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Abstract

Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and
neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and
signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on
sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors.
In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in
the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with
annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous
vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation.
Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central
nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential
requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines
disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca2+ and cyclic AMP second messenger
pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further
development of receptor ligands with a potential applicability in pest control and crop protection.
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Introduction

Sulfakinins (SKs) are a family of invertebrate neuropeptides that

are involved in the complex regulation of feeding and digestion in

insects [1]. SKs are widely distributed throughout insect orders;

peptidomic studies have revealed the presence of SK in dipterans

[2–4], coleopterans [5], orthopterans [6], hymenopterans [7] and

hemipterans [8,9]. Most SKs possess a sulfated tyrosyl residue in

their characteristic C-terminal heptapeptide core sequence D/

EYGHMRFamide [10], although nonsulfated SKs occur in vivo as

well [11]. The first insect SKs were isolated from head extracts of

the Madeira cockroach Leucophaea maderae and showed myotropic

activity on the isolated cockroach hindgut [12,13]. These

leucosulfakinins display sequence similarity with the vertebrate

neuropeptides cholecystokinin (CCK) and gastrin [12,13]. SKs are

currently classified as both structural and functional arthropod

homologs of vertebrate gastrin and CCK [10]. The first SK

encoding precursor sequence was characterized in the fruit fly

Drosophila melanogaster. Three putative neuropeptides are encoded

by the Drome-SK cDNA. Two peptides, drosulfakinin-I and

drosulfakinin-II showed extensive sequence homology to other

insects SKs, while a third unrelated peptide encoded by the

precursor is currently termed drosulfakinin-0 [14]. The sulfakinin

prepropeptide of T. castaneum encodes two possible neuropeptides

flanked by dibasic cleavage sites, namely the true sulfakinin

GEEPFDDYGHMRFamide and the sulfakinin-like peptide

QTSDDYGHLRFamide [5]. The discovery and characterization

of the first SK peptides and their coding sequences in the late

1980s has triggered an active search for the different physiological

functions of SKs in insects.

SK is a potent myotropic neuropeptide and can act on multiple

tissues of the insect body. Most studies were conducted on isolated

hindguts [12,13,15–17], but in addition, SK was shown to cause

contractions of foregut [17,18], heart [19] and body wall [20]

muscles. In contrast to the plethora of stimulatory effects on

visceral muscle contractions, myoinhibitory effects on different

parts of the D. melanogaster gut were reported for both sulfated and

nonsulfated forms of drosulfakinins [21]. SK also inhibited

contractions of the heart, ejaculatory duct and oviduct in the

giant mealworm beetle, Zophobas atratus [22]. SK is a clear inhibitor

of food uptake in multiple insect species. Food intake dropped

significantly upon injection of SK in the desert locust Schistocerca

gregaria [23], the German cockroach Blattella germanica [17], the

blow fly Phormia regina [24] and the red flour beetle Tribolium

castaneum [25]. RNAi knockdown of the sulfakinin precursor or the

sulfakinin receptor evoked an increased consumption of food in
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the Mediterranean field cricket Gryllus bimaculatus [26] and in T.

castaneum [27,28]. In addition to its role as a satiety regulator, SK

also participates in the regulation of digestive enzyme release

[29,30]. Furthermore, SK is also involved in larval and adult

locomotion [20,31,32], odor preference [31] and synaptic growth

[33] in D. melanogaster.

Despite the extensive collection of functional research on the

peptide itself, little attention has been paid to the SK signaling

system(s). Multiple SK receptors have been annotated and all of

them are rhodopsin-like G-protein coupled receptors (GPCRs).

Up to date, only two SK receptors, both from D. melanogaster, have

been functionally characterized. The first SK receptor (DSK-R1)

was activated by a sulfated drosulfakinin-I analog in a

Table 1. Nucleotide sequences of primers used for qRT-PCR analysis of SK receptors.

Name Forward Primer Reverse Primer

Trica-SKR1 59-AGGCCTTTCCACAGTTTGGT-39 59-GCCATGCTCTTGCTCATTCC-39

Trica-SKR2 59-AAACGCCGAACGCAGTCT-39 59-ACGGCGAAGAGCATTTTTATG-39

Trica-RPs3 59-ACCTCGATACACCATAGCAAGC-39 59-ACCGTCGTATTCGTGAATTGAC-39

Trica-Actin 59-CGTGTCTTTTCAAACGTAAATACTAATCA-39 59-GCACATACCGGATCCATTGTC-39

doi:10.1371/journal.pone.0094502.t001

Table 2. Relative activation of both T. castaneum SK receptors by 29 different peptides.

