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Abstract

Purpose: The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted
cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov
luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human
sodium iodide symporter (hNIS) and firefly luciferase (Fluc) as reporters.

Methods: First, two multicistronic lentiviral vectors (LV) were generated for multimodal imaging: BLI, 124I PET/SPECT and CLI.
Expression of the imaging reporter genes was validated in vitro using 99mTcO4

2 radioligand uptake experiments and BLI.
Uptake kinetics, specificity and tracer elution were determined as well as the effect of the transduction process on the cell’s
differentiation capacity. MSCs expressing the LV were injected intravenously or subcutaneously and imaged using small-
animal PET, CLI and BLI.

Results: The expression of both imaging reporter genes was functional and specific. An elution of 99mTcO4
2 from the cells

was observed, with 31% retention after 3 h. After labeling cells with 124I in vitro, a significantly higher CLI signal was noted in
hNIS expressing murine MSCs. Furthermore, it was possible to visualize cells injected intravenously using BLI or
subcutaneously in mice, using 124I small-animal PET, CLI and BLI.

Conclusions: This study identifies hNIS as a suitable reporter gene for molecular imaging with PET and CLI, as confirmed
with BLI through the expression of Fluc. It supports the potential for a wider application of hNIS reporter gene imaging and
future clinical applications.
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Introduction

The development of imaging reporter genes is of great

importance to the field of molecular imaging, as their encoded

proteins can permit longitudinal non-invasive imaging of biolog-

ical processes at the cellular and subcellular level.

One of these imaging reporter genes encodes for the well-

characterized human sodium iodide symporter (hNIS) [1]. hNIS is

situated in the basolateral membrane of thyroid follicular cells, as

well as other tissues such as the stomach mucosa, salivary glands

and the lactating mammary gland. hNIS is an intrinsic plasma

membrane glycoprotein with 13 transmembrane domains that

mediates the first step in the formation of thyroid hormones by the

transport of iodide into the thyroid follicular cells against a

concentration gradient [1]. Furthermore, hNIS is able to transport

radioactive forms of iodide, as well as other anions such as

technetium pertechnetate (99mTcO4
2) [2]. Due to its relatively low

endogenous expression in extrathyroidal tissues, the wide avail-

ability of FDA-approved radioactive probes and the experience

with hNIS imaging, hNIS satisfies most of the criteria to be a

suitable reporter gene for imaging purposes [3]. Furthermore,

hNIS is a human protein and its use as an imaging reporter gene

will therefore not evoke immunological responses [4].

Exogenous expression of hNIS can be applied for non-invasive

and nuclear imaging of grafted cells. This can lead to a better
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understanding of stem cell homing, and assist in further applying

and developing stem cell-based therapies.

Mesenchymal stem cells (MSCs) are non-hematopoietic mul-

tipotent stem cells with an innate ability to differentiate towards

multiple mesenchymal lineages [5,6]. These cells appear to be

good candidates for clinical use; they can be expanded easily in

vitro and lack immunogenicity [7]. MSCs also possess immune

modulating properties, through the inhibition of immune cell

function and proliferation, and their use as immunomodulators is

being explored clinically [8]. Besides their role in tissue

regeneration, MSCs have significant trophic effects on endogenous

(stem) cells [9]. Furthermore, they have also been proven to

migrate towards multiple tumors in vivo, which renders them good

candidates as delivery vehicles for antitumor therapy [10–12].

Because of these characteristics, the interest in MSCs for clinical

applications has increased over the past years. As such, MSCs

have been used in several clinical phase I and phase II studies

concerning acute myocardial infarction [13], but the most

promising results have been obtained in human graft-versus-host

disease and allograft rejection studies [14–18].

To further improve stem cell-based treatments, cellular homing

as well as survival after engraftment needs to be studied in greater

detail. Imaging reporter genes can play an important role in the

non-invasive longitudinal follow-up of grafted cells. In the present

work, we optimized lentiviral vector (LV) transduction of murine

MSCs, inducing the expression of the imaging reporter genes

firefly luciferase (Fluc) for bioluminescence imaging and hNIS for

emission tomography (PET/SPECT) and Cerenkov luminescence

imaging (CLI).

CLI uses Cerenkov radiation for molecular imaging. Cerenkov

radiation is an electromagnetic radiation emitted when a charged

particle travels at a speed beyond the speed of light in a dielectric

medium. The upper limit on speed (c), is the speed of light in a

vacuum, but in a particular medium the speed of light is a fraction

of c (in water ,0.75), and positrons from PET isotopes can be

emitted at speeds higher than these values. The charged particle

travels through the medium and thereby temporarily displaces the

electrons in the medium. While returning to their ground state, the

electrons will emit visible light photons that can be detected using

a BLI system [19,20]. It is thus possible to image certain PET

Table 1. Vector constructs used for gene transfer.

