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Abstract

Objectives: Rotator cuff tear is a common cause of shoulder diseases. Correct diagnosis of rotator cuff tears can save
patients from further invasive, costly and painful tests. This study used predictive data mining and Bayesian theory to
improve the accuracy of diagnosing rotator cuff tears by clinical examination alone.

Methods: In this retrospective study, 169 patients who had a preliminary diagnosis of rotator cuff tear on the basis of clinical
evaluation followed by confirmatory MRI between 2007 and 2011 were identified. MRI was used as a reference standard to
classify rotator cuff tears. The predictor variable was the clinical assessment results, which consisted of 16 attributes. This
study employed 2 data mining methods (ANN and the decision tree) and a statistical method (logistic regression) to classify
the rotator cuff diagnosis into ‘‘tear’’ and ‘‘no tear’’ groups. Likelihood ratio and Bayesian theory were applied to estimate
the probability of rotator cuff tears based on the results of the prediction models.

Results: Our proposed data mining procedures outperformed the classic statistical method. The correction rate, sensitivity,
specificity and area under the ROC curve of predicting a rotator cuff tear were statistical better in the ANN and decision tree
models compared to logistic regression. Based on likelihood ratios derived from our prediction models, Fagan’s nomogram
could be constructed to assess the probability of a patient who has a rotator cuff tear using a pretest probability and a
prediction result (tear or no tear).

Conclusions: Our predictive data mining models, combined with likelihood ratios and Bayesian theory, appear to be good
tools to classify rotator cuff tears as well as determine the probability of the presence of the disease to enhance diagnostic
decision making for rotator cuff tears.
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Introduction

The rotator cuff consists of 4 muscles and their tendons that

stabilize the shoulder joint. Rotator cuff injury, including tendon

impingement or a tear, is a common source of shoulder pain,

accounting for approximately 50% of major shoulder injuries

[1,2]. The incidence of tears may increase with age; especially in

people aged 60 years and older [1,3]. Patients who report shoulder

pain and are diagnosed with a rotator cuff tear may require

aggressive treatment or surgical intervention [4].

Currently, a rotator cuff tear is diagnosed using clinical

examination and imaging tests. A preliminary diagnosis can be

obtained by assessing the shoulder for tendon weakness and

rotational ability [1]. Clinical examinations are noninvasive and

inexpensive, and a diagnosis can be obtained immediately at the

time of the appointment; however, the accuracy is dependent

upon physician experience. If needed, an imaging test such as

magnetic resonance imaging (MRI) can be performed to confirm

or rule out the diagnosis. The gold standard for the diagnosis of a

rotator cuff tear is a double contrast arthrogram, which has 86%

sensitivity and 96% specificity, but it is an invasive, costly, and

painful procedure [5].

Clinical physical findings are important to establish the

diagnosis of a rotator cuff tear and determine the optimum

treatment plan [4]. Many noninvasive examination techniques

have been developed to aid in diagnosing specific rotator cuff

conditions [1]. In drop-arm test, patients are asked to elevate their

arm fully and then slowly reverse the motion. If the arm drops

suddenly or the patient experiences severe pain, the test is

considered positive. This test shows good specificity (75%,95%),

but low sensitivity (10%,35%) [6,7]. Jobe test [7,8] can suggest

supraspinatus tendon impingement as well as test shoulder

strength. By elevating the arm in the scapular plane and

positioning the arm in full internal rotation, the function of the

supraspinatus muscle can be partially isolated. Previous research

show that the sensitivity and specificity of Jobe test for detecting

rotator cuff tears were ranged from 40%,90% and 65%,80,

respectively.

According to a systematic review from Health Technology

Assessment, no clear national guidelines exist for the diagnosis of
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shoulder pain, and there is no definitive evidence that any single

test can conclusively diagnose rotator cuff disorders [9]. Longo et

al reported that the combination or sequence of clinical tests for

the examination of shoulder disorders remains unclear [6].

Because the treatment of shoulder pain is different when a rotator

cuff tear is present, obtaining a clinical diagnosis is important to

make cost-effective treatment decisions [4,10]; however, making

the diagnosis can be difficult. The severity of rotator cuff injuries

diagnosed clinically may not correlate with the severity determined

by imaging tests [11]. In addition, research shows that diagnoses

made by clinical examination alone have high false-positive rates

[12], indicating that a large proportion of shoulder injuries

diagnosed as rotator cuff tears by clinical exam are found to be

normal on imaging tests. This may be due to the difficulty of

confidently ruling out the diagnosis by exam alone.

