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Abstract

Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified
mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off)
neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of
mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of
mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of
synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting
populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using
a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-
flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM
sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting
population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-
on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured
from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable
transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the
REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed
after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-
promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that activity of
the wake-promoting population modulated the interaction between the REM-on and REM-off populations. This analysis
suggests neuronal processes to be targeted in further experimental studies of the regulatory mechanisms of REM sleep.
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Introduction

Theories on the neuronal control for rapid eye movement

(REM) sleep have been dominated by the cholinergic hypothesis

(see [1] for review). Based on a wealth of experimental evidence

collected since the identification of REM sleep in the 1950s [2],

the cholinergic hypothesis posits that the REM sleep state is

initiated and maintained by the activity of cholinergic neurons in

areas of the pons, including the laterodorsal and pedunculopontine

tegmental nuclei (LDT/PPT). This hypothesis is synthesized in the

reciprocal interaction model [3,4] for REM sleep in which regular

transitions between REM and nonREM (NREM) sleep are

generated by excitatory and inhibitory synaptic projections

between the cholinergic REM-promoting (REM-on) LDT/PPT

and monoaminergic, REM-suppressing (REM-off) neuronal pop-

ulations including the locus coeruleus (LC) and the dorsal raphe

(DR).

Recent experimental results have challenged the cholinergic

hypothesis for REM sleep control with the identification of several

additional neuronal groups with REM-on and REM-off activity

profiles [5–7]. In the rat, REM-on groups include the sublater-

odorsal tegmental nucleus (SLD), portions of the ventrolateral

periaqueductal gray matter (vlPAG), areas of the lateral hypothal-

amus (LH) and the dorsal paragigantocellular nucleus (DPGi).

Neuronal groups with REM-off activity profiles include other

portions of the vlPAG and the dorsal part of the deep

mesencephalic nucleus (dDPME). Based on the identification of

these REM-associated neuronal groups and their synaptic

interactions, alternative theories for the neuronal control of

REM sleep have been proposed wherein GABA is the primary

neurotransmitter and mutually inhibitory synaptic interactions

govern activity of these groups and thus transitions of REM sleep

[5,7]. However, debate continues as to which of these GABAergic

populations are integrally responsible for generating transitions

into and out of REM sleep. For example, Lu and colleagues [5]

propose that REM regulation is controlled by a core REM-on/

REM-off flip-flop switch composed of mutually inhibitory

(GABAergic) synaptic projections between REM-off neurons in

the vlPAG and adjacent lateral pontine tegmentum (LPT), and

REM-on neurons in the SLD. On the other hand, Luppi and

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e94481

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0094481&domain=pdf


colleagues [8] propose that REM sleep transitions are controlled

by a more distributed network of inhibitory projections among

REM-off neurons in the vlPAG and dDPME, and REM-on

neurons in the vlPAG, LH and DPGi.

Another factor influencing REM sleep generation is the REM

sleep homeostatic drive. Multiple studies have provided evidence

that REM sleep is homeostatically regulated independently from

NREM sleep [9,10]. For example, increases in attempts to

transition into REM sleep have been observed during REM sleep

deprivation studies in which these transitions are prevented, and

REM sleep rebound reliably occurs during recovery sleep from

periods of REM sleep deprivation as short as 2 hours [10].

Additionally, anesthetics have differential effects in terms of

satisfying the needs of NREM and REM sleep following sleep

deprivation, suggesting separate mechanisms for NREM and

REM sleep homeostasis. In particular, anesthesia induced by the

inhaled anesthetic sevoflurane following total sleep deprivation

eliminated homeostatic increases in NREM sleep but not in REM

sleep [11]. The physiological substrate dictating REM sleep

homeostasis has not been identified. Recent studies have suggested

that melanin-concentrating hormone (MCH) [12] or the satiety

molecule Nesfatin-1 [13] may be involved. Additionally, metabolic

activation of neurons in preoptic areas of the hypothalamus has

been found to be strongly related to homeostatic pressure for REM

sleep in REM sleep deprivation studies [14]. Analysis of sleep

patterns during REM rebound and recovery following sleep

deprivation have suggested that REM sleep may be regulated on

both short-term and long-term time scales [15,16]. The longer

time-scale regulates the daily amount of REM sleep and the short-

term process dictates transitions between NREM and REM sleep

during sleep episodes [15].

Taken together, the proposed mutually inhibitory network of

neuronal populations governing transitions of REM sleep, coupled

with a REM sleep homeostatic drive, mirrors the proposed flip-

flop switch for sleep regulation composed of mutually inhibitory

synaptic projections between the wake-promoting monoaminergic

populations locus coeruleus (LC) and dorsal raphe (DR) and the

sleep-promoting GABAergic ventral lateral preoptic nucleus

(VLPO), under the influence of the putative adenosine-mediated

homeostatic sleep drive [17]. How these two flip-flops may be

coupled to produce transitions between wake, NREM and REM

sleep observed in the majority of mammalian species is not

completely determined. Synaptic projections from the wake-

promoting LC and DR targeting REM-on and REM-off neuronal

groups have been identified that act to suppress REM sleep

[8,18,19]. However, limitations in recording simultaneously from

these multiple areas at spatial and temporal resolutions to

determine causal patterns of activity and interaction for transitions

into and out of sleep and wake states hamper the ability to confirm

or refute this and competing hypotheses of the sleep-wake

regulatory network.

Recently, physiologically-based mathematical models have been

introduced as a means to test the different and competing

hypotheses for the sleep-wake regulatory network [20–25]. In

previous work, we used a modeling formalism for the neurotrans-

mitter-mediated interactions among wake-, sleep- and REM-sleep

neuronal populations to investigate the cholinergic hypothesis for

REM sleep generation in rats [24]. Here, we apply the same

modeling formalism and develop a coupled flip-flop model to

investigate how a wake/sleep flip-flop and a REM-on/REM-off

flip-flop can interact to produce accurate behavioral state

transition dynamics for the rat. We use experimental recordings

of rat sleep behavior under ad libitum (baseline) conditions and

during REM sleep rebound after 24 h of REM sleep deprivation

to motivate a minimal set of projections between the flip-flops to

account for sleep-wake patterns in both conditions.

The dynamics of a single mutually inhibitory flip-flop model

have been well studied in the context of governing the transitions

between wake and sleep states under control of a homeostatic sleep

drive [21,26,27]. As we and others have shown previously, the

dynamics are those of movement around a hysteresis loop with the

homeostatic drive increasing and decreasing through bifurcation

points to induce transitions between low and high population

activity levels. As we discuss below, hysteresis loop dynamics have

an inherent symmetry and regularity that may seem incompatible

with the highly variable sleep-wake activity patterns of the rat. As

in our previous modeling study of rat sleep-wake patterns [24], we

include in our coupled flip-flop model several physiologically

motivated stochastic components that introduce noise in our

model solutions. To understand the implications of underlying

hysteresis loop dynamics, we present a detailed analysis of the

effects of the stochastic components on simulated bout durations

for a single flip-flop model.

Results

Dynamics of a single flip-flop
In this section we briefly review the hysteresis loop dynamics of

a single flip-flop and analyze the effects on these dynamics of

physiologically motivated sources of noise. The goal of this analysis

is to understand how the inherent symmetric and regular

dynamics of a hysteresis loop can be modulated to simulate the

variability of rat sleep-wake behavior, including the reported

qualitative differences in the distributions of wake and sleep bout

durations [28].