Vector type Expression cassette Cell type

LV LV_hNIS HEK293T

LV_eGFP

Bicistronic LV LV_hNIS-T2A-Fluc HEK293T

LV_hNIS-T2A-eGFP

LV_Fluc-T2A-eGFP

Multicistronic LV LV_hEF1a-3flagFluc-T2A-hNIS-IRES-PuroR MSCs

LV_EF1a-3flagFluc-IRES-PuroR

doi:10.1371/journal.pone.0094833.t001

Figure 1. Diagram illustrating the steps involved in this study. Overview of the lentiviral vector constructs used to induce reporter gene
expression and the experiments performed with these respective vectors.
doi:10.1371/journal.pone.0094833.g001
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radionuclides via an optical system with high sensitivity and short

scanning times.

Here, the longitudinal expression of these imaging reporter

genes was evaluated both in vitro and in vivo.

Materials and Methods

Cell culture
HEK293T cells were used for testing the functionality of the

different vectors described below. Cells were cultured under

normal oxygen conditions in a 5% CO2 humidified incubator at

37uC. Growth medium consisted of Dulbecco’s modified eagle

medium (DMEM, Gibco, Invitrogen, Carlsbad, CA, USA), 10%

fetal bovine serum (FBS; Lonza BioWhittaker, Basel, Switzerland)

and 1% Penicillin/Streptomycin (Gibco).

Murine MSCs from C57Bl/6 mice were obtained from the lab

of Prof. dr. D Prockop, Tulane University, USA [21]. Cells were

cultured in a 5% CO2 humidified incubator under normoxic

conditions at 37uC in growth medium containing Iscove’s

Modified Dulbecco’s Medium (IMDM, Gibco), 10% FBS, 10%

horse serum (Biochrom, Berlin, Germany), 1% L-glutamine

(Gibco) and 1% penicillin/streptomycin.

Lentiviral vector optimization and transduction
For the optimization of the final multicistronic LV construct,

different vector types and constructs were generated and tested,

(for an overview see Table 1 and Fig. 1). LV constructs carrying a

cytomegalovirus immediate early (CMVie) promoter driving hNIS

or enhanced green fluorescent protein (eGFP) as a control

(LV_hNIS and LV_eGFP, respectively) were used at first in

HEK293T cells as a proof-of-principle to demonstrate hNIS

functionality. Subsequently, bicistronic LV were generated,

combining hNIS with alternative imaging reporter modules where

a CMVie promoter drives hNIS and Firefly luciferase (Fluc, for

bioluminescence imaging) or hNIS and eGFP (fluorescence)

coupled by a Thosea asigna virus 2A (T2A) sequence, LV_Fluc-

T2A-hNIS and LV_eGFP-T2A-hNIS, respectively. As a control, a

LV was included encoding both eGFP and Fluc coupled by a T2A

sequence, LV_eGFP-T2A-Fluc [22]. In parallel, we determined

the ideal promoter for efficient MSC transcription, employing a

LV that drives eGFP from different promoters, such as human

elongation factor 1a (EF1a), human Cyclophilin A (CypA), or viral

Spleen focus forming virus LTR (SFFV), and CMVie. These LV

were referred to as LV_hEF1a-eGFP, LV_CypA-eGFP,

LV_SFFV-eGFP, LV_CMVie-eGFP, respectively. MSCs were

transduced with the respective vectors using a protocol as reported

earlier [23]. eGFP fluorescence was monitored using fluorescence

activated sorting (FACS) and on day 37, the 5% brightest

population was isolated from each condition to overcome the lack

of puromycin resistance in the expression cassettes. Long-term

eGFP expression was monitored using FACS until 60 days. Results

are given as total fluorescence (fraction of total cells that are

fluorescent6mean fluorescence intensity).

Finally, a multicistronic LV carrying the hEF1a promoter to

drive triple flag tagged firefly luciferase (3flagFluc), a T2A

sequence, the human sodium iodide symporter (hNIS), an internal

ribosomal entry site (IRES), and a puromycin resistance gene

(PuroR), LV_hEF1a-3flagFluc-T2A-hNIS-IRES-PuroR was test-

ed. As a control, the same vector lacking hNIS was used,

LV_EF1a-3flagFluc-IRES-PuroR. For the sake of clarity, MSCs

transduced with the LV_EF1a-3flagFluc-T2A-hNIS-IRES-PuroR

will be referred to as Fluc-hNIS expressing MSCs. MSCs

transduced with the EF1a-3flagFluc-IRES-Puro LV, will be

referred to as Fluc expressing MSCs.

To create stable cell lines, cells were seeded into medium

containing serial dilutions of LV and cells were incubated for

48 hours. For the selection of transduced cells, 2 mg/mL

puromycin (Merck Millipore, Darmstadt, Germany) was added

to the growth medium, and cells were maintained under this

condition.

In vitro radiotracer uptake experiments
Cells were plated in triplicate in 24-well plates at a density of 105

cells per well in normal growth medium, and kept under standard

incubation conditions. After 24 hours, cells were washed with PBS

and incubated with 250 mL of pertechnetate (99mTcO4
2) tracer

solution (0.74 MBq/mL in DMEM; Gibco) for different periods

(n = 3). All in vitro data are shown as decay-corrected values.

