1

kz1
l~1

z1

rank ( )W D�½nz1�

Skz1
rank ( )W D�½n �

Skz1
~ ~DRTT

[ ],



nonzero vector. That means for any TSk
, we have

rank(W D�

Sk
) ~TD

Sk
. Note that if we cannot find such a nonzero

entry, we claim that this new tree must have a collection of nodes

coincident to some other tree, which is not allowed in this case.

Theorem 1. Given matrices W D�
Sl

, l~1,2, � � � ,kz1, as the

heterogeneously structured trees and SM (o)
D as the maximum-

structurally controllable subspace of heterogeneously structured

trees, we have

maxkz1
l~1 frank(W D�

Sl
)gƒSD

M(o)

~rank(W D)ƒ
Xkz1

l~1

rank(W D�
Sl

)
ð11Þ

Proof. Firstly, we prove the left part of inequality (11), i.e.

rank(W D)§maxl ~1
k f rank(W D�

Sl
)g. Compared with the

trees, denote as TT1,TT2, � � � , TTTSk

D , in matrix W D�

Sk

Figure 8. The specific relationship between node’s aggregated degree and controlling centrality. (a) and (b) Temporal networks
generated by the dataset of ’SG-Infectious’ (c) and (d) Temporal networks generated by the dataset of ’Fudan WIFI’. Although big nodes (node with
larger aggregated degree) tend to own larger controlling centralities, there exist many nodes with larger (smaller) aggregated degree but smaller
(larger) controlling centrality, such as circled points in (a), (b) and (d).
doi:10.1371/journal.pone.0094998.g008
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z1

z1 z1

z1

z1 z1

rank

01|n 0

W �
n|n ({)n|1

0(jVGj{n)|n ({)(jVGj{n)|1

0
@

1
A~nz1, where ({) denotes a



(W D�

Sk
~½RTT1

D , RTT2

D , � � � , RD
TT D

TSkz1

�), those trees in matrices

W D�

Sl
,l~1,2, � � � ,k, have different nodes, i.e.,

VWSl
D� =VTT1

=VTT2
= � � �=VTT DTS k

, and VWS l

D� = 0

for Vl=l
0
. Therefore, rank(W D)~maxl ~1

kz1 frank(W D�
Sl

)g
when there exists a matrix consists of all nodes, and it has the

maximum rank. For the right part, i.e.

rank(W D)ƒ
P

rank(W D�
Sl

), we reach the equality when

matrix W D is written as:

W D~

01|TD
S1

01|TD
S2

� � � 01 |TD
Skz1

1 1 � � � 1

W �1 0r1|TD
S2

� � � 0r1|TD
Skz1

0r2|TD
S1

W �2 � � � 0r2 |TD
Skz1

..

. ..
.

P
..
.

0rkz1|TD
S1 k

� � � W �kz1

0
BBBBBBBB@

1
CCCCCCCCA

,

where row vector 11|TD , i.e, the 2th row of matrix W D, denotes

node o, and matrices W �1 ,W �2 , � � � ,W �kz1 denote the other

part of these trees. This means there’s no intersection of nodes

between any two matrices of W D�

Sl
,l~1,2, � � � ,kz1, except node

o, i.e., jVW D�
Sl

\VW D�
S

l
0
j~1 for Vl=l

0
. In this case, each matrix

W D�
Sl

contributes d~rank(W D�
Sl

)~TD
Sl

to rank(W D). Therefore,

rank(W D)~
Pkz1

l~1 rank(W D�
Sl

).

2.2.2 Homogeneously Structured Trees
Definition 5. Consider homogeneously structured trees

TTS1 ,TTS2 , � � �. If their corresponding adjacency matrices

ATTS1
, ATTS2

, � � � are independent, then they are called inde-

pendent trees. Otherwise they are interdependent trees.