Hysteresis loop dynamics of a single flip-flop. We

consider the wake/sleep flip-flop consisting of wake-promoting

and sleep-promoting populations with reciprocal inhibitory

neurotransmitter-mediated projections between them (Fig. 1A).

The dynamics of the REM-on/REM-off flip-flop are analogous.

In the figure, rectangles represent neuronal groups and are labeled

with their firing rate variables, fW (t) and fS(t), while circles

represent neurotransmitter concentrations expressed by the

neuronal groups and are labeled with their variable names,

cW (t) and cS(t). The wake/sleep flip-flop represents the mutually

inhibitory synaptic interactions between the wake-promoting locus

coeruleus (LC), dorsal raphe (DR) and the tuberomammilary

nucleus (TMN) (jointly represented by fW ) with the sleep-

promoting ventrolateral preoptic nucleus (VLPO, fS) [17]. The

model VLPO population expresses the inhibitory neurotransmitter

GABA (cS) while the neurotransmitter expressed by the model

wake population represents the joint effects of the transmitters

expressed by LC, DR and TMN, namely norepinephrine,

serotonin and histamine, respectively (cW ). We constructed the

model using our previously developed neuronal population firing

rate and neurotransmitter formalism [24] (see Methods and Model

section). Briefly, in this formalism, the firing rate of a pre-synaptic

population, fX (t) (in Hz), induces expression of neurotransmitter

concentration, cX (t), which, in turn, acts as input to post-synaptic

populations (see Eqs. (1), (2) with X ,Y = W ,S).

In the flip-flop, transitions between sleep and wake states are

governed by the homeostatic sleep drive, h(t), that describes the

universally recognized propensity for sleep that increases during

time awake and decreases during sleep, and is thought to involve

the neuromodulator adenosine (reviewed in [29]). As such, h
increases when fW is at a high level (fWwhW ) simulating the

wake state (Fig. 1B, see Eq. (5)). Increasing values of h cause the

sleep-promoting population to activate and force a transition to
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the state in which fS is at a high level and fW is at a low level,

simulating sleep. As fW drops to a low level (fWƒhW ), h
decreases until it deactivates fS causing a transition back to the

fW dominant state or simulated waking.

Relative to the time scale of transitions between the simulated

waking and sleep states, the homeostat h(t) is slowly varying. For

this analysis, we consider a separation of timescales, in which the

variables fW , fS, cW and cS vary on a timescale faster than that

of h. We call Eqs. (1) and (2) governing variables (fW ,fS,cW ,cS)
the fast subsystem, and Eq. (5) governing h the slow subsystem.

Here, we briefly summarize the intuition behind this fast-slow

decomposition; for a rigorous review see [30–32] and for a

previous analysis on a related model see [33].

We treat h as a slowly varying parameter of the fast subsystem.

For a fixed value of h, solutions to the fast subsystem approach a

stable fixed point, the value of which may depend on the initial

condition. The value of fW at this fixed point dictates if h will

increase or decrease in the full model. Slow variations in h are

instantly reflected by the convergence of the fast subsystem to a

new stable fixed point. Thus, we may track the trajectory of the full

model as a slow evolution through stable fixed point solutions of

the fast subsystem.

The fixed point solutions, for fW , of the fast subsystem as a

function of h form a Z-shaped curve, as plotted in the bifurcation

diagram in Fig. 1C. The upper (red) and lower (blue) branches are

stable solutions. They are joined by an unstable branch of

solutions (dashed) at saddle-node bifurcations occurring at a high

value of h, h~RKW referred to as the ‘‘right knee’’, and at a low

value of h, h~LKW referred to as the ‘‘left knee’’. Plotted on top

of these fixed point solutions of the fast subsystem is the trajectory

of the full model when h is allowed to evolve according to the slow

subsystem (light blue curve). The Z-shaped curve of fast subsystem

solutions forms the basis for hysteresis loop dynamics of the full

model. When fW is at a high level (fWwhW , dotted line), h slowly

increases and the fast subsystem variables remain attracted to the

upper branch of fixed points. As h increases beyond the right knee

of the curve at h~RKW , the only stable solution of the fast

subsystem corresponds to low values of fW and the trajectory

quickly approaches the lower branch of fixed points. On this

branch fWƒhW , so h decreases and the full model trajectory

tracks the lower branch of fixed points until the saddle-node

bifurcation at h~LKW . As h decreases below the left knee, the

only stable solutions for the fast subsystem are on the upper branch

and the trajectory jumps up, thus completing one cycle of the

hysteresis loop, or one sleep-wake cycle.

Bout durations and the influence of variability. In the

flip-flop model during one sleep-wake cycle, or one cycle around

the hysteresis loop, wake and sleep bout durations are determined

Figure 1. A: Schematic for the single wake/sleep flip-flop model. Rectangles represent neuronal groups and are labeled with their firing rate
variables: fW for wake-promoting and fS for sleep-promoting. Circles represent neurotransmitter concentrations expressed by the neuronal groups
and are labeled with the variable names: cW for the monoaminergic transmitters of the wake-promoting populations and cS for GABA expressed by
the sleep-promoting population. The triangle represents the homeostatic sleep drive (h). Solid lines ending in filled circles represent inhibitory
synaptic projections. Large open arrow (d(t)) represents random excitatory stimuli to the wake-promoting population from sources external to the
network. B: Time traces for fW , fS, cW , cS (upper panel) and h (lower panel). C: Bifurcation diagram of fixed point solutions of the fast subsystem
(Eqs. (1), (2) with h treated as a fixed parameter. The upper (red) and lower (blue) branches indicate stable solutions which are joined through a
branch of unstable solutions (gray dashed) at saddle-node bifurcations occurring at h~RKW (right knee) and h~LKW (left knee). The orange curve
is the trajectory of the full model projected onto the h{fW plane. Horizontal dashed line indicates hW , the fW threshold defining the wake state.
doi:10.1371/journal.pone.0094481.g001
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by the time the trajectory takes to traverse the upper and lower

branches, respectively, of the Z-shaped curve of fixed point

solutions of the fast subsystem (Fig. 1C). Thus, bout durations are

governed by the distance jRKW {LKW j and the time dynamics of

h. Asymmetry in wake and sleep bout durations can be introduced

by different values of h time constants during its increasing and

decreasing phases, dictated by th,up and th,down in our model. The

time evolution of h, and thus bout durations, are further influenced

by the values of RKW and LKW relative to the maximum and

minimum limits on values of h, hmax and hmin, respectively. Since h

follows exponential dynamics, the evolution of h is slower when h

approaches either hmax or hmin, and is faster if h is near hmin but

increasing or h is near hmax but decreasing. Thus, asymmetry in

bout durations is also introduced due to the location of the Z-

shaped curve within the interval (hmin,hmax).

As an example of how these two factors can compete in

introducing asymmetry of bout durations, the longer wake bouts

(460s) compared to sleep bouts (280s) shown in Fig. 1B were

obtained with a faster h time constant during simulated wake

(th,up~600s) than during simulated sleep (th,down~700s), but with

a shorter distance between RKW and hmax than the distance

between LKW and hmin. Hence, despite a faster time constant for h

while the trajectory is on the upper branch of the Z-shaped fixed

point curve, the evolution of h is slower than on the lower branch

because of the proximity of h values to hmax.

A physiological flip-flop switch would be subject to different

sources of variability. Here, we summarize our analysis of how

physiologically motivated sources of noise, which we include in our

models [24], perturb hysteresis loop dynamics; see Appendix S1

for complete details. First, we consider the effects of variability in

neurotransmitter expression, modeled by multiplicatively scaling

the steady state neurotransmitter expression functions cX?