After incubation, cells were washed 3 times with phosphate

buffered saline (PBS; Gibco), and tracer concentration in the cell

fraction was measured using a gamma counter (Perkin Elmer,

Waltham, MA, USA). Uptake values were corrected for the cell

number in the according samples, as measured using a

nucleocounter system (Chemometec, Allerød, Denmark).

The elution of 99mTcO4
2 initially taken up by the cells was

measured by incubating the cells for one hour with 99mTcO4
2

(0.74 MBq/mL), washing the cells and incubating them on tracer-

free DMEM for varying periods. The activity in the cells, the

supernatant and the elution medium was measured and elution

rates were calculated (n = 3).

Figure 2. Results of uptake experiments with 99mTcO4
2 in HEK293T cells after the induction of hNIS expression. Uptake ratios resulting

from the transduction with a unicistronic LV (b) and a bicistronic LV (c). Significantly higher uptakes were observed in cells expressing hNIS. **:
p,0.01; ***: p,0.001; ****:p,0.0001.
doi:10.1371/journal.pone.0094833.g002
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A blocking experiment was performed with sodium perchlorate

(NaClO4) using three different concentrations solved in DMEM:

10, 25 and 50 mM. The cells were incubated with the blocking

solutions containing the tracer (0.74 MBq/mL 99mTcO4
2 in

DMEM+ NaClO4) and activity in supernatant and cells was

measured using a gamma counter (n = 3).

Immunocytochemistry
To further confirm hNIS and 3flag expression in MSCs

transduced with the LV_EF1a-3flagFluc-T2A-hNIS-IRES-PuroR

and the LV_EF1a-3flagFluc-IRES-PuroR, immunofluorescent

stainings were performed. Cells were fixed using unifix for

20 min at 4uC, permeabilized with 0.05% Triton for 30 min at

room temperature (only in case of 3flag staining) and blocked with

10% normal donkey serum (Millipore) for 20 min at room

temperature. Cells were then incubated for two hours at room

temperature with the primary antibody diluted in PBS (hNIS 1/20

and flag 1/1000). Fluorescently labeled secondary antibody (1:500,

Alexa Fluor donkey anti-rabbit 488 or donkey anti-mouse 555,

Invitrogen) was incubated for 30 min at room temperature. Nuclei

were counterstained using DAPI and sections were mounted using

anti-fade mounting medium (Dako). Images were acquired using a

Nikon Eclipse 80 i Fluorescence microscope equipped with a

Nikon DS-2 MB Wc digital camera (Nikon Tokyo, Japan).

Stainings in which primary antibodies were omitted, were used as

a negative control.

Figure 3. Optimization of LV constructs and selection. Different promoters were tested with FACS (AU: arbitrary units) for eGFP expression in
MSCs transduced with different LV driven by different human or viral promoters (a). On day 38, FACS selection of the highest expressors was done
(red arrow on panel (a)), and this population was also monitored (b). 99mTcO4

2 uptake experiment in Fluc-hNIS or Fluc expressing MSCs with or
without puromycin selection (c). ****:p,0.0001.
doi:10.1371/journal.pone.0094833.g003
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MSC differentiations
For adipogenic differentiations, cells were plated at a density of

10400 cells/cm2 in differentiation medium, containing aMEM

(Gibco), 10% FBS, 100 units of penicillin and 1000 units of

streptomycin, 1 mM dexamethasone, 10 mg/mL human insulin,

100 mM indomethacin and 25 mM methyl-isobutylxanthine (all

from Sigma-Aldrich, St Louis, MO, USA). Medium was changed

twice a week for 14 days (n = 3).

After 14 days, cells were rinsed with PBS, fixed using unifix

(Klinipath, Duiven, The Netherlands) for 20 minutes and stained

with fresh Oil red O solution (Sigma-Aldrich) for 10 minutes.

Images were taken using an inverted Zeiss axiovert microscope

(Hertfordshire, UK). For quantification of the lipid droplet

staining, the dye was extracted from the cells using 100% ethanol

and aliquots of 200 mL were transferred to a 96-well plate in

triplicate. Absorbance was measured at 450 nm using a Victor

1420 plate reader (Perkin Elmer).

To assess the effect on osteogenic differentiation capacity, MSCs

were seeded at 8400 cells/cm2 in normal growth medium and

allowed to become confluent for 48 h before adding osteogenic

differentiation medium. Differentiation medium contained

DMEM with sodium pyruvate, 10% FBS, 1% penicillin/

streptomycin, 50 mg/mL L-Ascorbic acid 2-phosphate sequimag-

nesium salt hydrate (AA-P; Sigma-Aldrich), 100 nM dexametha-

sone and 10 mM glycerol-2-phosphate disodium salt hydrate

(bGP). Medium was changed twice a week for 3 weeks (n = 3).

At day 21, cells were rinsed with PBS, fixed with ice-cold 70%

ethanol for 1 h and stained with Alizarin red S solution (Sigma) for

30 minutes. Images were taken using an inverted Zeiss axiovert

microscope. Afterwards, the dye was extracted from the cells using

a 10% cetylpiridinium chloride solution for 1 h. Aliquots of

200 mL were transferred to a 96-well plate in triplicate, and

absorbance was measured at 560 nm.