Data mining is the computational process of discovering

patterns or classifications in large datasets using a combination

of artificial intelligence, machine learning, statistics, and database

systems [13,14]. This knowledge discovery methodology has

become a popular research tool in different fields and been

increasingly used in medical literatures to identify and exploit

relationships among medical variables and predict outcomes of

diseases using historical medical data [14,15]. For some diseases,

determining the diagnosis, prognosis or treatment planning is a

primary challenging task for doctors and thus the predictive data

mining model is a useful tool to use patient-specific information to

predict an outcome of interest at an individual patient level and

support clinical decision-making [14,16]. Predictive data mining

methods, such as artificial neural networks (ANNs) and decision

trees, have been used successfully to predict the outcomes of

medical diagnostic processes [14,17]; Examples include identifi-

cation of patients at high risk of postinduction hypotension during

general anesthesia [18], prediction of acute coronary occlusion,

early diagnosis of acute myocardial infarction [19,20], prediction

of thalassemic pathologies [21], diagnosis of ovarian cancer [22],

and prediction of outcomes following treatment of internal

shoulder derangements [23].

It would be beneficial to develop a diagnostic approach for

rotator cuff tears that integrates and interprets clinical information

without overusing imaging tests. Imaging tests should be reserved

for expanding the clinical hypothesis or further clinical finding

such as the tear size rather than being used to gain certainty in the

diagnosis [24–26]. This study used predictive data mining

methodologies and Bayesian theory to improve the accuracy of

diagnosing rotator cuff tears by clinical examination alone. We

developed and compared 3 predictive models (ANN, logistic

regression, and decision tree) used to classify rotator cuff tears

based on patient demographics, symptom history, and physical

examination results. The likelihood ratio (LR) and Bayesian theory

were then used to estimate the probability of a rotator cuff tear

based on the results of the predictive models. We anticipated this

approach would improve the ability to correctly diagnose a rotator

cuff tear without overusing invasive and expensive imaging tests.

Methods

In this retrospective study, 169 patients who had a preliminary

diagnosis of rotator cuff tear on the basis of clinical evaluation

followed by confirmatory MRI between 2007 and 2011 at the

Department of Orthopedics, National Taiwan University Hospital

Yun-Lin Branch were identified. MRI was used as a reference

standard to classify rotator cuff tears. This study was approved by

the National Taiwan University Hospital’s Institutional Review

Board (IRB case #201206066RIC). Patient consent was specifically

waived by the approving IRB because this was a retrospective study

in which patient information was de-identified before analysis by the

researchers.

The outcome variable, namely, the MRI imaging result, was

coded into a binary system of ‘‘tear’’ and ‘‘no tear.’’ The ‘‘tear’’

category included both partial- and full-thickness tears, and ‘‘no

tear’’ was classified as normal. Rather than including an

intermediate ‘‘partial-thickness tear’’ group, dichotomous results

were used to reduce the false-positive rate (shoulders diagnosed as

having a rotator cuff tear but found to be normal on MRI). The

distribution of the outcome variable was 132 and 37 patients for

‘‘tear’’ and ‘‘no tear,’’ respectively, giving a false-positive rate of

22%. This rate was close to that of previous studies, in which the

false-positive rate ranged from 10% to 30% [7,27]. Because the

‘‘no tear’’ patients were underrepresented, an over-sampling

approach [28] was used to balance the dataset. The predictor

variable was the clinical assessment results, which consisted of 16

attributes (Table 1). Because Jobe test and drop-arm test are very

common provocative tests in diagnosing rotator cuff tear [6,7],

those two tests were used as predictor variables in the predictive

models.

This study employed 2 data mining methods (ANN and the

decision tree) and a statistical method (logistic regression) to

classify the rotator cuff diagnosis into ‘‘tear’’ and ‘‘no tear’’ groups.

ANN
The ANN was developed using the structure of multi-layer

perceptron (MLP) with back-propagation (a supervised learning

algorithm). It is a mathematical construct that uses previously

solved examples to build a system of neurons to make new

decisions, classify and forecast [29]. Because of its good predictive

performance, ANN is a popular artificial intelligence-based data-

mining algorithm used in clinical medicine [30]. Clinical diagnosis

was one of the first areas in which ANN was applied [31].

Decision Tree
A decision tree is a tree-like graph used to display decisions and

their possible outcomes. It consists of nodes linked to 2 or more

sub-trees and leaves [32]. The nodes of a decision tree represent

predictor variables with each node having a number of branches

equal to the number of values. The leaves represent the decision

classes. A decision tree can provide highly accurate classifications

presented as a simple representation of the data, making

interpretation and determination of rules very easy [33]. Its

effectiveness in many well-developed classification algorithms such

as ID3, C4.5, C5 [32,34], and CART [35] has resulted in its

widespread use in medical research [33]. In this study, we chose to

use the C4.5 algorithm as our decision tree method.