We rewrite matrix W S as:

W S~ W S
1 W S

2 � � �W S
q

� �
ð12Þ

and each W S
m,(m~1,2, � � � ,q), denote a collection of homoge-

neously structured trees (VWm
S = 0 for Vm=m

0
), which is

written as:

W S
m~

0
1|TS

Sm,1
� � � 0

1|TS
Sm,p(m)

0
1|TS

Sm,p(m)z1

W S
Sm,1 � � � W S

Sm,p(m) W S
Sm,p(m)z1

0
BBB@

1
CCCA

ð13Þ

In Eq. (13), each W S�
Sm ,w~ 0TS

Sm ,w
|1(W S

Sm ,w)
0� �0

,

w~1,2, � � � ,p(m), of size (jVGjz1)|TSm
,w

S denotes a collection

of interdependent trees with same interactions (Im,w=Im,w 0 for

Vw=w
0
, where Im,w denotes the collection of same interactions in

matrix W S�

Sm ,w), and W S�

Sm ,p(m)z1~ 0TS
Sm ,p(m)z1

|1(W S
Sm ,p(m)z1)

0� �0
of

size (jVGjz1)|TS
Sm ,p(m)z1 denotes independent trees. For homo-

geneously structured trees, we have
Pq

m~1

Pp(m)z1
w~1 TS

Sm ,w~TS

and jVW S
m
j~jVW S�

Sm ,w
j, w~1,2, � � � ,p(m)z1, where jVW S

m
j and

jVW S�
Sm ,w
j denote the number of nodes in matrices W S

m and W S�

Sm ,w,

respectively.

Figure 9. The distribution of node’s controlling centrality. (a) Temporal networks generated by the dataset of ’SG-Infectious’ (b) Temporal
networks generated by the dataset of ’Fudan WIFI’. For each dataset, three different temporal networks are generated within different time scales,
denoted as ’Week 1’, ’Week 2’ and ’Week 1&2’ for SG-Infectious and ’Day 1’, ’Day 2’ and ’713 point’ for Fudan WIFI, respectively.
doi:10.1371/journal.pone.0094998.g009
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z1

z1

VWS l

D�

l ~1

kz1

0rkz1|TD
S

VW
m
S



Case 1. Independent trees.

Proposition 5. Given matrix WSm,p(m)z1
S�

as indepen-

dent trees, we have rank(W S�

Sm ,p(m)z1)~min(jVW S
m
j,TS

Sm,p(m)z1),

where jVW S
m
j denotes the number of nodes in matrix W S�

Sm ,p(m)z1.

Proof. According to the definition of independent matrices,

the matrix having the reachability vectors of independent trees

from the controller Io, i.e. ½RS
TTS1

,RS
TTS2

, � � ��, is a structured

matrix. For such a structured matrix, we can always find a square

sub-matrix of size min(jVW S
m
j,TS

Sm,p(m)z1)|min(jVW S
m
j,TS

Sm,p(m)z1),

whose elements are all non-zero. Therefore, it’s obvious that

rank(W S�

Sm ,p(m)z1)~min(jVW S
m
j,TS

Sm ,p(m)z1).

An illustrative example is given with Fig. 4 (a). The

corresponding matrix W S�

Sm ,p(m)z1 is written as:

W S�
Sm,p(m)z1~

0 1 a1 a1b1 a1c1 a1d1

0 1 a2 a2b2 a2c2 a2d2

� �0
, whose rank is

2, i.e., rank(W S�

Sm ,p(m)z1)~TS
Sm,p(m)z1~2vjVW S

m
j~5. More gen-

erally, if TS
Sm ,p(m)z1~nwjVW S

m
j~5, matrix W S�

Sm ,p(m)z1 is written

as: W S�

Sm,p(m)z1~

0 0 � � � 0 0

1 1 � � � 1 1

a1 a2 � � � an an

a1b1 a2b2 � � � an{1bn{1 anbn

a1c1 a2c2 � � � an{1cn{1 ancn

a1d1 a2d2 � � � an{1dn{1 andn

0
BBBBBBBB@

1
CCCCCCCCA

and

rank(W S�

Sm ,p(m)z1)~jVW S
m
j~5vTS

Sm ,p(m)z1~n.