For chondrogenic differentiation, micromasses were generated

by seeding 20 mL droplets of cell suspension, each containing

200,000 cells, into separate wells of a 24-well plate. After

attachment for 3 hours expansion medium was added. The next

day, chondrogenic differentiation medium was added containing

DMEM/F12, 2.5% FBS, 100 nM dexamethasone, 16 ITS+,

50 mg/mL AA-P, 10 ng/mL Transforming Growth Factor-b
(TGF-b), 10 mM ROCK inhibitor and 40 mg/mL L-proline.

Every 2 days, medium was changed for 21 days (n = 3).

At day 21, cells were fixed using unifix and stained overnight

with Alcian Blue. The dye was extracted using 6M guanidine

HCL. The optical density of the extracted dye was measured at

595 nm in triplicates.

Figure 4. Validation of the multicistronic LV contruct. 99mTcO4
2 uptake kinetics in MSCs transduced with the two different multicistronic LV

constructs or wild type MSCs (a). Tracer elution from Fluc-hNIS expressing MSCs (b). The effect of different concentrations of NaClO4 on the uptake of
99mTcO4

2 in Fluc-hNIS expressing MSCs (c). Immunocytochemistry against hNIS on Fluc-hNIS expressing MSCs and DAPI (d), against 3flag in 3flagFluc-
hNIS expressing MSCs and DAPI (e) and negative control (f). Immunocytochemistry against 3flag in 3flagFluc expressing MSCs and DAPI (g) and
negative control (h).
doi:10.1371/journal.pone.0094833.g004
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Animal preparations
The protocols used in this study were approved by the Ethical

Committee of the KU Leuven (Permit Number: P145-2010).

For the intravenous injections, animals were anesthetized with

2% isoflurane (Isoflurane ISPH, Rothacher, Basel, Switzerland) in

100% oxygen, at a flow rate of 2 L/minute. Different cell numbers

of MSCs expressing Fluc-hNIS ranging from 10,000 to 1,000,000

were injected in the tail vein of healthy C57BL/6 mice, and

30 minutes after cell injections BLI was performed (n = 3).

For xenografts, both Fluc expressing MSCs (as a control), and

Fluc-hNIS expressing MSCs were injected subcutaneously in

anesthetized nude athymic mice (nu/nu) (n = 3). Fluc expressing

MSCs were injected on the left side of the body, whereas Fluc-

hNIS expressing cells were injected on the right side of the body.

Each mouse was injected with two different cell numbers per cell

line: 10,000 and 1,000,000 mixed with matrigel in a 1:1 ratio (BD

biosciences, New Jersey, USA).

Small-animal PET
The imaging of xenografts was performed on day 2 after

xenograft generation with 11 MBq of 124I (Perkin Elmer) per

mouse injected intravenously, with dynamic acquisitions of

90 minutes (n = 3) using a Focus 220 small-animal PET system

(Siemens Medical Solutions USA, Knoxville,TN). Images were

reconstructed with a maximum a posteriori (MAP) image

reconstruction algorithm, and analyzed in PMOD 3.0 (PMOD

technologies, Zürich, Switzerland). Images were converted to

standardized uptake value (SUV) according to the standard

formula: SUV = Activity concentration in organ/[injected activi-

ty/animal weight].

A manually delineated volume of interest (VOI) was positioned

on the dynamic images over the Fluc-hNIS-expressing xenografts,

the control Fluc-expressing xenografts, and muscle tissue and the

brain as background tissues to generate time activity curves. Ratios

were calculated, comparing the signal in the Fluc-hNIS expressing

xenograft with background signals from control Fluc-expressing

xenografts, muscle tissue and brain.

Cerenkov luminescence imaging
For the in vitro CLI, cells were plated in triplicate in 24-well

plates at a density of 16105 cells per well in normal growth

medium, and kept under standard incubation conditions. After

24 hours, cells were washed with PBS and incubated with 250 mL

of tracer solution (0.74 MBq/mL 124I in DMEM; Gibco) for one

hour. Cells were washed 3 times with PBS, and placed in the BLI

chamber for the acquisition of 1 minute scans.

The in vivo CLI scans on xenografts were performed daily after

performing the 124I small-animal PET scans. CLI protocols were

executed as follows: animals were anesthetized using isoflurane in

100% oxygen, at a flow rate of 2 L/minute and positioned in the

BLI chamber without prior injection of D-luciferin. Images were

acquired using an IVIS 100 system (Perkin Elmer) and CLI

acquisition was done by acquiring one minute frames. The data

are reported as total photon flux (p/s) from a circular region of

interest (ROI). For all animals, first a daily CLI scan was

performed to measure the 124I distribution, and thereafter D-

luciferin was injected to measure the BLI signal intensity.

Bioluminescence imaging
For the in vitro BLI, cells were plated in triplicate in 24-well

plates at a density of 16105 cells per well in normal growth

medium, and kept under standard incubation conditions. After

24 hours, cells were washed with PBS and incubated with 250 mL

of D-luciferin (0.3 mg/mL; Promega, Benelux, Leiden, The

Netherlands). Cells were placed in the BLI chamber immediately

for the acquisition of 1 minute scans.