Logistic Regression
Logistic regression is a generalized linear regression model

widely used to predict the occurrence of an event [29]. It is used

with increasing frequency in the health sciences because of its

ability to model dichotomous outcomes. Logistic regression

analysis was used in this study to obtain the coefficients for risk

variables included in the logistic model [36].

To minimize the generalization error associated with random-

ness that leads to a biased estimation of future examples, the k-fold

cross-validation is often used to validate the ability of a prediction

model to generalize unseen data [37,38]. K-fold cross-validation is

a computational technique that randomly divides all sampling data

into k equal size subsamples. One subsample is used as the

validation for testing the model, and the remaining subsets are

used as training data. The training and testing process is then

Predicting Rotator Cuff Tears Using Data Mining and Bayesian

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94917



repeated k times, with each subsample used as the validation data

once. The subsample results are averaged, giving a single

estimated error rate for unseen data. This estimate assumes that

the original dataset is a random sampling of the population. It

shows the ability to lower the prediction variance and avoid the

bias of over-fitting on the training data [37,39,40]. In our study,

10-fold cross-validation was selected because many studies have

shown that 10 is an optimal folding number considering the

efficiency of completing the models [37,41]. In the 10-fold cross-

validation, the entire dataset was partitioned into 10 nonoverlap-

ping subsets, and the procedure was repeated 10 times with

different training and testing datasets (Figure. 1).

We used 3 performance measures (correction rate, sensitivity,

and specificity) in comparative analysis to test the generalized error

associated with the different predictive models. In addition, the

area under the receiver operating characteristic curve (AUROC)

was adopted as a measure to analyze discrimination power, which

refers to the ability to distinguish those who have a tear from those

who do not.

Results

This retrospective study collected 169 subjects who were

diagnosed with rotator cuff tears after clinical examinations. The

demographic data were summarized in Table 2. The majority of

subjects were female (57.4%); the ranges in age were between 16

and 82 years (mean age, 58.8 years; SD, 11.6 years); most injury

side was on the right rotator cuff (65.7%) and nearly 60 percent of

subjects rated their pain as level 4 (pain ranged from 1,10). More

than half of patients had injury history (54.4%), ability to wear

clothes (66.9%) and night pain problem (84.6%). Two types of

clinical examinations, Jobe test and drop arm test were considered

as predictor variables to determine the rotator cuff tear, the

percentage of positive diagnosis were 80.5% and 48.5% respec-

tively (Table 3). The predictor variables also included five types of

pain symptoms (sharp, aching, throbbing, numbing, and distend-

ing pain) which were coded in yes/no dichotomous responses

(Table 3). Most patients mentioned having sharp pains (85.2%)

and throbbing pains (72.2%). Some patients had aching pains

(46.2%), numbing pains (5.9%) and distending pains (3.6%).

Table 1. Variable list.

Variables Type Coding

Outcome

Rotator cuff tear Nominal 2 codes (1 for tear, 0 for no tear)

predictor

Age Ordinal 3 codes (1 for # 45, 2 for 46,65, 3 for . = 66)

Gender Nominal 2 codes (1 for male, 0 for female)

Pain Index Ordinal 7 codes (0 no pain , 6 severe)

Injury side Nominal 2 codes (1 for right, 0 for left)

Able to wear clothes Nominal 2 codes (1 for yes, 0 for no)

Injury history Nominal 2 codes (1 for yes, 0 for no)

Night pain Nominal 2 codes (1 for yes, 0 for no)

Taking medicine Nominal 2 codes (1 for yes, 0 for no)

Drop arm test Nominal 2 codes (1 for positive, 0 for negative)

Jobe test Nominal 2 codes (1 for positive, 0 for negative)

Range of motion test Nominal 2 codes (1 for positive, 0 for negative)

Sharp pain Nominal 2 codes (1 for yes, 0 for no)

Aching pain Nominal 2 codes (1 for yes, 0 for no)

Throbbing pain Nominal 2 codes (1 for yes, 0 for no)

Numbing pain Nominal 2 codes (1 for yes, 0 for no)

Distending pain Nominal 2 codes (1 for yes, 0 for no)

doi:10.1371/journal.pone.0094917.t001

Figure 1. 10-fold cross-validation.
doi:10.1371/journal.pone.0094917.g001
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Table 2. Demographic variables of the 169 patients who were diagnosed with suspected rotator cull tear by the clinical
examinations.