Peptide Sequence % Trica-SKR1* % Trica-SKR2*

sTrica-SK(5–13) FDDY(SO3H)GHMRFa 100.0 100.0

nsTrica-SK(5–13) FDDYGHMRFa 29.9 23.5

sLocmi-SK pQLASDDY(SO3H)GHMRFa 75.0 79.9

nsLocmi-SK pQLASDDYGHMRFa 22.2 18.2

2003[w1]wp-2 FDDYGHMRAa 8.2 15.6

2004[w1]wp-1 FDDYGHMAFa 5.9 7.3

2005[w1]wp-3 FDDYGHARFa 5.1 11.1

2006[w1]wp-1 FDDYGAMRFa 2.3 3.5

2007[w1]wp-1 FDDYAHMRFa 30.6 25.6

2008[w1]wp-2 FDDAGHMRFa 10.1 12.1

2009[w1]wp-1 DDYGHMRFa 27.2 17.1

2010[w1]wp-1 DYGHMRFa 7.6 8.6

2011[w1]wp-1 YGHMRFa 26.3 21.2

2053[w1]wp-4 GHMRFa 13.3 44.6

2052[w1]wp-3 HMRFa 43.4 33.4

2051[w2]wp-2 MRFa 5.0 6.5

2076[w1]wp-2 FDDYGHMRa 25.8 19.7

1569[w2]wp-4 PVDY(SO3H)DRPIMAFa 6.2 13.4

1567[w1]wp-5 SPVDY(SO3H)DRPIMAFa 23.6 33.7

1432-2[w]wp-6 SPVDYDRPIMAFa 16.4 11.2

1591-1[w1]wp-3 EAY(SO3H)GH[Nle]KFa 71.4 13.7

1598-2[w2]wp-4 EY(SO3H)GH[Nle]KFa 55.6 50.8

1658[w1]wp-9 DDY(SO3H)GH[Nle]RFa 96.2 97.8

1678A[w1]wp-4 DY(SO3H)RPLQFa 40.8 32.6

1678B[w1]wp-6 DGY(SO3H)RPLQFa 28.5 19.9

1679[w1]wp-4 pQPSY(SO3H)DRDIMSFa 16.5 16.6

1835[w2]wp-4 SDDY(SO3H)GHMRFa 58.2 41.4

1011[w2a]wp-7-4 GGDDQFDDYGHMRFa 40.1 57.4

1070[w2]wp-2 FDD[Asu]GHMRFa 58.7 42.3

Each peptide was added to a well of a 96-well plate at a final concentration of 1 mM. The response of the sulfated SK from T. castaneum [sTrica-SK (5–13)] at this
concentration was used as 100% value for each separate 96-well plate. Response of all other peptides was expressed relatively to this 100% response level. At least three
biological repeats (each performed in duplicate) were used to quantify the relative response of each peptide at each receptor. These screens were performed in CHO-
WTA11 cells.
doi:10.1371/journal.pone.0094502.t002
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dose-dependent manner [34]. Both drosulfakinin-I and drosulfa-

kinin-II were able to activate a second SK receptor (designated as

the CCK-like receptor, CCKLR-17D1) from D. melanogaster [20].

A study using a combination of RNAi, overexpression and rescue

mutants of D. melanogaster showed that synaptic growth promotion

by SK, utilizes the CCKLR-17D1 and that this receptor couples to

the cAMP pathway via the Gas subunit of the G-protein [33]. The

only other protostomian animal with a characterized CCK-like

signaling system is the nematode Caenorhabditis elegans. The cloned

C. elegans CCKlike receptor was activated by two endogenous

peptides derived from the neuropeptide-like protein 12. These

peptides show structural similarity to vertebrate CCK and insect

SK peptides and contain the C-terminal hexapeptide YRPLQFa-

mide in which the tyrosine residue can be sulfated [35]. No further

details concerning CCK/SK-like signaling systems in protosto-

mians are known up to date. Therefore, detailed characterization

of the SK-activated GPCRs in different insect species is needed to

provide useful insights into the mechanisms underlying SK action.

In this study, we analyzed the signaling properties of two

sulfakinin receptors from T. castaneum. Both sulfated and non-

sulfated SKs were tested for their ability to activate these receptors.

In addition, we investigated the functional capacity of the SK

receptors to regulate Ca2+ and/or cyclic AMP (cAMP) second

messenger pathways. We also tested multiple SK-like peptide

analogs in order to identify which amino acid residues are crucial

for receptor activation. Quantitative reverse transcriptase PCR

(qRT-PCR) analysis was performed to study the distribution of

both receptor-encoding transcripts in different tissues.

Materials and Methods

Animal Rearing and Dissections
Beetles were reared under dark conditions at 30uC on Petri

dishes of 140 mm diameter containing wheat flour and brewer’s

yeast. Adult beetles were sexed based on the presence of a small

patch of short bristles on the inside of the first pair of legs in males,

according to the T. castaneum rearing protocol (http://bru.gmprc.

ksu.edu/proj/tribolium/wrangle.asp) [36]. Tissues from sexually

mature T. castaneum were dissected under a binocular microscope

in phosphate buffered saline (PBS) (NaCl 137 mM, KCl 2.7 mM,

Na2HPO4 10 mM, KH2PO4 1.76 mM; pH 7.2) and snap-frozen

in liquid nitrogen. Tissues of at least fifteen animals were pooled

for all samples. Central brain, optic lobes, gut, salivary glands, fat

body and testes were dissected from adult males; ovaries were

dissected from adult females. For all paired tissues the entire pair

was dissected from each beetle.

Receptor Transcript Distribution
Dissected tissues were homogenized and RNA was extracted

using the RNAqueous Micro Kit (Ambion) according to the

manufacturer’s protocol. A DNase treatment to digest remaining

genomic DNA was included in the protocol. Total RNA was

reverse transcribed to cDNA using SuperScriptIII reverse tran-

scriptase (Invitrogen) as recommended by the kit and diluted ten-

fold before use as template in the quantitative (real-time) reverse

transcription PCR (qRT-PCR).

Primer pairs were designed using Primer Express software

(Applied Biosystems) and subjected to melting curve analysis for

verification of specificity and efficiency of amplification (95uC for

15 s, followed by 60uC for 60 s and increase in temperature in

0.7uC increments from 60uC to 95uC). Additionally, amplification

products of PCR reactions were analyzed for the presence of one

single band by means of gel electrophoresis on a 1% agarose gel.

Sequencing of the bands confirmed their identity. All primers used

in the qRT-PCR analysis are listed in Table 1.

For qRT-PCR Fast SYBR Green Master Mix (Applied

Biosystems) as per manufacturer’s instruction and the StepOne-

Plus Real-Time PCR system (Applied Biosystems) were used. Fast

SYBR Green Master Mix contains the fluorescent ROX as a

passive reference. All samples were measured in duplicate and all

plates contained a no template control for all primer pairs to check

for possible contamination of the master mix. The following PCR

program was used: 95uC for 600 s, followed by 40 cycles of 95uC
for 3 s and 60uC for 30 s. The relative quantity of target cDNA

was quantified by means of the DDCT method including

normalization to a calibrator on all PCR plates and an

endogenous control. Prior to the assay, a list of seven housekeeping

genes was analyzed using the GeNorm software [37], revealing the

most stable expression for ribosomal protein 3 (RPs3) and b-actin

with respect to sex and tissue. These transcripts were thus selected

for further use as endogenous controls [38].