Animals were anesthetized with 2% isoflurane in 100% oxygen,

at a flow rate of 2 L/minute, after which D-luciferin, dissolved in

PBS (15 mg/mL), was injected intravenously (126 mg/kg body

weight). Images were acquired using an IVIS 100 system (Perkin

Elmer). Consecutive 1 minute frames were acquired until the

maximum signal intensity was reached. Each frame depicts the

bioluminescence signal intensity as a pseudocolor image superim-

posed on the gray-scale photographic image. The data are

reported as total photon flux (p/s) from a circular region of

interest (ROI). BLI signal intensity was monitored over 8 days

after xenograft generation.

For the quantification of BLI data in the mouse xenograft

model, values from according ROIs measured with CLI were

subtracted from the raw BLI ROI values to obtain specific BLI

signal intensities.

Statistical Analysis
Data are presented as mean 6 standard error of the mean

(SEM). For the uptake experiments using the unicistronic,

bicistronic and multicistronic vector after puromycin selection,

two-way analysis of variance (ANOVA) statistical tests were

performed with Bonferroni post-hoc tests. P-values,0.05 were

considered statistically significant. BLI and CLI data were tested

using an unpaired two-sided t-test after log transformation.

Differentiation analysis was performed using a one-way ANOVA

with Tukey post-hoc tests. The in vivo BLI data after intravenous

Figure 5. In vitro optical validation of the imaging reporter
genes. In vitro BLI (a) and CLI (b) of Fluc-hNIS expressing MSCs and Fluc
expressing MSCs. ****: p,0.0001.
doi:10.1371/journal.pone.0094833.g005
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injections were tested for gaussion distribution using the

Kolmogorov-Smirnov test and the Pearson’s R coefficient was

calculated as a measure of linear correlation. The in vivo xenograft

BLI data were evaluated using an unpaired t-test.

Data were processed using GraphPad Prism version 5.00 for

Windows (GraphPad Software, San Diego, California, USA).

Results

hNIS is an efficient PET reporter in cell culture
Different LV vector types (Table 1, Fig. 1) were tested in

HEK293T cells for the optimization of the imaging reporter gene

expression. Stably hNIS expressing cells or control cells were

incubated with 99mTcO4
2. All transfections and transductions

(unicistronic LV and bicistronic LV, Fig. 2a,b) resulted in a 100-

fold to 300-fold higher uptake of tracer in cells expressing the

hNIS gene, compared to the controls (unicistronic LV: p,0.001;

bicistronic LV: p,0.0001).

EF1a as most potent promoter in MSC
The optimal promoter allowing the highest expression in MSCs

was assessed by comparing transduction of MSCs with LVs

encoding eGFP driven by human promoters (EF1a and CypA),

and viral promoters (CMVie, SFFV) (Fig. 3a,b). eGFP fluores-

cence was monitored with FACS, and there was a significantly

higher expression level in cells transduced with the EF1a
promoter, both without (Fig. 3a) and with sorting (Fig. 3b) of the

5 percent highest expressing cells (p,0.0001).

Puromycin selection increases reporter gene expression
Cells transduced with the multicistronic LV constructs using the

EF1a promoter were either kept on normal growth medium or on

growth medium with puromycin. To determine the effect of

puromycin selection of the expression of the imaging reporter

genes, the uptake of 99mTcO4
2 was assessed in both selected and

non-selected cells (Fig. 3c). A significantly higher uptake of the

radioligand was observed in Fluc-hNIS expressing MSCs upon

selection with puromycin (p,0.0001), compared to nonselected

and Fluc expressing MSCs.

Figure 6. Adipogenic, osteogenic and chondrogenic differentiation capacity of Fluc-hNIS expressing MSCs, Fluc expressing MSCs
and wild types. Extraction of the Oil red O dye following adipogenic differentiation measured at 490 nm (a). Extraction of the Alizarin red S dye
from differentiated osteoblast matrix, measured at 560 nm (b). Extraction of Alcian Blue dye from differentiated chondrocyte matrix, measured at
595 nm (c). *: p,0.05, **: p,0.01. Images of the Oil red O stainings (d,g,j), the Alizarin red S stainings (e,h,k) and the Alcian Blue stainings (f,I,l) for all
conditions: Fluc-hNIS, Fluc expressing cells and wild types.
doi:10.1371/journal.pone.0094833.g006
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Validation of hNIS expression in MSCs
MSCs were transduced with the multicistronic LV, and the

uptake kinetics of 99mTcO4
2 were assessed. Untransduced MSCs

and Fluc expressing MSCs were included as a negative control.

Decay-corrected uptake data (Fig. 4a) showed a strong increase in

uptake within the first 30 minutes of incubation in Fluc-hNIS

expressing MSCs, which was followed by a state of equilibrium

between the concentration inside and outside of the cells. A

significantly higher uptake (75 and 120 fold increase) was observed

in Fluc-hNIS expressing MSCs compared to either Fluc expressing

MSCs or wild type MSCs (p,0.001).