Description Characteristics Frequency Percentage

Gender Male 72 42.6%

Female 97 57.4%

Patient age (M 58.8; SD 11.60) 16–45 17 10.1%

46–65 105 62.1%

66–82 47 27.8%

Injury side Left 58 34.3%

Right 111 65.7%

Pain index 2 2 1.2%

3 47 27.8%

4 100 59.2%

5 18 10.7%

6 2 1.2%

Injury history Yes 92 54.4%

No 77 45.6%

Able to wear clothes Yes 113 66.9%

No 56 33.1%

Night pain Yes 143 84.6%

No 26 15.4%

Taking medicine Yes 165 97.6%

No 4 2.4%

Rotator cuff tear (MRI test) Yes 132 78.1%

No 37 21.9%

doi:10.1371/journal.pone.0094917.t002

Table 3. Symptoms related variables of the 169 patients who were diagnosed with suspected rotator cull tear by the clinical
examinations.

Variables Type Frequency Percentage

Drop arm test Positive 136 80.5%

Negative 33 19.5%

Jobe test Positive 109 64.5%

Negative 60 35.5%

Range of motion test Positive 82 48.5%

Negative 87 51.5%

Sharp pain Yes 144 85.2%

No 25 14.8%

Aching pain Yes 78 46.2%

No 91 53.8%

Throbbing pain Yes 122 72.2%

No 47 27.8%

Numbing pain Yes 10 5.9%

No 159 94.1%

Distending pain Yes 6 3.6%

No 163 96.4%

doi:10.1371/journal.pone.0094917.t003
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The P values were assessed to examine the similarity between

the tear and no tear groups of each predictor variables (Table 4).

Able to wear (p = 0.038) and Jobe test (p = 0.001) showed

statistically significant difference between two groups. Others

had no statistical significance.

Two data mining techniques (ANN and decision tree C4.5) and

one statistics method (logistic regression) were employed to classify

the outcomes (tear/no tear). For each prediction model, 20

experiments with 10-fold cross-validation approach were conduct-

ed to minimize the bias associated with random sampling of

training and test datasets as well as estimate the prediction

performances [42]. Table 5 shows the prediction performances of

correction rate, area under the ROC curve (AUC), sensitivity, and

specificity. ANN model had most favorable correction rate (90%),

AUC (94%), sensitivity (87%), specificity (95%), positive likelihood

ratio (17.40), negative likelihood ratio (0.14) and diagnostic odds

ratio (127.15). Decision tree also showed similar abilities to identify

rotator cuff tear with sensitivity (83%) specificity (95%), likelihood

ratios (13.50 for positive, 0.20 for negative). The predictive data

mining models (decision tree, ANN) had statistically better

performances (Table 5) than the statistical technique (logistic

regression). The positive likelihood ratio (LR+), negative likelihood

ratio (LR-), and diagnostic odds ratio (DOR) are summarized in

the Table 6 to indicate the prediction power for each model (see

Appendix S1).

Discussion

In this study, our proposed data mining procedures outper-

formed the classic statistical method. The correction rate,

sensitivity, and specificity of predicting a rotator cuff tear were

statistical better in the ANN and decision tree models compared to

logistic regression. The results were analogous to previous studies

that showed data mining techniques are potentially more effective

than conventional statistical methods for analyzing the ability to

accurately diagnose various diseases [43,44]. However, predictive

data mining has rarely been used by orthopedic surgeons for

diagnosis. This limited acceptance may be due, in part, to the lack

of studies on data mining use in the orthopedic literature. Several

studies have evaluated the ability of the physical exam to correctly

diagnose rotator cuff tears. A wide ranges of sensitivities (40% to

98%) and specificities (50% to 98%) have been reported in studies

evaluating the accuracy of physical examination in diagnosing

rotator cuff tears [4,6,7]. We found that our data mining models

(ANN and the decision tree) were accurate for detecting rotator

cuff tears with a sensitivity of 83–87% and a specificity of 95%,

which compared favorably with rates reported in previous studies.

Table 4. Characteristics of the 169 patients categorized as tear and no tear groups using MRI imaging as a reference standard.

Variable No tear (n = 37) Tear (n = 132) P value

Age (years) 59.30 (17.211) 58.62 (9.640) 0.755

Gender (male/female) 15/22 57/75 0.774

Injury side (left/right) 17/20 41/91 0.092

Ability to wear (yes/no) 30/7 83/49 0.038

Injury history (yes/no) 18/19 74/58 0.424

Pain index 3.86 (0.673) 3.82 (0.675) 0.710

Night pain (yes/no) 30/7 113/19 0.500

Drop arm test (+/2) 29/8 107/25 0.716

Jobe test (+/2) 15/22 94/38 0.001

Range of motion test (+/2) 19/18 63/69 0.697

Taking medicine (yes/no) 35/2 130/2 0.169

Sharp pain (yes/no) 9/28 16/116 0.065

Aching pain (yes/no) 15/22 63/69 0.438

Throbbing pain (yes/no) 29/8 93/39 0.342

Numbing pain (yes/no) 3/37 7/125 0.523

Distending pain (yes/no) 0/37 6/126 0.187

T-test for continuous variable and Pearson Chi-square test for dichotomous variable.
doi:10.1371/journal.pone.0094917.t004

Table 5. Prediction performance.