Case 2. Interdependent trees.

Proposition 6. Given matrix W S�

Sm ,w as a collection of

interdependent trees, we have rank(W S�

Sm ,w)~min(jVW S
m
j{

jIm,wj,TS
Sm,w),(w~1,2, � � � ,p(m)), where jVW S

m
j denotes the num-

ber of nodes, and jIm,wj is the number of same interactions in

W S�

Sm,w.

Proof. Without loss of generality, we firstly prove the case of

two trees as shown in Fig. 4 (b). Here jIm,wj~3, i.e. interaction

(B,C,5),(B,D,5) and (B,F ,5). The corresponding matrix

W S�

Sm,w~
0 1 a1 a1b a1c a1d

0 1 a2 a2b a2c a2d

� �0
~

0 1 a1 a1b a1c a1d

0 {a2=a1 0 0 0 0

� �0
, and it’s obvious that the

Table 2. Notations in the paper.

Notations Description

Gt the t ht formation of temporal network G(VG , EG)

V and jV j the set of nodes and the cardinality of set V

At the adjacency matrix of graph Gt

(A)
0 the transpose of adjacency matrix A

(A)k the kth power of adjacency matrix A

fAgi, j an element of matrix A with position i (row index) and j (column index)

fAgi ,V the ith row of matrix A

Io the controller located on node o of temporal network G(VG,EG)

Qt dynamic communicability matrix of temporal network G(VG,EG) at time t

W � reachability matrix of input signal within the temporal network G(VG,EG)

RTT reachability vector of input signal within a temporal tree TT

RD
TT

reachability vector of input signal within heterogeneously structured

temporal tree TT

RS
TT

reachability vector of input signal within homogeneously structured

temporal tree TT

W R reachability matrix of input signal within temporal trees extracted from

temporal network G(VG,EG)

W D reachability matrix of input signal within heterogeneously structured

temporal trees

W S reachability matrix of input signal within homogeneously structured

temporal trees

SM the maximum controlled subspace of temporal network G(VG,EG)

with single controller located on o

SD
M(o)

the maximum controlled subspace of heterogeneously structured

temporal trees with single controller located on o

SS
M(o)

the maximum controlled subspace of homogeneously structured

temporal trees with single controller located on o

doi:10.1371/journal.pone.0094998.t002
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dependence of elements in matrix is caused by the interdependent