The elution of the tracer from the cells after initial uptake was

assessed in Fluc-hNIS expressing MSCs (Fig. 4b). After labeling,

cells were incubated in tracer-free medium and the relative elution

was calculated. A two-phased elution was observed, with a

substantial tracer elution occurring within 30 minutes, followed

by a slow elution of the tracer from the cells (p,0.001). After

3 hours, 31%61.3% of the initially bound tracer was still present

within the cells.

To determine the specificity of the uptake, the hNIS inhibitor

NaClO4 was used (Fig. 4c). Cells were incubated with the tracer

solved in the blocking solution and the uptake of 99mTcO4
2 was

measured. A significant decrease in the uptake of the tracer could

be observed (p,0.01) after the administration of the blocker.

Furthermore, the uptake of 99mTcO4
2 decreased with increasing

concentrations of NaClO4 (p,0.01). A decrease of 95%, 97.5%

and 98.6% was observed with concentrations of 10, 20 and 50 mM

of NaClO4, respectively. Data are represented as relative values

compared to incubation without perchlorate.

The expression of the imaging reporter genes was confirmed by

fluorescence immunocytochemistry. Fluc-hNIS expressing MSCs

and Fluc expressing MSCs were stained with primary antibodies

against hNIS and 3flag, and the expression of both reporter genes

was observed (Fig. 4d,e,g). Negative controls did not show an

aspecific staining or background signal (Fig. 4f,h).

In vitro BLI and CLI
In vitro BLI was performed to determine the expression of Fluc

in the cells after transduction with both the Fluc-hNIS LV and the

Fluc LV (Fig. 5a). Fluxes (in p/s) of log 5.6360.42 and 5.4960.9

were measured for the Fluc-hNIS and Fluc expressing cells,

respectively. Hence, there was no significant difference in Fluc

expression between both cell lines.

Both cell lines were also incubated with I124 and in vitro CLI was

performed (Fig. 5b). A significant difference was observed between

the fluxes of both cell lines (p,0.0001), with noted log values of

4.0560.02 for the Fluc-hNIS expressing cells, and 3.1560.06 for

the Fluc expressing cells.

MSC differentiations
Fluc-hNIS expressing MSCs, Fluc expressing MSCs and wild

type MSCs were differentiated towards the adipogenic, chondro-

genic and osteogenic lineage (Fig. 6).

Quantification of the extracted oil red O dye resulted in

following absorbance values (measured at 490 nm): 0.12, 0.17 and

0.19 for the Fluc-hNIS expressing MSCs, Fluc expressing MSCs

or wild type MSCs, respectively, resulting in a respective difference

of 35.3% and 7.4% compared to wild type MSCs (Fig. 6a,d,g,j). A

significant difference between cells transduced with the Fluc-hNIS

expressing MSCs and the two other cell lines was observed

(p,0.01).

Following osteogenic differentiation, quantification of matrix

mineralization resulted in following values after measuring the

Figure 7. BLI data of intravenously injected Fluc-hNIS expressing MSCs. An accumulation of cells could be visualized in the lungs. Different
cell numbers were injected, and total flux was measured. Both parameters were strongly correlated with an R2 of 0.97.
doi:10.1371/journal.pone.0094833.g007
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absorption of the samples at 560 nm: 2.49, 2.48 and 2.45 for the

Fluc-hNIS expressing MSCs, Fluc expressing MSCs or wild type

MSCs, respectively (Fig. 6b,e,h,k). Hence, no statistical difference

was obtained (p.0.05).

Alcian blue staining following chondrogenic differentiation was

quantified by dye extraction and measuring the absorption at

595 nm. The following values were obtained: 0.082, 0.072 and

0.074 for Fluc-hNIS expressing MSCs, Fluc expressing MSCs or

wild type MSCs, respectively (Fig. 6c,f,i,l). A statistically significant

increase in alcian blue dye incorporation within the chondrogenic

micromasses was observed in the Fluc-hNIS expressing MSCs

(p,0.05).

Imaging of intravenously injected MSCs using BLI
Different numbers of cells, ranging from 10,000 to 1,000,000,

were injected in the tail vein of healthy C57BL/6 mice, and

30 minutes after cell injection, either BLI or small-animal PET

was performed as a proof-of-principle for cell visualization. Using

BLI, a robust signal could be obtained in the lungs. The signal

intensity in the lungs increased when increasing cell amounts were

injected intravenously. A significant correlation between injected

amount of cells and total photon flux was obtained (p,0.01) with

an R2 value of 0.97 (Fig. 7 a,b).

Imaging of MSC xenografts using BLI, 124I small-animal
PET and CLI

MSCs expressing Fluc-hNIS or Fluc were engrafted subcuta-

neously in nude mice (n = 3), and imaged non-invasively using

BLI, Cherenkov imaging and 124I small-animal PET (Fig. 8). On

day 2 after cell injection, a 124I small-animal PET scan was

performed to visualize the engrafted cells expressing Fluc-hNIS. A

clear focus of increased tracer concentration was observed at the

site where the 1,000,000 MSCs expressing Fluc-hNIS were

injected. The xenograft resulting from the 10,000 cells could not

be detected on the small-animal PET images (Fig. 8d).