Cloning and Sequence Analysis of T. castaneum SK
Receptors

Both full length receptor sequences were amplified by PCR

using T. castaneum whole body cDNA and Advantage II

polymerase mix (Clontech). The specific oligonucleotide primers

used for the T. castaneum SK receptor 1 were: Forward 59-

CCAATGTCAGAAGTGGAAATGAAC-39 and Reverse 59-

CTAAACACGATCTTCGGCTTCC-39, while the T. castaneum

SK receptor 2 was amplified by means of the Forward 59-

CCAATGGACTGGGCTGAAAACTC and Reverse 59-TTATC-

TACAAAAGTCGGCATTTTCCGAG-39 primers (Sigma-Al-

drich). The PCR program used to amplify both receptors consisted

of an initial denaturation step of 60 s at 95uC, followed by 30

cycles of [30 s at 95uC, 60 s at 60uC, 180 s at 68uC] and a final

elongation step of 300 s at 68uC. PCR fragments were analyzed on

a 1% agarose gel and purified using the GenElute Gel Extraction

Kit (Sigma-Aldrich). Amplified DNA fragments were subsequently

cloned into a pcDNA3.1/V5-His-TOPO TA expression vector

(Invitrogen) and transformed into One Shot TOP10 chemically

competent Escherichia coli cells (Invitrogen). Transformed bacteria

were cultivated overnight at 37uC on Luria-Bertani (LB) agar

plates (35 g/l, Sigma-Aldrich) containing ampicillin (10 mg/ml,

Invitrogen). Single colonies were transferred to 5 ml LB medium

(25 g/l, Sigma-Aldrich) with 25 ml ampicillin (10 mg/ml, Invitro-

gen) and grown overnight at 37uC in a shaking incubator. Plasmid

DNA was isolated using the GenElute HP Plasmid Miniprep Kit

(Sigma-Aldrich) and inserts were sequenced using an ABI PRISM

3130 Genetic Analyzer (Applied Biosystems) according to the ABI

PRISM BigDye Terminator Ready Reaction Cycle Sequencing

Kit (Applied Biosystems) protocol. Bacterial cells harboring an

expression vector with the correct receptor insert were transferred

to 100 ml LB medium (25 g/l, Sigma-Aldrich) with 500 ml

ampicillin (10 mg/ml, Invitrogen) and grown overnight at 37uC
in a shaking incubator. Plasmid DNA was isolated by means of the

EndoFree Plasmid Maxi Kit (Qiagen). Online tools were used to

assess the receptor sequences for correct transmembrane topology

and putative modification sites. Transmembrane topology was

predicted by TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/

services/TMHMM/). Putative modification site analysis included

N-linked glycosylation site prediction by NetNGlyc 1.0 server

(http://www.cbs.dtu.dk/services/NetNGlyc/), palmitoylation site

prediction by GSS-PALM version 4.0 (http://csspalm.biocuckoo.

org/online.php) and phosphorylation site prediction by GPS

version 3.0 (http://gps.biocuckoo.org/online.php).
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Figure 1. Amino acid sequence alignment of T. castaneum SK receptors. Amino acid alignment of Trica-SKR1 (Trica1: GenBank Acc no
AGK29938) and Trica-SKR2 (Trica2: GenBank Acc no XP_972750) against the homologous receptors from Drosophila melanogaster (Drome: GenBank
Acc no NP_001097023), Apis mellifera (Apime: GenBank Acc no XP_003250082) and Periplaneta americana (Peram: GenBank Acc no AAX56942).
Identical residues between the receptors are shown as white characters against black background. Conserved residues are shaded. Putative
transmembrane domains are indicated by gray bars (TM1-7).
doi:10.1371/journal.pone.0094502.g001
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Peptides
Peptides were synthesized by means of the FMOC methodology

under previously described conditions [12,24,39]. Peptide mass

was confirmed by MALDI-TOF mass spectrometry and the

amount of peptide was quantified by amino acid analysis. All

peptides used in this study are listed in Table 2.

Cell Culture and Transfections
General pharmacological studies were performed in Chinese

Hamster Ovary (CHO) WTA11 cells, stably coexpressing

apoaequorin, a zeocin resistance gene and the promiscuous

Ga16, which couples most agonist-induced GPCRs to the

phospholipase C and Ca2+ pathway irrespective of their natural

signaling cascade. CHO-PAM28 cells stably expressing apoae-

quorin and a puromycin resistance gene but not Ga16 and

HEK293T cells (Invitrogen) were used to determine possible

effects on Ca2+ and/or cAMP second messenger systems,

respectively. All cell lines were cultured in Dulbecco’s Modified

Eagles Medium nutrient mixture F12-Ham (DMEM/F12; In-

vitrogen) supplemented with 1% penicillin/streptomycin (10000

units/ml penicillin and 10 mg/ml streptomycin in 0.9% NaCl;

Invitrogen) to prevent bacterial contamination of gram-positive

and gram-negative bacteria. In CHO-WTA11 culture medium

250 mg/ml zeocin (Invitrogen) was added as a selection marker,

while CHO-PAM28 culture medium was supplemented with

5 mg/ml puromycin to select cells stably expressing apoaequorin.

All cell culture media were supplemented with 10% fetal bovine

serum (inactivated at 65uC; Sigma-Aldrich).

Cells were cultured in vitro as a monolayer at 37uC with a

constant supply of 5% CO2 and were subcultivated twice a week.