of trees in some interactions. Thus rank(W S�
Sm,w)~

2~jVW S
m
j{jIm,wj~TS

Sm,w. More generally, when extending to

the case of n trees, W S�

Sm ,w~

0 0 � � � 0 0

1 1 � � � 1 1

a1 a2 � � � an{1 an

a1b a2b � � � an{1b anb

a1c a2c � � � an{1c anc

a1d a2d � � � an{1d and

0
BBBBBBBB@

1
CCCCCCCCA

~

0 0 � � � 0 0

1 {a2=a1 � � � {an{1=a1 {an=a1

a1 0 � � � 0 0
a1b 0 � � � 0 0

a1c 0 � � � 0 0

a1d 0 � � � 0 0

0
BBBBBBBB@

1
CCCCCCCCA

, and W S�

Sm ,n~2~jVW S
m
j{jIm,njvTS

Sm ,n~n. Similarly, for the trees

in Fig. 4 (c), W S�

Sm,w~

0 1 a1 a1b a1c a1d1

0 1 a1 a1b a1c a1d2

0
@

1
A
0

~

0 1 a1 a1b a1c a1d1

0 {a2=a1 0 0 0 (d2{d1)a2

0
@

1
A
0

, and

rank(W S�

Sm,w)~2~TS
Sm ,wvjVW S

m
j{jIm,wj~3. Similarly, when ex-

tending to the case of n trees,

W S�

Sm,w~

0 0 � � � 0 0

1 1 � � � 1 1

a1 a2 � � � an{1 an

a1b a2b � � � an{1b anb

a1c a2c � � � an{1c anc

a1d1 a2d2 � � � an{1dn{1 andn

0
BBBBBBBB@

1
CCCCCCCCA

~

0 0 � � � 0 0

1 {a2=a1 � � � {an{1=a1 {an=a1

a1 0 � � � 0 0

a1b 0 � � � 0 0

a1c 0 � � � 0 0

a1d1 (d2{d1)a2 � � � (dn{1{d1)an{1 (dn{d1)an

0
BBBBBBBB@

1
CCCCCCCCA

and W S�

Sm,w~3~jVW S
m
j{jIm,wjvTS

Sm ,w~n.

Theorem 2. Given matrices W S�

Sm ,w, w~1,2, � � � ,p(m)z1, as

homogeneously structured trees, we have

rank(W S
m)~minfmin½

Xp(m)

w~1

(rank(W S�
Sm,w)),

max
p(m)
w~1fjVWS

m
j{jIm,wjg�zrank(W S�

Sm,p(m)z1),jV
WS

m
jg

ð14Þ

where jVWm
S j is the number of nodes, and jIm,w j is the

number of same interactions in W S�

Sm ,w, w~1,2, � � � ,p(m).

Proof. The outsider function minfg ensures that the rank of

matrix W S
m never exceeds the number of independent rows, i.e.,

the number of nodes in matrix W S
m. Next we focus on the number

of independent columns. From the proof of Proposition 5, we know

there always exists a structured square matrix of size

min(jVW S
m
j,TSm ,p(m)z1)|min(jVW S

m
j,TSm ,p(m)z1) in matrix

W S�

Sm,p(m)z1, so there always exists min(jVW S
m
j,TSm ,p(m)z1) inde-

pendent columns compared with interdependent matrix

W id~
01|TS

Sm ,1
� � � 01|TS

Sm ,p(m)

W S
Sm ,1 � � � W S

Sm ,p(m)

 !
, which means matrix

W S�

Sm,p(m)z1 always contributes rank(W S�

Sm ,p(m)z1) to matrix W S
m,

i.e., rank(W S�

Sm ,p(m)z1) in Eq. (14). Now we focus on the part of

min½
Pp(m)

w~1 (rank(W S�

Sm ,w)),max
p(m)
w~1fjVW S

m
j{jIm,wjg�, which

deals with the rank of all interdependent trees, i.e. the

rank of matrix W id . Without loss of generality, for

trees shown in Fig. 4 (b) and (c), we have

Table 3. Characteristics of the three empirical datasets.

HT09 SG-Infectious FudanWIFI

Area Conference Mesume Campus

Technology RFID RFID WiFi

Collection 3 days 62 days 84 days

duration

Number of 113 10970 17897

individuals

Number of 9865 198198 884800

contacts

Spatial v2 v2 v8

resolution(meters)

Types of Strangers Acquaintances Acquaintances

contacts with repeat without repeat with repeat

doi:10.1371/journal.pone.0094998.t003
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W S
Sm ,1W S

Sm ,2

� �
~

0 0 0 0

1 1 1 1

a1 a2 a1 a2

a1b a2b a1b a2b

a1c a2c a1c a2c

a1d a2d a1d1 a2d2

0
BBBBBB@

1
CCCCCCA

~

0 0 0 0

1 {a2=a1 0 {a2=a1

a1 0 0 0

a1b 0 0 0
a1c 0 0 0

a1d 0 a1(d1{d) a2(d2{d)