(X~W ,S) in Eq. (4) by the randomly varying term jX (t). The

amplitude of jX randomly varied (with uniform distribution and

unit mean) at discrete times dictated by a Poisson process. In the

single wake/sleep flip-flop model, jW (jS ) affects the steady state

expression levels of monoamines (GABA) by the wake-promoting

(sleep-promoting) population and thus modulates the level of

synaptic inhibition between populations. As jW , jS take on

different values, in an interval around 1, they affect the Z-shaped

fixed point curve, and thus the hysteresis loop, by changing the

values of RKW and LKW . The distance between RKW and LKW

Figure 2. Effects of model variability on hysteresis loop dynamics of a single flip-flop. A, B: Variable neurotransmitter expression levels
modulate position of the knees of the Z-shaped curve of fixed point solutions of the deterministic model (shown for reference with the deterministic
trajectory (orange curve) in A). The projection of the noisy model trajectory (A: black curve) onto the bifurcation diagram illustrates the perturbations
to the underlying hysteresis loop that result in variable wake and sleep bout durations illustrated in the time traces for fW , fS, cW , cS (B: upper
panel) and h (B: lower panel). C,D: Random excitatory inputs to the wake-promoting population perturb the model trajectory (C: black curve) as it
evolves around the deterministic hysteresis loop (Z-shaped curve of fixed point solutions and deterministic trajectory (orange curve) shown for
reference in C), resulting in wake bouts with brief and longer durations, and sleep bouts with variable durations, as illustrated in the time traces for
fW , fS, cW , cS (D: upper panel) and h (D: lower panel).
doi:10.1371/journal.pone.0094481.g002
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decreases for jW and jS values less than 1 and increases for values

greater than 1 (Fig. S1). This effect on the width of the hysteresis

loop is a direct result of decreases and increases in inhibition

between populations.

As jW and jS independently vary randomly around 1, the

hysteresis loop randomly changes shape and position leading to

variations in wake and sleep bout durations (Fig. 2A,B). Given that

variations in jW and jS induce both lengthening and shortening of

the hysteresis loop, one might expect that the variable bout

durations would be symmetrically distributed about the bout

durations dictated by the deterministic model. Our analysis

indicates, however, that the distributions of bout durations depend

sensitively on the relative time scales of the variability (i.e. the

average frequency of jW and jS random variations) and the

deterministic bout durations. In the noisy flip-flop model, the

majority of bout durations are shorter than the durations of the

deterministic model and they are distributed with a tail of longer

durations (Fig. S2). Differences in the location of the Z-shaped

fixed point curve in the (hmin,hmax) interval can introduce

significant differences in the extent of the positive tail for wake

or sleep bouts.

The second source of physiologically motivated variability we

include in our model is brief, random excitatory stimuli input to

the wake-promoting population, d(t), representing external inputs

from brain areas not included in the model such as sensory or

cortical areas. The inputs have random amplitude, decay with a

fixed time constant and occur at discrete times dictated by a

Poisson process. They do not modulate the hysteresis loop, but

instead perturb the trajectory as it evolves around the deterministic

hysteresis loop (Fig. 2C,D). If a stimulus occurs during a wake

bout, the trajectory is perturbed to higher fW values which may

extend the wake bout if the trajectory is close to RKW . If the

stimulus occurs during a sleep bout, it may result in a brief

activation of fW with a return to the sleep state, which we define

Figure 3. Hypnograms (A,B) and summary statistics (C) of experimental rat sleep recordings and model simulations in baseline
sleep conditions and after 24 h of REM sleep deprivation. A,B: Representative experimental and simulated hypnograms depicting transitions
between states of wake, NREM sleep and REM sleep in the baseline condition (A) and after REM sleep deprivation (B). C: Summary statistics, such as
mean bout durations, mean number of bouts and mean percent time spent in state, for experimental data (unhatched bars) and model simulations
(10 runs for 4 simulated h’s, hatched bars) in the baseline (white bars) and post REM sleep deprivation (gray bars) conditions. No significant
differences were computed between data and model results (paired, 2-tailed t-tests, pv0:05).
doi:10.1371/journal.pone.0094481.g003
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as a brief wake bout, or result in a full transition to the wake state.

Which result occurs is influenced by the position of the trajectory

on the lower branch of the Z-shaped fixed point curve when the

stimulus arrives. Stimuli occurring when the trajectory is closer to

LKW usually result in a transition to wake and stimuli occurring

when the trajectory is closer to RKW usually result in a brief wake

bout. This dependence is due to whether the stimulus pushes fW

above the middle branch of unstable fixed point solutions which

generally acts as a separatrix between the basins of attraction of

the upper and lower branches of stable fixed point solutions.

The random excitatory stimuli to the wake-promoting popula-

tion have different effects on the wake and sleep bout duration

distributions (Fig. S2). The wake bout distribution is bimodal with

a peak at very short durations indicating the brief wake bouts

induced by the stimuli and a peak at longer durations for the bouts

generated through hysteresis loop dynamics. The distribution of

sleep bout durations takes on a more exponential-shape because

sleep bouts are interrupted at random times by either brief wake

bouts or early transitions to wake. Thus, an external input that

preferentially targets one of the flip-flop populations can yield

sleep-wake patterns with qualitative differences in wake and sleep

bout durations.

Coupled flip-flop model for rat sleep-wake regulation
As the above analysis suggests, a single flip-flop with multiple

sources of variability and appropriately tuned parameters would

be able to generate transition dynamics between states of wake and

sleep, or between states of NREM and REM sleep, similar to those

observed in the rat. The goal of this study was to investigate how a

wake/sleep flip-flop and a REM-on/REM-off flip-flop can be

coupled to reproduce transition dynamics among the three states

of wake, NREM sleep and REM sleep in rat. To constrain model

parameter settings and network structure, we analyze experimen-

tal recordings of rat sleep behavior under ad libitum (baseline)

conditions and during REM sleep rebound after 24 h of REM

sleep deprivation. Specifically, we consider data collected during a

4 h window in the light period (rest phase) at the same circadian

phase for both conditions. We assume minimal modulation of

sleep-wake behavior by the 24 h circadian rhythm during this 4 h

window and, thus, do not include the influence of the circadian

rhythm in the model. As we describe below, analysis of the data

motivated a minimal set of projections between the flip-flops to

account for sleep-wake patterns in both conditions. These

projections include an effect of activity of the wake population

on the REM sleep homeostat and an excitatory effect of activation

of the REM-on population to the wake-promoting population.

As shown in Fig. 3, simulation results of our coupled flip-flop

model were able to reproduce sleep-wake dynamics that were

statistically similar to the experimentally recorded rat behavior

under both conditions. Specifically, mean bout durations, number

of bouts and percent time spent in each state for wake, NREM

sleep and REM sleep, as well as probabilities (Table 1) were similar

to the experimental data (paired, 2-tailed t-tests, pv0:05). In this

section, we first describe the key features of the experimental data

that informed the model network structure and parameter settings.

We then describe how the model was constructed to account for

these key features, resulting in model dynamics similar to the data.