Transfections of cells were performed in T75 flasks at 60–80%

confluency. Transfection reagent for CHO cells was prepared by

combining 3.75 ml Opti-MEM I (Invitrogen), 7.5 mg plasmid

DNA and 18.75 ml of Plus Reagent (Invitrogen). After gently

mixing and 5 min incubation at room temperature 45 ml of

Lipofectamine LTX was added to the mixture. This transfection

medium was incubated for 30 min at room temperature and

added dropwise to the cells, supplemented with 3 ml of fresh

culture medium. HEK 293T cells were cotransfected with a

receptor construct (6 mg) and CRE-luciferase reporter construct

(3 mg), consisting of the open reading frame of the luciferase gene,

downstream of a multimerized cAMP-response-element (CRE)

and promoter [38]. After transfection, cells were grown overnight

before an additional 20 ml of culture medium was supplemented.

Cells were again incubated overnight for a final growth phase

before luminescence screens were performed.

Aequorin-luminescence Assay
The aequorin luminescence assay was used to measure Ca2+

signaling in CHO cell lines. Cells were detached using phosphate

buffered saline (PBS) containing 0.2% EDTA and collected in

10 ml of DMEM/F-12 (without phenol red, with L-glutamine and

10 mM HEPES; Gibco). The viable cells were quantified using a

NucleoCounter NC-100 (Chemometic). Cells were pelleted by

4 min centrifugation at 800 rpm at room temperature and

resuspended in DMEM/BSA (DMEM/F-12 without phenol red,

with L-glutamine and 10 mM HEPES, 0.1% bovine serum

Figure 2. Transcript distribution profile of Trica-SKR1 and Trica-
SKR2. Quantification of transcript levels by qRT-PCR in seven different
tissues from adult T. castaneum. The data represent samples of central
brain (n = 15), optic lobes (n = 15), salivary glands (n = 15), gut (n = 15),
fat body (n = 20), testes (n = 50) and ovaries (n = 50), normalized relative
to b-actin and ribosomal protein 3 (RPs3) transcript levels. Abbrevia-
tions: B = central brain, OL = optic lobes, SG = salivary glands, G = gut,
FB = fat body, Te = testes, Ov = ovaria.
doi:10.1371/journal.pone.0094502.g002

Figure 3. Dose response curves for bioluminescence induced by sTrica-SK(5–13) and sLocmi-SK in Trica-SKR expressing CHO-WTA11
cells. Aequorin bioluminescence induced in CHO-WTA11 cells stably expressing the promiscuous Ga16 subunit and transfected with Trica-SKR1 (A) or
Trica-SKR2 (B). Receptor activation shown as the percentage of activation achieved with 1 mM sTrica-SK(5–13) (maximal response level = 100%). The
zero response level corresponds to treatment of cells with DMEM/BSA. Data represent the mean 6 SEM of three independent measurements (each
performed in duplicate).
doi:10.1371/journal.pone.0094502.g003
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albumin) at a concentration of 56106 cells/ml. Cells were then

shielded from light and Coelenterazine H (Invitrogen) was added

at a final concentration of 5 mM. Cells were gently shaken at room

temperature for 4 h under dark conditions, allowing the aequorin

holoenzyme to be reconstituted. After a 10-fold dilution in

DMEM/BSA, cells were incubated another 30 min under the

same conditions. Pharmacological ligands were dissolved in

DMEM/BSA and 50 ml of ligand was added to wells of a 96-

well plate. Wells containing 50 ml of DMEM/BSA were used as a

negative control, while wells containing 1 mM of ATP served as

positive control. Incubated cells were added to the wells of the 96-

well plate and light emission was measured for 30 s using a

Mithras LB940 (Berthold Technologies). After 30 s Triton X-100

(0.2% in DMEM/BSA) was added, lysing the cells and thus

serving as an internal reference. Light emission was measured for

an additional 8 s after Triton X-100 was introduced in the wells.

Light emission from each well was calculated relative to the total

response (ligand+Triton X-100) using the output file of

Mikrowin2000 software (Mikrotek). Further analysis was done in

Graphpad Prism 5.

Luciferase Reporter-gene Assay
The luciferase reporter-gene assay was used to quantify positive

or negative coupling of the receptor to cAMP in HEK293T cells.

Cotransfected HEK293T cells were detached and the viable cells

were quantified using the NucleoCounter NC-100 (Chemometic)

as described for CHO cells. Cells were pelleted and resuspended at

a concentration of 106 cells/ml in DMEM/F-12 containing

200 mM 3-isobutyl-1-methylxanthine (IBMX; Sigma-Aldrich).

Fifty ml of this cell suspension was added to the wells of a 96-

well plate. Pharmacological ligands were dissolved in either

DMEM/F-12 containing 200 mM IBMX to study stimulatory

effects or in DMEM/F-12 containing 200 mM IBMX and 20 mM

of NKH477 (a water-soluble analog of forskolin; Sigma-Aldrich)

for the quantification of inhibitory effects. DMEM/F-12 contain-

ing 200 mM IBMX was used as a negative control, while DMEM/

Figure 4. Dose response curves for bioluminescence induced by sTrica-SK(5–13) in Trica-SKR expressing CHO-PAM28 cells. Aequorin
bioluminescence induced in CHO-PAM28 cells transfected with Trica-SKR1 (A) or Trica-SKR2 (B). Receptor activation shown as the percentage of
activation achieved with 1 mM sTrica-SK(5–13) (maximal response level = 100%). The zero response level corresponds to treatment of cells with
DMEM/BSA. Data represent the mean 6 SEM of three independent measurements (each performed in duplicate).
doi:10.1371/journal.pone.0094502.g004

Figure 5. Dose response curves for bioluminescence induced by sTrica-SK(5–13) in Trica-SKR expressing HEK293T cells. Luciferase
bioluminescence induced in HEK293T cells transfected with Trica-SKR1 (A) or Trica-SKR2 (B) and CRE-luciferase construct. Receptor activation shown
as the percentage of activation achieved with 100 nM sTrica-SK(5–13) (maximal response level = 100%). The zero response level corresponds to
treatment of cells with DMEM/IBMX. Data represent the mean 6 SEM of six (SKR1) or three (SKR2) independent measurements (each performed in
duplicate).
doi:10.1371/journal.pone.0094502.g005
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F-12 containing 200 mM IBMX and 20 mM of NKH477 was used

as a positive control. Fifty ml of ligand was added to wells of the 96-

well plate already containing 50 ml of cell suspension. After

dispensing of cells and ligands the 96-well plate was incubated for

3–4 h at 37uC and 5% CO2. Visualization of luciferase enzymatic

activity was quantified by the addition of 100 ml SteadyLite Plus

(Perkin Elmer), after which the plate was gently shaken at room

temperature for 15 min under dark conditions. Light emission,

resulting from the luciferase activity, was measured for 5 s/well

using a Mithras LB940 (Berthold Technologies). Data were

analyzed as described for CHO cells.