0
BBBBBB@

1
CCCCCCA

,and rank(W S
Sm,1W S

Sm ,2)~3vrank(W S
Sm,1)zrank(W S

Sm ,2)~4. More

generally, when extending to the case of n trees, we similarly have

W S
Sm ,1W S

Sm ,2

� �
~

0 0 � � � 0 0 0 0 � � � 0 0

1 1 � � � 1 1 1 1 � � � 1 1

a1 a2 � � � an{1 an a1 a2 � � � an{1 an

a1b a2b � � � an{1b anb a1b a2b � � � an{1b an

a1c a2c � � � an{1c anc a1c1 a2c2 � � � an{1cn{1 ancn

a1d a2d � � � an{1d and a1d1 a2d2 � � � an{1dn{1 andn

0
BBBBBBBB@

1
CCCCCCCCA

~

0 0 � � � 0 0 0 0 � � � 0 0

1 {a2=a1 � � � {an{1=a1 {an=a1 0 {a2=a1 � � � {an{1=a1 {an=a1

a1 0 � � � 0 0 0 0 � � � 0 0

a1b 0 � � � 0 0 0 0 � � � 0 0

a1c 0 � � � 0 0 a1(c1{c) a2(c2{c) � � � an{1 (cn{1{c) an (cn{c)

a1d 0 � � � 0 0 a1 (d1{d) a2 (d2{d) � � � an{1(dn{1{d) an (dn{d)

0
BBBBBBBB@

1
CCCCCCCCA

; and rank(W S
Sm,1W S

Sm,2)~4vrank(W S
Sm,1)zrank(W S

Sm ,2)~5.

When
Pp(m)

w~1 (rank(W S�

Sm ,w))ƒmax
p(m)
w~1(jVW S

m
j{jIm,wj), it’s easy to

verify that rank(W S
m)~

Pp(m)
w~1 (rank(W S�

Sm ,w)). So the rank of matrix

W id is min½
Pp(m)

w~1 (rank(W S�

Sm ,w)),max
p(m)
w~1fjVW S

m
j{jIm,wjg�.

With Eq. (12) and Theorem 2, we directly give the following

Lemma 1 for homogeneously structured trees.

Lemma 1. Given matrices W S
m, m~1,2, � � � ,q, as collections

of homogeneously structured trees and SM(o)
S as the maximum-

structurally controllable subspace of homogeneously structured

trees, we have

max
q
m~1rank(W S

m)ƒSS
M(o)~rank(W S)ƒ

Xq

m~1

rank(W S
m) ð15Þ

With Theorem 1, Theorem 2 and Lemma 1 above, we straightly get

Theorem 3:

Theorem 3. Given and as the maximum

controlled subspace of heterogeneously structured and homoge-

neously structured temporal trees in Eq. (11) and (15), respectively,

we have

max(SD
M(o),S

S
M(o))ƒSM(o)ƒSD

M(o)zSS
M(o) ð16Þ

2.3 Numerical Simulations
We firstly verify the feasibility and reliability of Theorem 3. As

shown in Fig. 5, four different networks with sizes of 40, 60, 80 and

100 are studied, respectively. For each of the four networks, we

randomly generate an interaction between a pair of nodes with

probability 0.002, and repeat it for all the N(N{1)=2 pairs of

nodes at a specified time point. Repeat this process for 100 rounds

at 100 different time points, i.e. t~1,2, � � � ,100. As shown in Fig. 5,

all the calculated values of controlling centrality of the four

networks (denoted as ’Calculated’) are between the upper and

lower bounds (denoted as ’Upper Bound’ and ’Lower Bound’,

respectively) given by our analytical results in Eq. (16). Besides, the

gaps (numerical calculations) between upper and lower bounds are

very minor in these artificial networks.

We further investigate three empirical datasets, i.e., ’HT09’,

’SG-Infectious’ and ’Fudan WIFI’ (Details of the datasets see

Methods) [31,35,36,43]. For the dataset of ’HT09’, two temporal

networks are generated: i) a temporal network (113 nodes and

9865 interactions) with all nodes and interactions within record of

dataset, denoted as ’all range’, ii) a temporal network (73 nodes

and 3679 interactions) with nodes and interactions after removing

the most powerful nodes (nodes with the largest controlling

centrality) in the temporal network of i), denoted as ’removed’. For

the dataset of ’SG-Infectious’, three temporal networks are

generated: i) a temporal network (1321 nodes and 20343

interactions) with nodes and interactions recorded in the first

week, denoted as ’Week 1’, ii) a temporal network (868 nodes and

13401 interactions) with nodes and interactions recorded in the

second week, denoted as ’Week 2’, iii) a temporal network (2189

nodes and 33744 interactions) with nodes and interactions

recorded in the first two weeks, denoted as ’Week 1&2’. For the

dataset of ’Fudan WIFI’, three temporal networks are generated: i)