Model Correction Rate AUC Sensitivity Specificity

Logistic regression 0.71a (0.09)b 0.77 (0.10) 0.72 (0.12) 0.71 (0.15)

Decision tree C4.5 0.88* (0.06) 0.90* (0.07) 0.83* (0.10) 0.95* (0.08)

ANN 0.90* (0.07) 0.94* (0.07) 0.87* (0.10) 0.95* (0.08)

aaverage of 20 repetitive 10-fold experiments.
bstandard deviation.
* statistically significant (p,0.05) difference comparing to logistic regression model.
doi:10.1371/journal.pone.0094917.t005
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Its moderate sensitivity and high specificity favor the use of data

mining over classic statistical methods when diagnosing a rotator

cuff tear, to avoid unnecessary imaging tests by reducing the false-

positive rate.

An important feature of our predictive data-mining model is the

transfer of evidence-based clinical research from the general

population to the individual patient. Traditionally, statistics

analyze a group of individuals to reveal significant relationships

among the variables in the population studied, at the expense of

predicting outcomes on an individual level [44,45]. During clinic

appointments, doctors are pressured to synthesize complex clinical

assessment variables, such as physical and lab examinations, to

make diagnosis and treatment decisions. Traditional medical

statistics, which were designed mainly to explore group data,

generally cannot be applied when determining the medical

diagnosis of a single individual. The search for a method of

predicting a specific diagnosis based on an individual patient’s

characteristics is the trend in evidence-based statistics [44,46].

Therefore, the predictive data mining models in our study are

timely and useful for answering specific classification questions at

the level of the individual patient.

During clinical evaluation, a frequently encountered problem is

how to determine the probability of a disease based on the clinical

information. However, the classification output of predictive data

mining is generally expressed as dichotomous categorical values in

which the individual subject is classified into one class without a

degree of confidence that the patient is in the correct group. To

overcome this limitation, we combined prediction results with LRs

and Fagan’s monogram to assess the probability of having a

disease. An LR, which is how much more or less likely a patient

with the disease is to have a specified result than a patient without

the disease, is a convenient and increasingly used measure to

report test or prediction results [47–49]. It is calculated based on

the sensitivity and specificity of the prediction results (see

Appendix S1) and represents the likelihood, or odds, that disease

is present based on the results of a test [50,51]. As showed in

Table 5, the sensitivity and specificity of the ANN model were

87% and 95%, respectively, which gives a positive LR (LR+) of

17.40 and a negative LR (LR2) of 0.14 (Table 6). This mean that

a patient with a rotator cuff tear is approximately 17.4 times more

likely to have a positive test or examination result than one who

does not. Conversely, a patient without a rotator cuff tear is

approximately 7.1 times more likely to have a negative predict test

or examination result than one with a rotator cuff tear. Prior

studies suggest that an LR+ greater than 10 significantly increases

the probability of a positive test when the disease is present, and an

LR2 less than 1 indicates a negative test is unlikely to occur in a

patient with the disease [52].

Based on LRs derived from our prediction models, Bayes’

theorem could be used to assess the probability of a patient who

has a rotator cuff tear using a pretest probability and a prediction

result (tear or no tear). When examining the rotator cuff, a

clinician may begin with a rough estimate of the likelihood a

patient has a rotator cuff tear, referred to as the pretest probability,

based on the patient’s symptoms and history and the prevalence of

the disease before ordering an imaging test [53]. In Bayes’

theorem, the LR is used to modify the pretest probability of having

the disease after a test result is known [50,54]. Once a patient is

classified into the ‘‘tear’’ or ‘‘no tear’’ group, the pretest probability

could be altered to the posttest probability, which is what clinicians

are most interested in.