Results and Discussion

Cloning and Sequence Analysis of T. castaneum SK
Receptors

Two separate cDNA fragments coding for the SK receptors

were amplified by PCR. The open reading frame of the Trica-SK

receptor 1 (Trica-SKR1) consisted of 1668 nucleotides encoding a

555 amino acid receptor (Figure S1) with a calculated molecular

weight of 63.09 kDa. When compared to GenBank sequence

KC161573 three additional nucleotides, encoding a glutamic acid

(E545) were found in the cloned receptor sequence. Transmem-

brane topology prediction revealed the presence of seven

hydrophobic regions forming the transmembrane segments

(TM1-7) characteristic of GPCRs. The open reading frame of

the Trica-SK receptor 2 (Trica-SKR2) is shorter than that of the

Trica-SKR1 spanning a total of 1263 nucleotides. It encodes a 420

amino acid long receptor (Figure S2) with a calculated molecular

weight of 47.91 kDa. Comparison of the cloned open reading

frame with GenBank sequence XM967657 revealed three

mutations (C756 = . T756, A852 = . C852 and A984 = .

T984), all of them silent. The amino acid sequence of the cloned

Trica-SKR2 thus is identical to the one found in GenBank. Seven

putative transmembrane regions were identified by transmem-

brane topology prediction. A possible disulfide bond can be

formed between two cysteine (C125 and C203) residues in

extracellular loop (ECL) I and ECL II in the Trica-SKR1. In the

Trica-SKR2, this disulfide bond can be created between C112 in

ECL I and C190 in ECL II. Such a disulfide bond is present in

both types of vertebrate CCK receptors and helps in stabilizing the

extracellular ligand binding pocket [40]. The possibility of a

disulfide bridge in both T. castaneum SK receptors hints towards a

similar stabilizing structure being present in both these receptors.

N-linked glycosylation of N7, N32, and N38 on the extracellular

N-terminus is possible in the Trica-SKR1, while N6 and N11

represent putative glycosylation sites on the extracellular N-

terminus of the Trica-SKR2. In the Trica-SKR1, palmitoylation of

the vicinal cysteines C495 and C496 after TM7 may anchor this

C-terminal region to the plasma membrane. No such palmitoyla-

tion site is predicted at the C-terminal end of the Trica-SKR2. In

the Trica-SKR1, putative intracellular phosphorylation sites for

protein kinase C include S256, S265, S267, S278, S280, S309,

S317, S322, S339, S384, S406, S503, T510, S539 and T540 while

protein kinase A can use S267, T279, S280 and S539 as putative

substrate sites. The intracellular loops (ICLs) and C-terminus of

Trica-SKR2 contain a lower number of predicted consensus sites

for these kinases. Possible protein kinase C sites are S262, S265,

S305, S381 and S413 and the single predicted protein kinase A

susceptible residue is T294. Putative G protein-coupled receptor

kinase (GRK) target sites in the Trica-SKR1 are S268, S280, S283,

S285, S288, S376, T389, T532 and S544, while the Trica-SKR2

may become phosphorylated by GRKs at S283 and S413. In

ECLII of the Trica-SKR1, a methionine (M196) and arginine

(R199) residue may prove to be important for efficient binding of

the sulfated tyrosine residue of SK. The methionine residue

possibly interacts with the aromatic ring of the tyrosine, while an

ionic interaction between the negatively charged sulfate moiety

and the positively charged arginine residue might further stabilize

the binding [41,42]. In ECL II of the Trica-SKR2, only an

arginine (R191) residue is present to aid in binding the negatively

charged sulfate moiety, but no methionine is observed.

tBLASTx (http://blast.ncbi.nlm.nih.gov/blast/) revealed simi-

larities of the cloned receptors with SK or CCKlike receptors from

other insects. The Trica-SKR1 shows significant resemblance to

amongst others Periplaneta americana perisulfakinin receptor (54.6%

identity; GenBank Acc No AY865608), Apis mellifera cholecystoki-

nin like receptor (52.3% identity; GenBank Acc No

XM_006562370), Apis florea cholecystokinin like receptor (42.9%

identity; GenBank Acc No XM_003689506) and Anopheles gambiae

CCK1 receptor (39.9% identity; GenBank Acc No XM_309215).

The Trica-SKR2 appears to be most similar to Nilaparvata lugens

neuropeptide receptor A9 (53.1% identity; GenBank Acc No

AB817292), Pediculus humanus corporis CCK receptor (47.4%

identity; GenBank Acc No XM_004536444) and SK receptors

from several Drosophila species, including D. melanogaster CCKlike

receptor (36.7% identity; GenBank Acc No NM_001103553).

Both T. castaneum SK receptors show a reciprocal identity of

33.6%. Multiple sequence alignment of both T. castaneum SK

receptors with the P. americana perisulfakinin receptor, A. mellifera

cholecystokinin-like receptor and D. melanogaster CCK-like receptor

protein sequences revealed that the most conserved regions are

TM1-7, ICL I and II and ECL I and II, while substantial variation

is present in other regions of the receptors (Figure 1).