a temporal network (1120 nodes and 12833 interactions) with

nodes and interactions recorded in the first day, denoted as ’Day

1’, ii) a temporal network (2250 nodes and 25772 interactions)

with nodes and interactions recorded in the second day, denoted

as ’Day 2’, iii) a temporal network (1838 nodes and 27810

interactions) with nodes and interactions recorded at Access Point

No. 713, denoted as ’713 point’. With these three types of eight

temporal networks, we calculate their upper and lower bounds of

controlling centrality given by our analytical results (it’s difficult to

directly calculate the rank of matrix Wc for large-scale networks).

The aggregated degree of a node in Figs. 6 and 7 is the number of

neighbored nodes whom it interacts within the corresponding

temporal network. As shown in Fig. 6, although the sizes of these

networks range from 73 to 2250, the gaps of the upper and lower

bounds remain very tiny, indicating the feasibility and reliability of

Eq. (16) in both artificial (refer to Fig. 5) and empirical networks.

Fig. 7 shows us the positive relationship between the aggregated

degree and controlling centrality of nodes. When removing the

most powerful nodes (nodes with the largest controlling centrality),

as shown in Fig. 7 (a), and considering temporal networks with

different time scales and types, as shown in Fig. 7 (b) and (c), the

observed positive relationship remains unchanged. This indicates

the robustness of this relationship of temporal network, regardless

of the structural destructions or time evolutions of the network.

Further more, Fig. 8 reveals some nodes with rather larger

(smaller) controlling centrality but smaller (larger) aggregated

degree, which suggests that although there’s a positive relationship

between aggregated degree and controlling centrality, controlling

centrality is a measurement inherently different from the

aggregated degree.

Besides, Fig. 9 focuses on the datasets of ’SG-Infectious’ and

’Fudan WIFI’ to visualize the distribution of controlling centrality

of different temporal networks. The scale-free distribution of

node’s controlling centrality is virtually independent of the time

period and network scale, which is similar to the distribution of

node’s activity potential [47]. However, these two studied datasets

are inherently different. The dataset of ’SG-Infectious’ collected

the attendee’s temporal activity information during an exhibition,

where the attendee generally do not appear again after the visit.

Therefore, the interactions among nodes in the temporal networks

generated from ’SG-Infectious’ present more randomness than
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those of ’Fudan WIFI’, while the latter presents weekly rhythm of

the scheduled campus activities in a university.

Discussion

Many problems on networks involving time are raised by some

common themes, especially on communication in distributed

networks, epidemiology and scheduled transportation networks. In

some earlier literatures, authors studied a model with each edge of

a graph associating with a single active time point (or equivalently

a single starting and ending time points). So each edge has a

reaction time, i.e. the delay, to transmit an information to the

other end of the edge. This simple model had raised a number of

interesting open questions about the basic properties of the

original graph. However, such a simplified model is far enough for

the cases in our information society, where relationships are

varying, they are strengthened or weakened, even disappeared or

created, and the exchange of information happens frequently, i.e.

a pair of node exchanges information for far more than just once.

Although, with the record of temporal networks being available by

digital technologies, many attentions have been attracted to this

area [37], little work has been carried out on the structural

controllability.

In this paper, we propose a framework from graphic

perspective to address the structural controllability of temporal

networks, especially focusing on the ability of a single node to

control the whole network (controlling centrality), which allows us

analyzing large-scale networks more convenient and efficient.