Rat sleep-wake behavior in baseline conditions and after

24 h REM sleep deprivation. As previously reported for these

experiments [34], rats showed a statistically significant increase in

the percent time spent in REM sleep after 24 h of REM sleep

deprivation compared to baseline conditions (Fig. 3C). Additional

analysis revealed that the REM sleep increase was due to a large

increase in the number of REM bouts as well as an increase in

mean REM bout durations. The percent time spent awake also

significantly decreased in the post-REM deprivation condition due

to a trend towards shorter wake bouts. In particular, in baseline

sleep conditions each rat had at least 1 wake bout of duration

around 30 minutes, and 2 of the 5 rats had maximum wake bout

durations of an hour or longer, accounting for the large variability

in mean wake bout durations. In contrast, after REM sleep

deprivation the longest wake bout any of the 5 rats exhibited was

just over 30 minutes and the variability in durations was much

reduced. This higher pressure for sleep in general and REM sleep

particularly suggests that the REM sleep deprivation did not

exclusively affect REM sleep homeostasis, but also influenced

NREM sleep homeostasis.

Analyzing the probabilities of behavioral state transitions from

the experimental recordings under baseline and post-REM sleep

deprivation identified some key features of state transition

dynamics that we used to construct the interactions between the

wake/sleep and REM-on/REM-off flip-flops in our model

(Table 1). As is characteristic of normal rodent sleep patterning,

the probability was higher for the termination of a REM sleep

bout by a transition into the wake state than by a transition to

NREM sleep. The data suggests that the responsible mechanisms

must be fairly robust as the probabilities were very similar in the

two conditions. In the baseline condition, the data exhibited the

normal sleep pattern in which sleep initiates in NREM sleep with

the transition to REM sleep occurring after a latency period.

Specifically, 4 out of 5 rats always transitioned from wake to

NREM sleep. For the 1 rat that showed several wake-REM

Table 1. Probabilities of behavioral state transitions.

Data Model

Baseline Post REM-dep Baseline Post REM-dep

From Wake To NREM 0:9742+0:0577 0:7358+0:1405 0:9816+0:0311 0:7950+0:0877

To REM 0:0258+0:0577 0:2642+0:1405 0:0184+0:0311 0:2050+0:0877

From NREM To Wake 0:6449+0:0821 0:2331+0:0561 0:6705+0:0985 0:2154+0:0679

To REM 0:3551+0:0821 0:7669+0:0561 0:3295+0:0985 0:7846+0:0679

From REM To Wake 0:5962+0:1927 0:6236+0:1894 0:6246+0:1543 0:5190+0:0802

To NREM 0:4038+0:1927 0:3764+0:1894 0:3754+0:1543 0:4810+0:0802

Probabilities of behavioral state transitions computed from the experimental sleep recordings under baseline and post-REM sleep deprivation conditions, and
computed from 10 simulation runs of the coupled flip-flop model under each simulated condition.
doi:10.1371/journal.pone.0094481.t001
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transitions, these transitions occurred exclusively as an interrup-

tion of REM sleep by a brief wake bout of duration 10–30 s, thus

occurring as a REM-wake-REM transition. In the post-REM sleep

deprivation condition, all 5 rats exhibited wake-REM transitions

with the mean transition probability increasing to just over 25%.

Again, these transitions occurred exclusively, in all rats, as REM-

wake-REM transitions where the intervening wake bout was of

brief duration (10–30 s). These findings suggest that the mecha-

nisms by which REM sleep is terminated promote initiation of

activity in wake-promoting populations but do not participate in

the maintenance of that activity.

Replicating stereotypical wake-NREM-REM transition

dynamics. In this section we describe how obtaining the

stereotypical state transition pattern of wake to NREM sleep to

REM sleep motivated the inclusion of an effect of activity of the

wake population on the REM sleep homeostat in our coupled flip-

flop model. As a starting point, we describe the dynamics of the

coupled model using fast-slow decomposition. The coupled flip-

flop model (Fig. 4A) consists of two pairs of neuronal populations,

each pair reciprocally coupled by neurotransmitter-mediated

inhibition, representing a wake/sleep flip-flop, with population

firing rates and neurotransmitter levels modeled by Eqs. (1) and (2)

with X ,Y~W ,S, and a REM-on/REM-off flip-flop, with

population firing rates and neurotransmitter levels modeled with

Eqs. (1) and (2) with X ,Y~Ron,Roff . The REM-on population

(fRon) represents the joint activity of identified REM sleep-

promoting populations and its neurotransmitter (cRon) represents

their joint GABAergic signaling. The REM-off population (fRoff )

and its neurotransmitter (cRoff ) represent the GABAergic signal-

ling of the identified areas with REM-off activity. Transitions in

Figure 4. Schematic of the coupled flip-flop sleep-wake regulatory network model. Rectangles represent neuronal groups and are labeled
with their firing rate variables: fW for wake-promoting, fS for sleep-promoting, fRon for REM-promoting (REM-on), fRoff for REM-suppressing (REM-
off). Circles represent neurotransmitter concentrations expressed by the neuronal groups and are labeled with the variable names: cW for the
monoaminergic transmitters of the wake-promoting populations, cS, cRon and cRoff for GABA expressed by the sleep-promoting, REM-promoting
and REM-suppressing groups, respectively. Triangles represent the homeostatic drives for sleep (h) and REM sleep (stp). Solid lines ending in filled
circles represent inhibitory synaptic projections; dashed lines indicate our proposed interactions between the flip-flops (filled circle indicates activity-
suppressing, arrow indicates activity-promoting). Large open arrow (d(t)) represents random excitatory stimuli to the wake-promoting population

from sources external to the network. B,C: Time traces for fW , fS (B, upper panel), h (B, lower panel), fRon, fRoff (C, upper panel) and stp (C, lower
panel) for the simulated baseline sleep shown in Fig. 3A.
doi:10.1371/journal.pone.0094481.g004
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the sleep-wake flip-flop are governed by the homeostatic sleep

drive, h(t), modeled by Eq. (5). As described above, h increases

during waking (fWwhW ) to promote activation of the sleep-

promoting population and the transition into sleep, and decreases

during sleep (fWƒhW ) to promote deactivation of the sleep-

promoting population. In the REM-on/REM-off flip-flop, tran-

sitions are governed by the REM sleep homeostatic drive modeled

by the variable stp, as a reference to the hypothesized short-term

process involved in REM sleep homeostasis [15], using Eq. (6). To

replicate the reported phenomena of REM sleep homeostasis, we

model stp as increasing during NREM sleep (fRon
ƒhRon ) to

promote deactivation of the REM-off population and the

transition into REM sleep, and decreasing during REM sleep

(fRon
whRon ) to promote activation of the REM-off population.

This implementation of the REM sleep homeostatic drive is

consistent with the concept that NREM-REM cycling is a sleep-

dependent process [9,15] and it generates cycling solutions that

are robust to variations in parameter values, such as strength of

inhibition between the REM-on and REM-off populations, as

shown in previous analysis [27]. Additionally, we include

variability in all neurotransmitter expression and brief random

excitatory stimuli to the wake-promoting population (d(t) in

Fig. 4A).

Qualitatively we can understand the dynamics of these two flip-

flops during normal sleep behavior as follows (Fig. 4B,C): during

the wake state, the wake-promoting population is activated and h

increases. To mimic the activity of identified physiological REM-

off neuronal areas [8], the REM-off population is activated and

the REM-on/REM-off flip-flop does not exhibit any transitions.

When increasing h forces activation of the sleep-promoting

population, a sleep episode is initiated, h starts to decrease and

stp starts to increase. A sleep episode may be terminated at any

time by deactivation of the sleep-promoting population as

governed by h and a return to the wake state, or may be

interrupted by a brief wake bout generated by the random

excitatory stimuli to the wake-promoting population, d(t). As a

sleep episode continues, however, increasing stp will deactivate the

REM-off population, allowing the REM-on population to activate

and a REM bout to occur. During a REM bout, stp decreases and

the REM bout can terminate due to activation of the REM-off

population which returns the model to the NREM sleep state.