The posttest probability could be estimated using Fagan’s

nomogram, which is a graphical tool that easily estimates the

posttest probability that a specific disease is present based on the

result of a test and pretest probability [52]. As shown in Figure 2, a

straight line starting with a pretest probability of having a rotator

cuff tear, extended to the right of the LR, and intersecting with the

posttest probability of having a tear. For example, if the prevalence

rate of a rotator cuff tear for a patient is 25%, and our ANN model

showed that this patient should be classified as a ‘‘tear’’ with an

LR+ estimated at 17.40 (Table 6), a straight line (Figure 2) drawn

from the pretest probability of 25% through the LR+ of 17.40

intersects with the posttest probability of approximately 85% (for

calculations, see Appendix S1) [55]. This means that the

probability of having a rotator cuff tear for this patient increases

from 25% to 85% when the data mining result is ‘‘tear.’’

Alternately, when the data mining result is ‘‘no tear,’’ the

probability of this patient having a tear decrease from 25% to

4%. Therefore, the results of our predictive data mining models

could provide information to assist doctors in making diagnostic

decisions, especially if the pretest probability of a rotator cuff tear

is intermediate. Our predictive data mining results can be used not

only to classify a patient into the ‘‘tear’’ or ‘‘no tear’’ category but

also to modify the pretest probability in order to estimate the

posttest probability, which is more useful information for making

diagnostic and treatment decisions.

Further research is necessary to overcome the limitations of our

study. First, to overcome generalization issue due to the sample

size or variables selected [56], studies including additional patient

characteristics or a larger study population are required. Second,

more promising data mining methods such as support vector

machines or Bayesian networks could be adopted to explore

improvement of the prediction sensitivity and specificity. Third,

further study is required to investigate whether other clinical

evaluations such as the Hawkins test or the Neer test could be

potential variables influencing the prediction performances.

Although the actual pathology can only be determined by

operative findings, our study did not use arthroscopy or open

surgery as reference standards because it would have been

unethical to perform surgery on all patients with a susceptive

rotator cuff tear. Instead, we used less invasive tests (MRI) as a

reference standard on all subjects. To reduce model verification

Table 6. Likelihood ratio.

Model LR+ LR2 a DOR b

Logistic regression 2.29 0.42 5.45

Decision tree C4.5 13.50 0.20 66.79

ANN 17.40 0.14 127.15

aLR+, LR2: likelihood ratios for positive and negative results, respectively.
bDiagnostic odds ratio: a measure of the effectiveness of a diagnostic test.
doi:10.1371/journal.pone.0094917.t006
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bias, the validity and performance of our prediction models should

be further evaluated using intraoperative findings as the gold

standard for patients undergoing surgery.

Conclusion

Currently the majority of orthopedists make a preliminary

diagnosis of a rotator cuff tear based on physical examination;

however, these examinations have a high false-positive rate, which

leads to unnecessary imaging tests [12]. In this study, we

developed 2 data mining models (ANN and a decision tree) and

compared them using a statistical method (logistic regression) to

determine the ability to predict the diagnosis of a rotator cuff tear

based on 16 features of a physical examination. The classification

results demonstrated that, when used to establish a preliminary

diagnosis of a rotator cuff tear, the data mining models were

superior to classic statistical methods on various performance

indicators such as correction rate, sensitivity, and specificity. To

our knowledge, this study is the first to retrospectively compare

clinical examination alone with multiple personal characteristics

(such as age, gender) and symptom history (such as pain index),

which potentially influence the diagnosis of rotator cuff tears. In

conclusion, our predictive data mining models, combined with an

LR and Bayesian theory, appear to be good tools to classify rotator

cuff tears as well as determine the probability of the presence of the

disease to enhance diagnostic decision making for rotator cuff

tears.

Supporting Information

Appendix S1

(DOCX)

Author Contributions

Conceived and designed the experiments: HL. Performed the experiments:

HL CL. Analyzed the data: HL CL. Contributed reagents/materials/

analysis tools: HL CS CH CL. Wrote the paper: HL CS CH CL.

Figure 2. The use of the Fagan’s nomogram (a straight line through the pretest probability of 25% and the LR+ of 17.40 yields a
posttest probability of 85%; a straight line through the pretest probability of 25% and the LR- of 0.14 yields a posttest probability
of 4%).
doi:10.1371/journal.pone.0094917.g002

Predicting Rotator Cuff Tears Using Data Mining and Bayesian

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e94917



References

1. Murrell GAC, Walton JR (2001) Diagnosis of rotator cuff tears. The Lancet 357:

769–770.
2. McFarland EG (2006) Examination of the shoulder: the complete guide: New

York: Thieme.
3. Norwood L, Barrack R, Jacobson K (1989) Clinical presentation of complete

tears of the rotator cuff The Journal of Bone & Joint Surgery 71: 499–505.