The xenograft to background ratio was 8 when comparing the

Fluc-hNIS expressing xenograft with muscle tissue. Five times

more radiotracer uptake was seen compared to the control

xenograft of 1,000,000 cells expressing Fluc. The brain showed 3

times less accumulation of the tracer compared to the Fluc-hNIS

expressing xenograft (Fig. 8a).

Figure 8. Visualization and follow-up of MSC xenografts. Fluc expressing MSCs were injected on the left flank of the body, and Fluc-hNIS
expressing MSCs were engrafted on the right side of the body. Xenografts of 10,000 injected cells were injected near the front, and 1,000,000 cells
were injected at the back for both conditions. Time activity curves of the ratios comparing the Fluc-hNIS expressing xenograft to background up
tissues, showing higher expressions in the Fluc-hNIS expressing xenograft compared to background signals (a,d). BLI was also performed to follow
the xenografts over time, with robust expression within all xenografts (b,e). CLI was performed to follow up the mice after 124I injection. The Fluc-hNIS
expressing MSCs could be visualized and monitored over time (c,f).
doi:10.1371/journal.pone.0094833.g008
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The BLI signal in xenografts derived from 1,000,000 cells was

significantly higher than in xenografts derived from 10,000 cells in

both MSC conditions (p,0.001). However, robust and specific

BLI signals could be obtained in all conditions over time, with no

decrease in signal being perceived in the monitored time span of 8

days (Fig. 8b,e). The BLI signals coming from the Fluc-hNIS

expressing MSCs and the Fluc expressing MSCs were within the

same range.

Two days after xenograft injection, 124I small-animal PET was

performed. In addition, 124I accumulation was monitored over

time using CLI for 8 days. (Fig. 8c,f). Accumulation of 124I was

detected in the thyroid, in the stomach and in the Fluc-hNIS

expressing xenograft situated on the right side of the body (red

circle). No signal was observed emanating from the bladder.

The Cherenkov signal detected in the xenograft expressing

Fluc-hNIS with 1,000,000 cells persisted over the 8 days of

measurements, decreasing according to the radioactive decay time

of 124I (T1/2: 4.2 days) as was shown after an exponential fit with

an R2 value of 0.63, yielding a half-life of 4.4 days.

Discussion

The emergence of stem cell therapies in regenerative medicine

urges the development of methodology for non-invasive tracking

of engrafted cells. The ability to image MSCs would be beneficial

as they hold clinical promise both due to their differentiation

capacity as well as their possibility to exert immune modulation

[5–7].

Stem cells expressing PET and SPECT imaging reporter genes

can be visualized longitudinally in vivo using nuclear medicine

imaging techniques. In this context, hNIS has been used already in

several studies both in the context of diagnosis and therapy (for

review [24]).

Tracking stem cells using imaging reporter genes requires the

insertion of a functionally active transgene into the stem cells to

obtain a functionally active reporter protein. LV are good

candidates because the genes of interest are introduced into the

genomic DNA of the host cells, and both dividing and non-

dividing cells can be targeted [25].

For optimal expression of our reporter genes, we first optimized

the transduction process of the MSCs as well as the promoter to

drive the final construct. Here, the EF1a promoter resulted in the

highest expression of eGFP, and was therefore chosen to drive our

reporter construct. The optimization of a promoter for transduc-

tions has been shown to be of great importance. Other groups

have also determined the optimal promoter for several purposes,

and in different cell types the EF1a promoter proved to be a

potent promoter with long-term expression on a high level

outperforming other commonly used promoters [26–31].

The introduction of genes into the host cells’ genetic material

can result in adverse effects resulting in the disruption of biological

processes. We evaluated the effect of the lentiviral transduction

process on MSCs. Although some statistically significant differ-

ences were observed, the biological relevance is likely nihil.

Therefore, we can conclude that lentiviral transduction with the

presently used imaging reporter gene constructs does not hamper

the differentiation capacity of the MSCs. Terrovitis et al have also

shown that ectopic expression of hNIS using lentiviral vectors does

not interfere with cell viability and function in cardiac-derived

stem cells [32]. This was also shown by Hu et al, who showed that

adenoviral vector transduction of the hNIS and rNIS gene had no

adverse effects on MSCs [33].

We demonstrated that hNIS and Fluc expression is functional

both in vitro and in vivo. In vitro, a robust radiotracer uptake of

99mTcO4
2 was obtained with a steady state already at 30 minutes

of incubation. The uptake was 75 or 120 times higher compared to

control cells. Furthermore, NaClO4, an inhibitor of hNIS, was

able to block the uptake of 99mTcO4
2 in a dose-dependent

manner.

However, a substantial elution from the cells was observed after

labeling, with 31%61.29% of the tracer being retained within the

cells after 3 hours. This might be due to the initial strong

concentration gradient that is generated while putting the cells

containing the tracer on tracer-free medium, leading to a rapid

washout of tracer molecules from the cells back into the medium,

until the gradient between the cells and the new supernatant

reaches a state of equilibrium. Furthermore, no organification of

the 99mTcO4
2 occurs after entry into the cells, as is the case in

thyroidal tissue, and therefore no trapping of the molecules takes

place. Nevertheless, 31% of the initially bound tracer molecules

remained trapped within the cells after 3 hours.