Alternatively, the REM bout can be terminated by a brief wake

bout. Eventually, the sleep episode ends when h reaches a

sufficiently low level resulting in deactivation of the sleep-

promoting population and reactivation of the wake-promoting

population.

Figure 5. Coupled flip-flop model dynamics replicating wake-NREM-REM transition pattern. Hypnogram depicting state transition
dynamics (A), homeostatic sleep drive h(t) (B) and REM sleep homeostatic drive stp(t) (C) in the deterministic model (all sources of variability
removed) during REM/NREM cycling (red portion of curves) followed by a prolonged wake bout (light blue portion) and a subsequent return to REM/
NREM cycling (orange and dark blue portion). D: Z-shaped curve of fW fixed point solutions (Z) of the fast subsystem of the wake/sleep flip-flop with
h as a bifurcation parameter, with the projection of the trajectory of the full model onto the h-fW plane. The dashed line corresponds to the
threshold hW determining the wake state E: S-shaped curve of fixed point solutions (S) of the fast subsystem of the REM/NREM flip-flop, with stp as a
bifurcation parameter, with the projection of the trajectory of the full model onto stp-fRon space.
doi:10.1371/journal.pone.0094481.g005
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To quantitatively understand transition dynamics in the coupled

flip-flop model, we extend the fast-slow decomposition analysis to

define two hysteresis loops that dictate trajectory dynamics, one

defined by the wake/sleep flip-flop and the other by the REM-on/

REM-off flip-flop. Informally, we consider both homeostatic drives

as slow variables in the coupled flip-flop model with the

homeostatic sleep drive h acting on a slower time scale than the

REM sleep homeostatic drive stp. The firing rate and neuro-

transmitter level variables for the wake- and sleep-promoting,

REM-on and REM-off populations (fW , cW , fS, cS, fRon, cRon,

fRoff , cRoff ) compose the fast subsystem. Since wake/sleep and

REM-on/REM-off transitions occur during distinct phases of the

trajectory and since each homeostatic drive only affects the fast

variables of one of the flip-flops, we can separately apply fast-slow

decomposition to each flip-flop to define two hysteresis loops. For

the wake/sleep flip-flop, the fast-slow decomposition is identical to

that described for the single flip-flop model, namely by considering

h a fixed parameter in Eqs. (1) and (2) with X ,Y~W ,S, we obtain

a Z-shaped curve of fW fixed point solutions. We refer to this

curve as Z. For the REM-on/REM-off flip-flop, we consider stp a

fixed parameter in Eqs. (1) and (2) with X ,Y~Ron,Roff and obtain

an S-shaped curve of fixed point solutions of fRon, which we refer

to as S. The reversal in the shape of the curve of fixed point

solutions occurs because stp increases when fRon is deactivated

(during NREM sleep). Solution trajectories of the model can be

tracked in relation to these two fixed point curves, Z and S, such

that wake and sleep behavior corresponds to the trajectory

evolving along the upper and lower branches, respectively, of Z
and, during sleep, REM and NREM episodes occur as the

trajectory evolves along the upper and lower branches, respec-

tively, of S.

To achieve activation of the REM-off population during wake

and to robustly generate the stereotypical sleep pattern of wake-

NREM-REM transitions that occurs after an extended period of

waking, we need to include in the model a mechanism that forces

the trajectory to remain on the lower branch of S during wake and

ensures that when the transition to sleep occurs, stp is at a value

less than the right knee of S. To determine these constraints on the

model, we consider the physiological hypotheses for the action of

the wake state on the REM sleep homeostatic drive. As discussed

in [35,36], there is debate whether the REM homeostatic drive

increases during wake, decreases during wake or is unaffected by

the wake state. In the context of our coupled flip-flop model, we

can implement these hypotheses through the effect on stp of

activation of the wake population. If stp increases during wake,

this may lead to an immediate (or almost immediate) transition

from wake to REM, since stp may reach values close to or above

the right knee of S during an extended wake bout. Similarly, stp
remaining constant during wake could also lead to immediate (or

almost immediate) transitions from wake to REM. For example, as

the data show, the majority of REM bouts end in a transition to

wake. Thus, at the transition to wake stp is at a level between the

two knees of S, and could be at a value close to the right knee.

Even if the trajectory is forced down to the lower branch of S
during wake in order to activate the REM-off population, when

the next sleep episode occurs there could be a very short transition

to REM as stp could quickly evolve to the right knee of S. To

guarantee a finite REM latency, as is stereotypical, we model that

stp decreases during wake to a reset value stpr. This mechanism

corresponds to a saturating inhibitory effect of the wake state on

the REM sleep homeostatic drive and insures that the REM-off

population is activated during wake. We model this mechanism as

an additional condition on stp dynamics that when fWwhW

(wake), stp decays to stpr with a time constant tstpW
, and when

fWƒhW (sleep) stp dynamics is given by Eq. 6 (see Eq. S15 in

Appendix S1).

To illustrate how this condition on stp due to the wake state

creates the stereotypical pattern of wake-NREM-REM transitions,

we consider the trajectory of the deterministic model shown in

Fig. 5 as a hypnogram (parameter values differ slightly than those

in Table S1). At the beginning of the simulation, the model is in

the sleep state exhibiting regular transitions between NREM and

REM sleep (A, red portion of the curve). The trajectory is slowly

evolving leftwards on the lower branch of Z (D, red) as h decreases

(B, red), and stp (C, red) is alternating between values associated

with the left and right knees of S as the trajectory traverses the

hysteresis loop defined by S (E, red). When h decreases below the

left knee of Z, the wake/sleep flip-flop transitions to the wake

state, interrupting the current REM or NREM bout (all panels,

light blue). The trajectory jumps to the upper branch of Z, h
begins to increase and stp is driven down to stpr (stpr~0 in this

simulation), forcing the trajectory on the lower branch of S. At the

end of the wake bout as h increases beyond the right knee of Z, the

trajectory jumps down to the lower branch of Z, h starts of

decrease, stp is released from its reset value stpr and begins to

increase (all panels, orange). This portion of the trajectory

represents the REM latency period. The first REM bout occurs

when stp reaches the right knee of S and the trajectory begins

traversing the hysteresis loop defined by S (all panels, dark blue).

For values of stpr less than the left knee of S, the REM latency

period can be of longer duration than the interval between NREM

and REM bouts determined by the hysteresis loop dynamics of S.

In the full model with variability sources included, this

inhibitory effect of the wake state on the REM sleep homeostatic

drive remains a robust mechanism promoting the wake-NREM-

REM sleep transition pattern. In particular, we set stpr sufficiently

low (stpr~0) so that it remains less than the right knee of S despite

the modulation of the knees of S induced by the neurotransmitter

variability.

There are other possible ways to robustly generate the Wake-

NREM-REM transitions achieved here, such as including

projections from the sleep-promoting population to the REM-on

or REM-off populations with a decaying inhibitory effect or a

decaying excitatory effect, respectively, that would prevent

activation of the REM-on population at the onset of a sleep

episode regardless of the influence of stp. However, the inclusion

of such additional projections would increase the complexity of the

model and introduce new timescales and other parameters. In the

absence of experimental hypotheses supporting such additional

mechanisms, we focused on the effect of the waking state on the

REM sleep homeostatic drive to generate the appropriate state

transition dynamics.