Receptor Transcript Distribution of T. castaneum SK
Receptors

A receptor transcript distribution analysis by qRT-PCR reveals

that both T. castaneum SK receptors show a similar expression

pattern (Figure 2). Transcript levels are highest in the central

brain, followed by the optic lobes. In all other examined tissues,

SK receptor transcript levels appeared much less abundant or did

not reach the detection limit. In the cockroach, P. americana,

expression of the SK receptor in different thoracic and abdominal

ganglia was shown by RT-PCR. In addition, immunoblotting and

immunocytochemistry showed that the SK receptor was present

on gut membrane fractions and in a few peripheral neuronal cell

bodies, like the dorsal unpaired median neurons of P. americana

[43]. These neurons are possibly involved the regulation of an

animal’s general activity level [44]. In our study, expression of SK

receptors in the gut seemed limited, when compared to the brain

and optic lobes. From all other sampled tissues, expression of

sulfakinin receptors appeared to be most prominent in the fat

body. The presence of a SK receptor transcript in the fat body

might hint towards a possible involvement of SK in the energy

storing and releasing processes that take place in the fat body.

Adipokinetic hormone plays a central role in this energy

metabolism, inducing the release of fatty acids and sugars from

the fat body as energy source [45]. Since SK is known to induce

satiety [17,23,24,26–28], it might be possible that it aids in

replenishing the energy stores in the fat body and thus counteracts

AKH. An antagonistic action of SK and AKH in energy

metabolism was suggested earlier in a study in P. americana [43].

Expression levels were slightly higher in the central brain than

in the optic lobes for both receptors. In different species, sulfakinin

immunoreactivity was predominantly found in the central brain

[24,46–49] and other nervous tissues [47], including ingluvial

ganglia and axons projecting from these ganglia to the anterior
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midgut and pyloric sphincter [50]. A peptidomic study in locusts

unveiled the presence of SK in the foregut and hindgut, in

addition to the brain, recurrent nerve and esophageal nerves [6].

The distribution of sulfakinin thus appears to be primarily situated

in the nervous system, comparable to the sulfakinin receptor

transcript distribution observed in T. castaneum. Additionally,

sulfakinin immunoreactive endocrine cells have been localized in

the posterior midgut of the yellow fever mosquito Aedes aegypti [50].

Finally, a potential neurohaemal release site for SK has been

predicted in P. americana [48] which reinforces the possibility that

SK might serve as a circulating neurohormone with potential

actions in peripheral tissues, such as the fat body or the gut, where

receptors have been shown to be present.

Functional Activity and Dose-response Analysis of T.
castaneum SK Receptors

The characterization of both T. castaneum SK receptors was first

carried out in CHO-WTA11 cells stably expressing apoaequorin

and the promiscuous Ga16 subunit. A total of 29 different peptides

were tested for receptor activation at a concentration of 1 mM. In

cells that were transfected with empty pcDNA3.1/V5-His-TOPO

TA expression vector construct, no signal was observed upon

addition of any of the peptides used in this study. After an initial

screen, two peptide agonists were selected for more detailed dose-

response analyses on both receptors, namely the sulfated C-

terminal fragment of T. castaneum SK comprising amino acids 5–13

(sTrica-SK(5–13); FDDY(SO3)GHMRFamide) and sulfated SK

from the migratory locust, Locusta migratoria (sLocmi-SK; pQLASD-

DY(SO3)GHMRFamide). The dose-response relationships for

these two peptides were examined at a concentration range

spanning from 1 fM to 1 mM. The resulting sigmoidal curves show

a clear dose-dependent and saturable activation signal for both

cloned receptors (Figure 3). Calculated EC50 values for the Trica-

SKR1 are 99.5628.0 pM (95% confidence interval) for sTrica-

SK(5–13) and 16.864.6 nM for sLocmi-SK. Half–maximal acti-

vation of the Trica-SKR2 is elevated in comparison to the Trica-

SKR1 with EC50 values of 524.36199.7 pM for sTrica-SK(5–13)

and 775.66442.7 nM for sLocmi-SK. Maximal response for sTrica-

SK(5–13) was attained at a concentration of 100 nM for both

receptors, while sLocmi-SK did not reach the maximum response

level attained by sTrica-SK(5–13) at concentrations up to 1 mM.

sLocmi-SK was about 150 times less potent than sTrica-SK(5–13) in

activating the Trica-SKR1 and ca. 1500 times less potent as Trica-

SKR2 agonist. The C-terminal active core sequence of both

peptides is identical, but the N-terminal part of sLocmi-SK

probably interferes with optimal T. castaneum SK receptor binding.

T. castaneum is only the second insect species in which dose-

response analysis of a SK receptor has been performed. Previously,

in D. melanogaster, two SK receptors have been deorphanized by

different approaches. A b-arrestin translocation assay was used to

confirm the activation of the D. melanogaster CCKLR-17D1 by

sulfated drosulfakinin I and II, but no dose-response analysis was

performed during these experiments [20]. Multiple mammalian

cell lines, similar to the ones used in this study were implemented

to characterize the D. melanogaster SK receptor 1. EC50 values for

receptor activation were in the low nanomolar range in three

different cell lines, but were attained using [Leu7] drosulfakinin 1

and not the native SK [34]. EC50 values in the picomolar range

occur occasionally in characterization of insect neuropeptide

GPCRs [51–54], indicating that these sulfakinin and other insect

neuropeptide receptors can be very sensitive for their respective

ligands.

Pharmacological Analysis of T. castaneum SK Receptors
Further characterization of the requirements for ligands to

activate the receptor was done using a repertoire of 27 additional

SK analogs. These peptides were tested for receptor activation at a

concentration of 1 mM. A maximum response level was obtained

for both SK receptor types when these were stimulated with sTrica-

SK(5–13) at this concentration (Figure 3). The percentages of

activation, relative to this maximum level, attained by these

peptides for each receptor are listed in Table 2. The study

indicates that the presence or absence of a sulfated tyrosine residue

in the ligand is an important parameter that drastically influences

SK receptor agonism. Sulfated peptides that do not have any

major modifications in the C-terminal core sequence can activate

one or both receptors for at least 50% of the response level

reached by sTrica-SK(5–13) at 1 mM. In contrast, only two

nonsulfated peptides were able to attain more than 50% on one

receptor. Compound 1070[w2]wp-2 reached 59% activation on

Trica-SKR1 and compound 1011[w2a]wp-7-4 activated Trica-

SKR2 for 57% when compared to the maximum response level.