As a proof-of-principle, Fluc-hNIS expressing MSCs were

injected into the tail vein of healthy mice, and BLI signals in the

lungs were measured. Due to the first pass mechanism, cells

injected intravenously will first encounter the pulmonary capillary

bed and will transiently reside in the lung (pre)capillary bed. The

BLI signal correlated with the amount of cells injected, allowing

non-invasive detection of the cells.

Finally, long-term noninvasive multimodality imaging was

performed. For this purpose, 10,000 or 1,000,000 MSCs

expressing Fluc or Fluc-hNIS were injected subcutaneously on

the left flank and the right flank, respectively. All xenografts could

be visualized using BLI, and monitored over time with a robust

signal in all conditions. On day 2 after engraftment of the MSCs,
124I small-animal PET was performed, and the xenograft of

1,000,000 Fluc-hNIS expressing MSCs was clearly visible. The

injection site of 10,000 cells was not visible because of the partial

volume effect and the relatively higher background activity

resulting from hNIS expressing organs and circulating tracer.

The accumulation of 124I was also monitored using CLI. These

scans confirmed the information that was obtained with small-

animal PET, because the cerenkov signal detected in the xenograft

expressing Fluc-hNIS after injection of 1,000,000 cells persisted

over the 8 days of measurement, decreasing according to the

radioactive decay time of 124I (T1/2: 4.2 days) as shown by the

exponential fit with an R2 value of 0.63, yielding a half-life of 4.4

days. From these data we can conclude that the 124I is trapped

within the cells, and can be visualized using CLI. Besides the

xenograft, also the stomach and the thyroid accumulated 124I, due

to the endogenous hNIS expression in these tissues [1].

From these data we can conclude that imaging reporter genes

are a suitable tool for the non-invasive visualization of stem cells

after in vivo administration. Combining multiple imaging reporter

genes in the same construct enables us to perform multimodality

imaging to confirm the obtained data from one single imaging

modality. hNIS was used as an imaging reporter gene together

with Fluc. Using Fluc, longitudinal BLI can be performed as a

traditional optical imaging modality. BLI features a very high

sensitivity, almost no background signal, short scanning time, and

thus high throughput imaging.

hNIS is a human reporter gene reducing the chances of immune

responses against the reporter gene product. Furthermore, the

expression of hNIS is restricted to a limited number of tissues,

implying a relatively low background signal. hNIS can be used for

both therapeutic and diagnostic purposes. Imaging can be

performed with tracers for gamma cameras (99mTcO4
2), which

is widely available in every nuclear medicine department

worldwide. The physical advantages of a PET camera can also

Multimodality Imaging of MSCs Using hNIS
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be used as we have shown by using 124I. Furthermore, the gene

can be used for therapeutic applications through the use of 131I.

When using multimodality imaging, it is also necessary to

consider both the advantages and the disadvantages of each

imaging modality. Optical imaging devices can be used for several

purposes such as fluorescence, bioluminescence and more recently

Cerenkov radiation. Here, CLI and BLI were used for cell

tracking, and higher signal intensity could clearly be seen in BLI

compared to CLI. Furthermore, BLI results in a very high signal to

noise ratio due to the low background signals. In contrast, CLI

images are noisy but CLI is a more translational optical imaging

system than BLI, because it is using tracer molecules that are often

already used in a clinical setting. This is particularly the case in

preclinical imaging, as not every institute is equipped with costly

dedicated small-animal nuclear imaging instruments.

For the imaging of radioactive tracer molecules, both CLI and

small-animal PET can be used. The optical imaging equipment

used for CLI allows a quick acquisition of data, and devices are

more available compared to small-animal PET devices due to the

lower costs of the hardware. However, PET imaging can also be

performed in a relatively quick way, and results in the generation

of tomographic images that are quantitatively more reliable.

Furthermore, despite the efforts that have been taken for 3D

optical imaging, there is a major lack of anatomical and

tomographic data. Also, PET does not generate anatomical

information, but this can be overcome relatively easily by co-

registration of PET images to anatomical computed tomography

(CT) images or magnetic resonance imaging (MRI) data. Indeed,

the development of hybrid systems combining PET and either CT

or MRI is an effective answer to this matter. Above all, PET is the

only modality that can be used in patients, and therefore has the

highest translational capacity of all the modalities.

For cell tracking studies, the combination of CLI and nuclear

imaging might form a translational bridge between optical imaging

and nuclear imaging modalities. Hence, the advantages of both

techniques can be combined: quantitative information in a

tomographic manner, and the high throughput and sensitivity of

the optical imaging. We here show that hNIS is a suitable reporter

gene for molecular imaging with PET and CLI. This reporter gene

can be used in humans and is therefore a good candidate in

translational studies.

Hence, future studies will include further reproducibility tests

and the application of this system in disease models.
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