Generating REM-wake transitions. Behavioral state tran-

sition probabilities computed from the experimental sleep

recordings suggest a robust mechanism that terminates REM

bouts with a transition to waking instead of NREM sleep. In the

model, two mechanisms can generate transitions to the wake state

from either the NREM or REM sleep state: either h decays below

the left knee of Z forcing the activation of fW or an input to the

wake-promoting population perturbs fW off the lower branch of

Z causing its activation and disruption of the sleep state. If these

mechanisms are independent of the activity of the REM-on and

REM-off populations, we expect that most sleep-wake transitions

would occur from the NREM state because the model spends

much more time in NREM compared to REM sleep. To generate

REM-wake transitions, then, there could be an excitatory effect of

activation of the REM-on population to the wake-promoting

population, or an inhibitory effect to the sleep-promoting
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population. Within the context of our coupled flip-flop model,

these excitatory and inhibitory effects could be direct synaptic

projections from the REM-on population to the wake- or sleep-

promoting population, REM-dependent actions on the homeo-

static sleep drive or REM-dependent actions that indirectly

influence transient or sustained external inputs to the wake- or

sleep-promoting populations.

Investigation of these different effects in the model indicated

that direct synaptic projections from the REM-on population to

either the wake- or sleep-promoting population, or actions on the

homeostatic sleep drive promoted the occurrence of wake

transitions by modulating the hysteresis loop Z or h dynamics

such that h decreased below the left knee of Z, thereby causing the

trajectory to jump to the upper branch of Z. Such transitions from

sleep to wake almost always led to an extended wake bout.

Including a REM-dependent external input to either the wake- or

sleep-promoting populations whose activity was sustained during

REM bouts similarly affected model dynamics to cause transitions

to extended wake bouts. While these mechanisms did not affect the

ability of the model to replicate the experimental data in the

baseline condition, it prevented replication of the post-REM sleep

deprivation condition where REM-wake-REM transitions with

brief intervening wake bouts were prevalent.

To investigate the effects of transient REM-dependent external

inputs, we modulated the random excitatory stimuli to the wake-

promoting population, d(t), dependent on activation of the REM-

on population. We found that model solutions fit the statistics of

the experimental sleep-wake patterns in both baseline and post-

REM sleep deprivation conditions when the frequency of d(t)
stimuli increased during the REM sleep state. Hence, the high

REM-wake transition probability and the occurrence of REM-

wake-REM transitions in the data indicated an indirect effect of

REM-on activity on the wake/sleep flip-flop that initiated

activation of the wake-promoting population but not maintenance

of its activity. To implement this mechanism, we could include an

additional source of transient excitatory stimuli to the wake

promoting population that is only active during REM sleep.

However, in the interest of keeping the model compact, we

modeled the interaction through our existing mechanism d(t). See

the Discussion for possible physiological motivations for such

stimuli. Alternatively, including a source of REM-dependent

transient inhibitory inputs to the sleep-promoting population

similarly resulted in high probabilities of REM-wake transitions

and the occurrence of REM-wake-REM transitions but the

mechanism was less robust as it depended on sufficient inactivation

of the sleep-promoting population that could result in sufficient

activation of the wake-promoting population.

We modeled the effect of REM-on activation on the random

excitatory stimuli to the wake-promoting population, d(t), with an

increase in the frequency of occurrence of the stimuli during REM

sleep. In this way, although the model spends less time in REM

sleep, more frequent stimuli to fW during REM induce more

REM-wake transitions without introducing excessive brief wake

bouts during NREM. When an excitatory stimulus to the wake-

promoting population occurs during a REM bout, fW is

perturbed off the lower branch of Z. If h is sufficiently low, fW
can transition to the upper branch of Z, which forces stp down to

stpr terminating REM-on activity and the wake bout will be

maintained as h evolves along the upper branch of Z. If h is closer

to the right knee of Z when the stimulus arrives during the REM

bout, fW may be briefly perturbed off the lower branch of Z but it

will return to the lower branch, thus generating only a brief wake

bout. The sleep state that the model returns to depends on the rate

of decrease of stp to stpr induced by the brief fW activation. If the

rate of stp reset is fast, the model would return to the NREM sleep

state because the trajectory would be forced below the left knee of

S and fRon would deactivate during the brief wake. If the rate of

stp reset is slower, a REM-wake-REM transition can occur since

stp would have remained above the left knee of S with perhaps

only a transient reduction in REM-on activity.

Accounting for high variability of wake bout

durations. In our experimental sleep recordings, especially

under baseline conditions, some animals exhibited very long wake

bouts. As described for the single flip-flop model, long wake bout

durations can be obtained by adjusting time constants of h or

providing the appropriate relationship between the saturation level

of h and the knees of the Z. With variability of neurotransmitter

expression included in the coupled flip-flop model, we can

introduce very long wake bouts by setting the maximum saturation

level of h, hmax, below the h value of the right knee of Z. Without

the neurotransmitter expression variability, these parameter

settings would result in the model getting stuck in the wake state,

because the model solution with h~hmax would be a stable fixed

point of the full model. The neurotransmitter expression variability

modulates the h value of the right knee of Z and can move it below

hmax to induce a transition to the sleep state. Thus, in this

parameter regime, wake bout durations are overall longer than

sleep bouts, they have higher variability and very long wake bouts

are possible. In the Discussion we provide possible physiological

mechanisms that could support these model dynamics.

Differences between baseline and post-REM sleep

deprivation sleep patterning. As shown in Fig. 3, the coupled

flip-flop model is able to replicate sleep-wake patterning under

both baseline and post-REM sleep deprivation conditions. The

significant differences in patterning between the two conditions

include increases in percent time spent in REM sleep, the number

and duration of REM sleep bouts and a decrease in the percent

time spent in waking (2-tailed paired t-test, pv0:05). We captured

these differences in the model by adjusting parameters governing

three model components. First, we increased the number and

duration of REM bouts by adjusting the maximum and minimum

saturation levels of stp. The maximum saturation level, stpmax, was

increased to promote shorter latencies to REM-on activation and

the minimum level, stpmin, was increased to slow down the

trajectory’s evolution on the upper branch of S during a REM

bout. To further affect REM bout durations, we lengthened the

REM-NREM hysteresis loop by increasing the distance between

the knees of S. In our model formalism, the distance between the

knees of S can be modified in different ways, including the

addition of external inputs to either the REM-on or REM-off

populations. Alternatively, we adjusted the influence of stp on

fRoff activity (see Appendix S1 for details). An additional

consequence of a longer REM-NREM hysteresis loop is an

increase in REM-wake-REM transitions, which also was a feature

of post-REM sleep deprivation sleep patterning. As described

above, REM-wake-REM transitions occur in the model when a

random excitatory stimulus arrives to the wake-promoting

population during a REM bout. As a result of brief fW activation,

stp is forced to decrease towards the reset value stpr. However,

when the knees of S are further apart, the decrease in stp is less

likely to push stp below the left knee of S during the brief wake

bout. When the brief wake bout ends, the REM-on/REM-off flip-

flop remains in the REM state and REM bouts are more robust to

this kind of interruption.

Secondly, we obtained the decrease in percent time spent in

waking as a result of REM sleep deprivation through a decrease in

wake bout durations. Specifically, we increased the maximum

saturation level of h, hmax, to a value above the right knee of Z. As
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described above, this shortened wake bouts by allowing h to freely

evolve past the right knee of Z to induce the deactivation of fW
and end the wake bout. The third model component we adjusted

to capture post-REM sleep deprivation patterning was to reduce

the frequency of the random excitatory stimuli to the wake-

promoting population. A large reduction in stimulus frequency

during the wake and NREM states resulted in far fewer brief wake

bouts during NREM sleep that fragmented NREM and prevented

the increase of the REM sleep homeostatic drive stp. Therefore,

we obtained the large increase in the NREM to REM transition

probability exhibited in the sleep recordings (Table 1). The

reduction in stimulus frequency during REM sleep, while not as

great, reduced the interruption of REM bouts by terminating

stimuli. In the Discussion, we provide possible neural mechanisms

that could account for these parameter changes.