Compound 1070[w2]wp-2 contains an aminosuberic acid group

that mimics the sulfated tyrosine moiety (Figure S3) [55]. This

explains why this peptide was able to activate the receptor quite

efficiently. Compound 1011[w2a]wp-7-4 is the nonsulfated (ns)

drosulfakinin 2 (GGDDQFDDYGHMRFamide), which probably

resembles the native Trica-SK most in its primary structure. Like

drosulfakinin 2, native Trica-SK contains an N-terminal glycine

residue, two acidic residues in the N-terminal part of the peptide

and the C-terminal nonapeptide FDDYGHMRFa. When com-

pared to the nonsulfated (ns) Trica-SK(5–13), compound

1011[w2a]wp-7-4 activated both Trica-SK receptors to a higher

extent. Possibly, this is due to the presence of two aspartic acid

residues that might stabilize the binding of the peptide in a similar

manner as the glutamic acid residues in the full-length Trica-SK.

A partial alanine scan of nsTrica-SK revealed several important

residues for receptor activation. When any of the C-terminal

tetrapeptide residues was replaced by an alanine, the remaining

activity of the receptor was almost completely abolished. The

HMRFamide C-terminus thus appears to be essential for efficient

ligand-mediated activation of both T. castaneum SK receptors.

Replacement of the glycine residue by an alanine residue did not

seem to affect receptor activation, suggesting that the presence of a

small, neutral amino acid in the position prior to the HMRFamide

suffices for receptor activation. Replacement of the tyrosine

residue by an alanine caused a significant drop in the detected

bioluminescent response. The importance of the aromatic ring

structure in ligand binding and activation of vertebrate CCK

receptors has already been evidenced [42], and it is plausible that

this aromatic ring is also important for high affinity binding of SKs

to their respective receptors, even without the sulfate moiety being

present. Receptor activation tests with truncated analogs revealed

that the tetrapeptide HMRFamide can activate both receptors to a

slightly better extent than nonsulfated FDDYGHMRFamide,

while the intermediate truncated analogs in this series seemed to

partially or almost entirely lose their potential to activate the T.

castaneum SK receptors.

Studies on the binding of CCK with its receptors in vertebrates

have revealed a lot of direct interaction sites between the

neuropeptide ligand and amino acid residues of the receptor.

The C-terminal WMDF tetrapeptide of CCK almost entirely fits

in the binding pocket that is created by the seven transmembrane

helices of the CCK receptor, while more N-terminally located

residues interact with the ECLs of the receptor [56]. A possible

explanation for the conserved capacity of HMRFamide to activate

the receptor in comparison to longer truncated analogs might lie in
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the fact that this tetrapeptide may fit well in the pocket created by

the transmembrane helices, while several of the longer analogs

might be sterically hampered and lack additional structural

features to allow for a sufficient fit with the ECLs in order to

compensate for this. The analysis of a peptide with an additional

truncation yielding MRFamide revealed that the histidine group is

important in T. castaneum SK receptor activation, since almost all

activity was lost for both SK receptors.

In this study, a number of sulfated peptides from the nematode

C. elegans were tested for activation of both T. castaneum SK

receptors. First and foremost, both sulfated SK-like peptides that

are encoded by the neuropeptide-like protein-12 (nlp-12) cDNA

were screened (compounds 1678A[w1]wp-4 and 1678B[w1]wp-6).

These peptides, together with their corresponding receptor, are

nematode homologs of vertebrate CCK and insect SK and their

receptors, respectively [35]. The C-terminal active core sequence

of these peptides is Y(SO3)RPLQFamide, and thus only the

sulfated tyrosine residue and the C-terminal Famide are identical

to insect SK. Nevertheless, these peptides were still capable of

activating both T. castaneum SK receptors to a similar extent as

nsTrica-SK and HMRFa. The presence of a sulfated tyrosine and

C-terminal Famide group appears to provide some potential to

these peptides as agonists for insect SK receptors, although insect

Y(SO3)GHMRFamides still prove to be a lot more potent. A

second set of sulfated neuropeptides with the C-terminal consensus

sequences Y(SO3)DRPIMAFamide or Y(SO3)DRDIMSFamide,

derived from C. elegans nlp-13, were also assessed for activation of

both SK receptors (compounds 1432-2[w1]wp-6, 1567[w1]wp-5,

1569[w2]wp-4 and 1679[w1]wp-4). The sulfated tyrosine and C-

terminal MXFamide of these peptides still provided them with

some agonistic potency, but the rest of the C-terminal core differed

too much from the insect SKs to reach a response level

comparable to YGHMRFamides, although peptide 1567[w1]wp-

5 still approximated the effect of nsTrica-SK. The increased

number of residues situated between the sulfated tyrosine and the

Famide terminus possibly accounts for an extra drop in activation

potential of these peptides when compared to the ones encoded by

nlp-12.

Three peptides containing the non-naturally occurring amino

acid norleucine were tested for receptor activation as well

(compounds 1591-1[w1]wp-3, 1598-2[w2]wp-4 and 1658[w1]wp-

9). Replacement of methionine with norleucine in the active core

of SKs can lead to the retention of biological activity and thus

improve stability of SKs [57]. Our study reveals that norleucine is

also a good mimic for methionine in the receptor assay. A sulfated

peptide containing the C-terminal heptapeptide of Trica-SK with a

norleucine instead of methionine activated both SK receptors to a

similar extent as sTrica-SK(5–13). Two other sulfated norleucine

containing analogs also elicited over 50% activation of at least one

of the SK receptors, despite some changes in their C-terminal core

structure. The replacement of arginine with lysine seemed to

reduce the potency of these peptides for receptor activation by a

small margin. Another peptide containing a non-naturally

occurring group in its primary structure was compound

1070[w2]wp-2. This peptide contains the amino diacid aminosu-

beric acid to serve as biostable mimic for the sulfated tyrosine [55]

and, at 1mM, it activated both receptors approximately to an

extent of about 50% of the maximal response level. Aminosuberic

acid thus can serve as a substitute for a hydrolysis susceptible

sulfated tyrosine group, but may cause a slight drop in potency.