Noting that the single node here does not necessarily to be driven

node as the one in the seminal paper of Liu et al. [12], it is

randomly chosen from the whole network and we mainly focus

on its controlling centrality – a measurement of its importance

from the perspective of control theory. Although there’s a positive

relationship between controlling centrality and aggregated

degree, these two centralities are obviously not equivalent in

neither definition nor methodology. Frankly, more steps can be

taken on the structural controllability of temporal networks in the

near future. For example, one of opening problems, untouched in

this paper and waiting for endeavor studies and explorations

elsewhere, is the multi-inputs case. Whether or not the LTV

framework still suitable for the analysis, we are looking forward

for the answers.

Methods

4.1 Notation
The symbols used in the main text are summarized in Table 2.

4.2 Controlling Centrality
With a sampling interval properly chosen, we write Eq. (3) as

follow:

x(kz1){x(k)

Tkz1
~A

0
kz1x(k)zb(o)u(k) ð17Þ

Generally, Tkz1=Tk, where Tkz1~tkz1{tk is the sampling

interval. From Eq. (17), we get the recursive relationship of two

neighboring states as:

x(kz1)~Gkz1x(k)zHkz1u(k) ð18Þ

Where Gkz1~IzTkz1A
0

kz1, Hkz1~Tkz1b(o), Akz1
0

and I

are the transpose of the adjacency matrix of the (kz1)th graph

and the identity matrix, respectively. Define

Wc~½GT � � �G2H1, � � � ,GT HT{1,HT � ð19Þ

and the final state is written as:

x(T) ~½x1(T), � � � ,xN (T)�
0

~½GT � � �G1�:½x1(0), � � � ,xN (0)�
0

zWc
:½u(0),u(1), � � � ,u(T{1)�

0
ð20Þ

If there exists a sequence of inputs denoted as

½u(0),u(1), � � � ,u(T{1)�
0

such that ½x1(T), � � � ,xN (T)�
0
~

½0, � � � ,0�
0

in Eq. (20), then the temporal network is structurally

controllable at time point t0, i.e. rank(Wc)~N. Otherwise, we

may split x(T) into two parts, written as:

x(T) ~½x1(T), � � � ,xk(T),xkz1(T), � � � ,xN (T)�
0

~½GT � � �G1�:½x1(0), � � � ,xk(0),xkz1(0), � � � ,xN (0)�
0

zWc
:½u(0),u(1), � � � ,u(T{1)�

0
ð21Þ

and if there exists a sequence of inputs denoted as

½u(0),u(1), � � � ,u(T{1)�
0

such that ½x1(T), � � � xk(T)�
0
~½0 � � � 0�

0

in Eq. (21), then the k subspace of the network is structurally

controllable at time point t0, which is equivalent to the condition

rank(Wc)~k. Therefore, we define controlling centrality as

SM(o) ~rank(Wc) ð22Þ

i.e. the maximum dimension of controllable subspace, as a

measure of node o’s ability to structurally control the network: if

SM ~ N, then node o alone can structurally control the whole

network. Any value of SM less than N provides the maximum

dimension of the subspace o can structurally control.

4.3 Datasets
We mainly investigate three temporal networks with three

empirical data sets in this paper. The first data was collected

during the ACM Hypertext 2009 conference, where the ’Socio-

Patterns’ project deployed the Live Social Semantics applications.

The conference attendees volunteered to wear radio badges which

monitored their face-to-face interactions and we name this data as

’HT09’. The second is a random data set containing the daily

dynamic contacts collected during the art-science exhibition

’INFECTIOUS: STAY AWAY’ which took place at the Science

Gallery in Dublin, Ireland, and we name it as ’SG-Infectious’.

These two data are both available from the website of ’Socio-

Patterns’ [31] (http://www.sociopatterns.org). The third data set

was collected from Fudan University during the 2009-2010 fall
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semester (3 whole months), which is named as ’FudanWIFI’

[35,36,43]. In this data set, each student/teacher/visiting scholar

has a unique account to access the Campus WiFi system, which

automatically records the device’ MAC addresse, the MAC

address of the accessed WiFi access point (APs), and the

connecting (disconnecting) time as well. Table 3 summaries some

characteristics of the aforementioned three empirical datasets.
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