Discussion

The proposed conceptual models for the control of REM sleep

by mutually inhibitory networks of REM-on and REM-off

populations leave a number of questions unanswered, particularly

regarding the interactions between the populations controlling

REM sleep and those controlling wake and NREM sleep [5,8,19].

In an attempt to shed some light on these questions, we

constructed a simplified, yet cohesive, mathematical model based

on mutually inhibitory flip-flop networks for the control of state

transitions between wake, NREM and REM sleep states. We

utilized a modeling formalism that correlates with the physiolog-

ical network structure of neurotransmitter-mediated interactions

among state-promoting neuronal populations. The network

structure, in particular the interactions between the wake/sleep

flip-flop and the REM-on/REM-off flip-flop, was motivated by the

behavioral state transitions observed in experimental rat sleep

recordings. A minimal set of interactions was identified by

constraining the network model to accurately replicate experi-

mental state transition dynamics in both baseline sleep and post-

REM sleep deprivation recovery sleep in a consistent manner. As

discussed below, these modeled interactions predict physiological

mechanisms that can be targeted in future experimental studies to

more definitively address some of the unanswered questions of

REM sleep regulation.

A strength of this study was the use of experimental rat sleep

recordings to motivate the construction of the network model. We

relied on replication of summary bout statistics and probabilities of

behavioral state transitions to constrain the model. Recently,

higher order statistical approaches, such as survival-based analysis

of wake and sleep bout durations, have been applied to sleep

recordings to identify effects of disease states and experimental

manipulations [37–40]. To compare survival analyses of bout

durations of the data and model results requires a sufficient

number of bouts [41]. Since our data sets contained only five 4 h

recordings in each condition, baseline and post-REM sleep

deprivation, there were insufficient numbers of bouts, particularly

REM sleep bouts, for a bout duration survival analysis to be

meaningful. We note, though, that the standard summary statistics

and state transition probabilities were sufficient to rule out possible

interactions between the wake/sleep and REM-on/REM-off flip-

flops. Specifically, to robustly generate transitions from REM sleep

to wake, an alternative interaction between flip-flops is a direct

excitatory projection from the REM-on population to the wake

population. However, simulations with this alternative model

structure were not able to replicate all summary statistics and

behavioral state transition probabilities. In particular, this alter-

native model could not simultaneously replicate the correct REM-

wake transition probability and number of REM bouts in either

the baseline or post-REM sleep deprivation condition. In this

alternative model, REM-wake transitions most often resulted in an

extended wake bout instead of a brief wake bout as part of a REM-

wake-REM transition that occurred more often in the data. Thus,

we believe that summary statistics and transition probabilities were

adequate to constrain our simplified model.

Mathematically, a mutually inhibitory flip-flop network pos-

sesses the dynamics of a hysteresis loop. The inherent symmetry of

a hysteresis loop and the regularity of its dynamics may call into

question its suitability for replicating the highly variable state

transitions of rat sleep-wake behavior. For example, survival

analysis of wake and sleep (NREM and REM sleep combined)

bout durations of rodent sleep revealed an asymmetry between

wake and sleep bouts such that wake bout durations displayed

power-law like distributions while sleep bout durations exhibited

exponential distributions [28]. Such a qualitative difference in

bout duration distributions suggests that wake and sleep state

transitions are influenced by different mechanisms. Our analysis of

the dynamics of a single flip-flop network with physiologically

motivated sources of variability included suggests that it can

generate sufficient variability and asymmetry in wake and sleep

bout duration distributions. In particular, an extended tail in wake

bout distributions reflecting low numbers of very long wake bouts

could be introduced by the appropriate relationship between the

underlying hysteresis loop and the saturation level of the

homeostatic sleep drive. Additionally, brief excitatory inputs to

the wake population generated a bimodal wake bout distribution

and an exponential-like sleep bout distribution. Recent work has

suggested that wake distributions may follow a multi-exponential

distribution rather than a strict power-law distribution [42]. One

can imagine that in the proper parameter regime, a bimodal wake

bout distribution with an appropriate tail, as we have shown a

single flip-flop with noise sources can generate, may result in a

multi-exponential-like distribution. Further work fitting flip-flop

models to survival analysis of experimental sleep data is clearly

needed to assess the capability of this network structure to account

for all aspects of sleep state transition dynamics.

Comparison to previous flip-flop models of the sleep-
wake regulatory network

Previous modeling studies have investigated a coupled flip-flop

network for sleep-wake regulation in humans [23,25]. Our study

differs in that we focus on accounting for the variable and

polyphasic sleep-wake activity typical of rats rather than a

caricature of stereotypical human sleep-wake activity. A more

important difference involves the modeling formalism. The

previous studies modeled the mean activity or firing rate of each

neuronal population with the Morris-Lecar model, a generic

model for single cell neuronal membrane potential [31,43]. When

parameters are tuned appropriately, the Morris-Lecar model can

generate fast transitions between states of low and high activity

that is appropriate for modeling the activation and deactivation

transitions of mean activity in neuronal populations. As a model

for neuronal action potential generation, the Morris-Lecar model

has the additional capability of generating oscillatory solutions. In

the translation of using the model for population activity, this

means that the model can generate spontaneous, regular

transitions between low and high activity levels, without any

external stimulation. Both the Rempe et al [23] and Kumar et al

[25] studies exploit the model’s capability of intrinsic population

oscillatory dynamics to account for NREM-REM transitions. In

the modeling formalism that we use, on the other hand, individual

cell groups do not have the capability of intrinsic oscillatory
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behavior. Transitions between low and high activity levels depend

on changes in external inputs, specifically homeostatic drives for

NREM or REM sleep. Thus, in our model results, NREM-REM

transitions occur in response to changes in explicitly defined model

components, instead of assumed population properties. As the aim

of our study is to propose potential physiological interactions

among behavioral state-promoting neuronal groups, we believe

that it is important to avoid incorporating extraneous assumptions

into our modeling formalism.

In these previous models, the coupling projections between the

wake/sleep and REM-on/REM-off flip-flops were similarly

motivated by generating appropriate state transition dynamics,

particularly the stereotypical transition pattern of wake to NREM

sleep to REM sleep. The Kumar et al [25] model primarily

achieves this pattern by the action of a REM sleep homeostatic

drive whose dynamics were sensitive to wake and sleep states. This

drive increased excitation to the REM-on population during sleep

to promote its activation and decreased excitation during wake,

which allowed the REM-off population to dominate at wake to

sleep transitions. The Rempe et al [23] model included an indirect

projection from the wake/sleep to the REM-on/REM-off flip-flop

through an intermediary population, the extended VLPO

(eVLPO). Wake and sleep dependent activity of the eVLPO gated

activity of the REM-off population during wake and sleep states in

order to promote its initial activation at the wake to sleep

transition. Both models include additional feedforward connec-

tions between flip-flops, such as direct inhibitory projections from

the wake-promoting population to the REM-on population, that

are suggested by anatomical studies and work to suppress REM-on

activity during wake. We note that inclusion of similar additional

feedforward projections from the wake/sleep flip-flop to the REM-

on/REM-off flip-flop in our model would have similar effects and

not qualitatively change our results. In both the Rempe et al and

Kumar et al models, replicating human sleep-wake patterns did

not constrain the form of feedback projections from the REM-on/

REM-off flip-flop to the wake/sleep flip-flop. While an indirect

feedback projection originating in the REM-off population was

included in the Kumar et al model, it was not necessary to obtain

appropriate model behavior, and the Rempe et al model did not

include any feedback projections.