In conclusion, this set of peptides has hinted us about the

structural requirements for T. castaneum SK receptor agonists. The

sulfate moiety is essential for efficient receptor activation. An

alanine scan revealed that the most important residues in the

amino acid backbone are Y, H, M, R and F. In addition, a set of

truncated analogs showed that the tetrapeptide HMRFamide is a

stronger agonist of both receptors than many of its N-terminally

extended nonsulfated analogs. Furthermore, norleucine can be

incorporated as a stable mimic of methionine in the C-terminal

HMRFamide tetrapeptide and aminosuberic acid can replace the

sulfated tyrosine group, although this causes a drop in receptor

activation potential. When compared to ligand properties of

vertebrate CCK receptors, a few possible parallels between

important amino acid residues in the peptide agonists of SK and

CCK receptors were pointed out. Further research on other insect

SK receptors with a more diverse array of peptides may shed more

light on the interaction and co-evolution between SKs and their

respective GPCRs.

Downstream Signaling Properties of T. castaneum SK
Receptors

The intracellular signaling properties of both T. castaneum SK

receptors were characterized using CHO-PAM28 cells and

HEK293T cells and sTrica-SK(5–13) as ligand. In both CHO-

PAM28 and HEK293T cells that were transfected with empty

pcDNA3.1/V5-His-TOPO TA expression vector construct, no

signal was observed upon addition to sTrica-SK(5–13). CHO-

PAM28 cells stably express apoaequorin, but do not express the

promiscuous Ga16 protein. Both T. castaneum SK receptors caused

a dose-dependent increase in aequorin bioluminescence upon

binding of sTrica-SK(5–13), indicating that the endogenous Gaq in

these cells can couple these receptors to a Ca2+ response (Figure 4).

EC50 values for sTrica-SK(5–13) induced receptor activation in

CHO-PAM28 cells are 58.52623.97 pM for Trica-SKR1 and

1.6160.45 nM for Trica-SKR2. To our knowledge this is the first

time that an insect SK receptor has been shown to activate the

Ca2+ pathway. We must, however, remain careful in extrapolating

the results from cell-based receptor studies. Results obtained in cell

lines may not accurately reflect all situations that occur in vivo, but

provide us with a hint regarding the signaling properties of these

insect SK receptor proteins.

In addition to testing in CHO-PAM28 cell lines, the signaling

characteristics of T. castaneum SK receptors were also examined in

HEK293T cells to assess their possible effects on cellular levels of

the second messenger, cAMP. HEK293T cells were cotransfected

with T. castaneum SK receptor and a CRE-luciferase reporter

construct to detect changes in cAMP levels. In this cellular assay

system, both SK receptors showed an increase of luciferase

bioluminescence upon binding of sTrica-SK(5–13) (Figure 5). Both

T. castaneum SK receptors thus appear to couple positively to

cAMP in this in vitro cell system and probably use the Gas subunit

of the associated G-protein to achieve this. Calculated EC50 values

were 4.964.2 pM for the Trica-SKR1 and 1.460.3 nM for the

Trica-SKR2. Positive coupling of an insect SK receptor to cAMP

was previously demonstrated in D. melanogaster [33]. Although the

results from our in vitro characterization of second messenger

pathways may depend on the cell line used and do not necessarily

reflect all in vivo situations, this receptor analysis in HEK293T cells

is in line with earlier findings on SK induced effects.

This study indicates that both T. castaneum SK receptors appear

to display dual coupling characteristics towards the cAMP and

Ca2+ second messenger systems when stimulated with SK agonist.

The signaling properties of these SK receptors seem to resemble

these of vertebrate type 1 CCK receptors that also can stimulate

both Ca2+ and cAMP through Gaq and Gas respectively. This is in

contrast to type 2 CCK receptors that do not transduce their signal

via Gas [58]. Our results further affirm the functional and

structural homology between SK and CCK receptors to the level
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of peptide agonist requirements for receptor activation and second

messenger pathways. This detailed pharmacological information

can be beneficial for future in vitro and in vivo studies concerning

SK signaling pathways and their possible applications in pest

management.

Supporting Information

Figure S1 Amino acid sequence of the Trica-SKR1. The

additional glutamate residue in comparison to the GenBank

sequence is tagged with a dot. The cysteine residues that can form

the stabilizing disulfide bridge are marked with a vertical dotted

line. Residues marked in grey indicate putative intracellular

phosphorylation sites; A indicates possible phosphorylation by

PKA, C designates a putative PKC phosphorylation site and G

indicates possible phosphorylation by GRKs. Putative N-linked

glycosylation sites on the ECLs are indicated by a reverse triangle,

while putative palmitoylation sites are marked by stars. The Met

and Arg residue that are important for interaction with the

sulfated tyrosine residue are marked with a square.

(TIF)

Figure S2 Amino acid sequence of the Trica-SKR2. The

cysteine residues that can form the stabilizing disulfide bridge are

marked with a vertical dotted line. Residues marked in grey

indicate putative intracellular phosphorylation sites; A indicates

possible phosphorylation by PKA, C designates a putative PKC

phosphorylation site and G indicates possible phosphorylation by

GRKs. Putative N-linked glycosylation sites on the ECLs are

indicated by a reverse triangle. The Arg residue that is important

for interaction with the sulfate group is marked with a square.

(TIF)

Figure S3 Comparison of molecular structures of
sulfated tyrosine and aminosuberic acid.

(TIF)
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