4. Litaker D, Pioro M, Bilbeisi HE, Brems J (2000) Returning to the bedside: Using
the history and physical examination to identify rotator cuff tears. Journal of the

American Geriatrics Society 48: 1633–1637.
5. Farin PU, Kaukanen E, Jaroma H, Vaataieen U, Miettinen H, et al. (1996) Site

and size of rotator-cuff tear: Findings at ultrasound, double-contrast arthrog-

raphy, and computed tomography arthrography with surgical correlation.
Investigative Radiology 31: 387–394.

6. Longo UG, Berton A, Ahrens PM, Maffulli N, Denaro V (2011) Clinical tests for
the diagnosis of rotator cuff disease. Sports Med Arthrosc 19: 266–278.

7. Hegedus EJ, Goode A, Campbell S, Morin A, Tamaddoni M, et al. (2008)
Physical examination tests of the shoulder: a systematic review with meta-

analysis of individual tests. Br J Sports Med 42: 80–92; discussion 92.

8. Jobe FW, Moynes DR (1982) Delineation of diagnostic criteria and a
rehabilitation program for rotator cuff injuries. The American Journal of Sports

Medicine 10: 336–339.
9. Dinnes J, Loveman E, McIntyre L, Waugh N (2003) The effectiveness of

diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a

systematic review. Health Technology Assessment 7: 1–166.
10. Walton J, Murrell GAC (2012) Clinical tests diagnostic for rotator cuff tear.

Techniques in Shoulder & Elbow Surgery 13: 17–22.
11. Park HB, Yokota A, Gill HS, Rassi GE, Mcfarland EG (2005) Diagnostic

accuracy of clinical tests for the different degrees of subacromial impingement
syndrome. The Journal of Bone and Joint Surgery: 1446–1455.

12. Beaudreuil J, Nizard Rm, Thomas T, Peyre M, Liotard JP, et al. (2009)

Contribution of clinical tests to the diagnosis of rotator cuff disease: A systematic
literature review. Joint Bone Spine 76: 15–19.

13. Han J, Kamber M (2012) Data Mining, Concepts and Techniques: Diane Cerra.
14. Bellazzi R, Zupan B (2008) Predictive data mining in clinical medicine: Current

issues and guidelines. International Journal of Medical Informatics 77: 81–97.

15. Ramesh AN, Kambhampati C, Monson JR, Drew PJ (2004) Artificial
intelligence in medicine. Ann R Coll Surg Engl 86: 334–338.

16. Witten I.H FE (2008) Data mining: ractical machine learning tools and
techniques. San Francisco, USA: Morgan Kaufmann.

17. Griffith J (2000) Artificial neural networks: are they ready for use as clinical
decision aids? Med Decis Making 20: 243–244.

18. Lin CS, Chang CC, Chiu JS, Lee YW, Lin JA, et al. (2011) Application of an

artificial neural network to predict postinduction hypotension during general
anesthesia. Med Decis Making 31: 308–314.

19. Baxt WG (1990) Use of an Artificial Neural Network for Data Analysis in
Clinical Decision-Making: The Diagnosis of Acute Coronary Occlusion. Neural

Computation 2: 480–489.

20. Mair J, Smidt J, Lechleitner P, Dienstl F, Puschendorf B (1995) A decision tree
for the early diagnosis of acute myocardial infarction in nontraumatic chest pain

patients at hospital admission. Chest 108: 1502–1509.
21. Amendolia SR, Brunetti A, Carta P, Cossu G, Ganadu ML, et al. (2002) A real-

time classification system of thalassemic pathologies based on artificial neural
networks. Med Decis Making 22: 18–26.

22. Vlahou A, Schorge JO, Gregory BW, Coleman RL (2003) Diagnosis of ovarian

cancer using decision tree classification of mass spectral data. Journal of
Biomedicine and Biotechnology 5: 308–314.

23. Oh CH, Schweitzer ME, Spettell CM (1999) Internal derangements of the
shoulder: decision tree and cost-effectiveness analysis of conventional arthrog-

raphy, conventional MRI, and MR arthrography. Skeletal Radiol 28: 670–678.

24. Weinstein M, Fineberg H, Elstein A, Frazier H (1980) Clinical Decision
Analysis. Philadelphia: WB Saunders.

25. Kassirer J (1989) Our stubborn quest for diagnostic certainty. A cause of
excessive testing. N Engl J Med 320: 1489–1491.

26. Pauker S, Kassirer J (1980) The threshold approach to clinical decision making.

The New England Journal of Medicine 302: 1109–1117.
27. MacDonald PB, Clark P, Sutherland K (2000) An analysis of the diagnostic

accuracy of the Hawkins and Neer subacromial impingement signs. Journal of
Shoulder and Elbow Surgery 299–301.

28. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research 16:

321–357.

29. Lin C-C, Ou Y-K, Chen S-H, Liu Y-C, Lin J (2010) Comparison of artificial

neural network and logistic regression models for predicting mortality in elderly

patients with hip fracture. Injury, International Journal of the care of the injuried

41: 869–873.

30. Lisboa PJG (2002) A review of evidence of health benefit from artifical neural

networks in medical intervention. Neural Networks 15: 11–39.

31. Fathima AS, D.Manimegalai, Hundewale N (2011) A review of data mining

classification techniques applied for diagnosis and prognosis of the arbovirus-

dengue. (IJCSI) International Journal of Computer Science Issues 8: 322–328.

32. Quinlan JR (1993) C4.5: Programs for Machine Learning. San Francisco:

Morgan Kaufmann.

33. Podgorelec V, Kokol P, Stiglic B, Rozman I (2002) Decision trees: an overview

and their use in medicine. Journal of Medical Systems, Kluwer Academic/

Plenum Press 26: 445–463.

34. Quinlan JR (1986) Induction of decision trees. Machine Learning 1: 81–106.

35. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and Regression

Trees. Belmont, CA: Wadsworth.

36. Bagley SC, White H, Golomb BA (2001) Logistic regression in the medical

literature: Standards for use and reporting, with particular attention to one

medical domain. Journal of Clinical Epidemiology 54: 979–985.

37. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy

estimation and model selection; August 20–25; Montreal, Quebec, Canada. pp.

1137–1145.

38. Bengio Y, Grandvalet Y (2004) No unbiased estimator of the variance of K-fold

cross-validation. Journal of Machine Learning Research 5: 1089–1105.

39. Stone M (1974) Cross-validatory choice and assessment of statistical predictions.

Journal of the Royal Statistical Society 36: 111–147.

40. Efron B, Tibshirani R (1997) Improvements on cross-validation: The .632+
bootstrap method. Journal of the American Statistical Association 92: 548–560.

41. Breiman L (1984) Classification and regression trees. Belmont, Calif: Wadsworth

International Group. x, 358 p. p.

42. Delen D, Walker G, Kadam A (2005) Predicting breast cancer survivability: a

comparison of three data mining methods. Artif Intell Med 34: 113–127.

43. Wahbeh AH, Al-Radaideh QA, Al-Kabi MN, Al-Shawakfa EM (2011) A

comparison study between data mining tools over some classification methods.

(IJACSA) International Journal of Advanced Computer Science and Applica-

tions: 18–26.

44. Grossi E, Mancini A, Buscema M (2007) International experience on the use of

artificial neural networks in gastroenterology. Digestive and Liver Disease 39:

278–285.

45. Chang L (2006) Applying data mining to predict college admissions yield: A case

study. New Directions for Institutional Research 2006: 53–68.

46. Rygielski C, Wang JC, Yen DC (2002) Data mining techniques for customer

relationship management. Technology in Society 24: 483–502.

47. Sox HC (1996) The evaluation of diagnostic tests: principles, problems, and new

developments. Annual Review of Medicine 47: 463–471.

48. Dujardin B, Ende JVd, Gompel AV, Unger J-P, Stuyft PVD (1994) Likelihood

ratios: A real improvement for clinical decision making? European Journal of

Epidemiology 10: 29–36.

49. Sox HC, Blatt MA, Higgins MC, Marton KI (1988) Medical Decision Making.

Stoneham MA: Butterworths.

50. Deeks JJ, Altman DG (2004) Diagnostic tests 4: likelihood ratios. BMJ 329: 168–

169.

51. Lang TA, Secic M (1997) How to Report Statistics in Medicine: Annotated

Guidelines for Authors, Editotrs, and Reviewers: Philadelphia: American

College of Physicians.

52. Akobeng AK (2006) Understanding diagnostic tests 2: likelihood ratios, pre- and

post-test probabilities and their use in clinical practice. Acta Pædiatrica 96: 487–

491.

53. Espallardo NL (2003) Decisions on diagnosis in family practice: Use of

sensitivity, specificity, predictive values and likelihood ratios. Asia Pacific Family

Medicine 2: 229–232.

54. Gill CJ, Sabin L, Schmid CH (2005) Why clinicians are natural bayesians. BMJ

330: 1080–1083.

55. Halkin A, Reichman J, Schwaber M, Paltiel O, Brezis M (1998) Likelihood

ratios: getting diagnostic testing into perspective. Q J Med 91: 247–258.

56. Lawrence S, Giles CL (2000) Overfitting and neural networks: conjugate

gradient and backpropagation; Como, Italy, Los Alamitos, CA. pp. 114–119.

Predicting Rotator Cuff Tears Using Data Mining and Bayesian

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e94917