Since the Rempe et al [23] and Kumar et al [25] models

simulated human sleep, they both included input from a circadian

oscillator to contribute to the 24 h modulation of sleep-wake

behavior. In this study, we focused on replicating variable and

polyphasic rat sleep-wake behavior during a 4 h window in the

rest phase, assuming minimal modulation by the circadian

rhythm. Our modeling formalism, however, can readily include

a neuronal population representing the suprachiasmatic nucleus

(SCN) whose activity is driven by a circadian oscillator and which

is coupled to the sleep- and wake-promoting populations within

the network. Indeed, our previous work modeling rat sleep-wake

behavior, in which REM sleep is generated by a reciprocal

interaction network, suggested that multiple signaling pathways

between the SCN and sleep-wake centers may be necessary to

account for circadian modulation of rat sleep [44]. As a direction

for future work, incorporation of the SCN circadian signal in the

coupled flip-flop model to account for the 24 h variation of rat

sleep-wake behavior would test the minimal interactions between

the wake/sleep and REM-on/REM-off flip-flops proposed here

and perhaps identify additional constraints on the network

structure.

Model predictions
To obtain robust wake-NREM-REM transition dynamics, our

simplified coupled flip-flop network model predicts that during

waking, the REM sleep homeostatic drive resets to a level

corresponding to low REM sleep pressure. This prediction is

similar to that of Benington and Heller [35] that REM sleep need

is homeostatically related to NREM sleep rather than waking,

such that in normal conditions it accrues during NREM and not

waking. While Benington and Heller do not offer a mechanism

defining the behavior of the REM sleep homeostat during the

transition from sleep to wake, we found that providing a decay of

the REM sleep homeostat to the reset level during wake best

replicated rat sleep patterning. In the context of the coupled flip-

flop model, this mechanism most parsimoniously provides the

appropriate dynamics to ensure that after an extended wake bout,

the NREM sleep state is entered first before REM sleep occurs. A

physiological correlate of such a mechanism could be provided by

the expression during sleep states of a substance mediating REM

sleep need and its cessation during waking. The absence of

expression during wake would lead to the degradation or uptake of

the substance, decreasing its presence to low levels. Recent

experimental results indicate that expression of MCH and

Nesfatin-1, which are co-expressed by neurons in the tuberal

hypothalamic area, exhibit sleep-dependent increases and wake-

dependent decreases and have REM sleep-inducing effects

[12,13,45]. Interestingly, while these substances are co-expressed,

pharmacological experiments indicate that MCH promotes REM

sleep [45] while Nesfatin-1 suppresses REM sleep [13]; however,

recent optogenetic experiments report that acute activation of

MCH neurons promotes maintenance of REM sleep [46]. An

alternative physiological mechanism could be provided by sleep-

dependent increases in activity of neurons that promote a

transition into REM sleep. Neural activity in the median preoptic

nucleus (MnPN) and the ventral lateral preoptic area (vlPOA)

strongly correlates with REM sleep pressure [14]. These neural

groups show higher activity during sleep than during waking

which could mediate a wake-dependent decrease in REM sleep

homeostatic drive. It is most likely that the physiological

mechanism for a REM sleep homeostatic drive is more

complicated than the simple, single drive variable included in

the model. For example, experiments in cats have suggested that

REM sleep pressure during REM deprivation and REM sleep

rebound during the recovery from REM deprivation may be

governed by mechanisms in separate brain areas [47]. Further

experimental investigation can provide insight for a more accurate

model.

The robust propensity for REM bouts to terminate in a

transition to wake exhibited in the data suggests the existence of an

effect on wake-promoting populations by the activation of REM-

on populations. However, while the anatomy has not been

completely determined, there is little evidence of direct synaptic

projections from the key identified REM-on populations to wake-

promoting areas. For example, the efferent pathways of the SLD

descend to areas that govern motoneuron activity to control

muscle atonia during REM, and ascend to thalamic areas that

induce REM cortical activation (reviewed in [8]). Thus, an indirect

mechanism whereby wake-promoting populations are activated to

terminate REM may be likely. We arrived at this conclusion by

constraining the model to replicate transition dynamics of the

data. As described above, model dynamics accurately replicated all

summary statistics and probabilities of behavioral state transitions

when activation of the REM-on population increased the external

excitatory stimuli to the wake-promoting population, but not when

it had a direct excitatory effect on the wake-promoting population.

Coupled Flip-Flop Model for REM Sleep Regulation
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A physiological correlate for the model mechanism could be

provided by top-down projections to wake-promoting populations

from cortical regions that are activated during REM sleep, but not

NREM sleep. An alternative interpretation is that the wake-

promoting population is more sensitive to external inputs during

the REM sleep state, leading to a higher probability that wake-

promoting populations will be briefly activated during REM sleep.

Dynamically, increasing the rate of external excitatory stimuli

during REM sleep is essentially equivalent.

In the model, the occurrence of very long wake bouts and high

variability of wake bout durations were achieved by allowing the

homeostatic sleep drive h to reach its saturating limit hmax and

relying on neurotransmitter expression variability to modulate the

hysteresis loop to induce the transition out of the wake state. While

this may not be a physiologically robust mechanism, it is, however,

dynamically similar to the presence of a wake-promoting factor,

such as orexin (see [48] for a review), that could disrupt or delay

homeostatically governed transitions to sleep. The time-depen-

dence or variability in the expression of such a wake-promoting

factor would then determine the transition out of sleep and thus

the duration of the wake bout in a manner similar to random

variations of neurotransmitter levels included in the model.

The effects of 24 h REM sleep deprivation on rat sleep behavior

were replicated in the model by modulating both the sleep and

REM sleep homeostatic drives. Dynamics of the sleep homeostatic

drive were modulated to promote transitions into sleep from

waking. The need for this modulation may reflect a direct effect on

sleep homeostasis by the REM deprivation protocol due to

disturbances or slight losses of total sleep. For the effect on the

REM sleep homeostatic drive, REM bouts were lengthened and,

consequently, resistance to REM interruption was strengthened by

modulating the influence of the REM homeostat on activation of

the REM-off population. Such modulation could be a mechanism

for the proposed long-term process that regulates the daily amount

of REM sleep [15]. Physiologically, it might reflect modulation of

receptors for substances mediating short term REM homeostasis,

such as MCH and Nesfatin-1, as a result of REM deprivation.

This type of modulation may also be a mechanism to account for

the resistance to REM interruption achieved by the reduction in

the frequency of excitatory stimuli to the wake-promoting

population that was implemented to account for the effects of

REM sleep deprivation.

Conclusions
In this study, we proposed a minimal model of an inhibition

based network for the regulation of transition dynamics between

the states of wake, NREM and REM sleep. We readily concede

that the model may be too simple. Our intent, however, was to

provide a cohesive inhibitory network structure, based on known

physiology, and constrain the structure to account for experimen-

tally measured sleep patterning in baseline conditions and after an

experimental challenge, namely REM sleep deprivation. Key

model results are predictions of the interactions between the

subnetworks controlling sleep-wake transitions and REM-NREM

transitions: feedforward effects from the wake/sleep subnetwork to

the REM/NREM subnetwork that act to suppress REM

propensity during waking, and feedback effects that indirectly

promote the initiation, but not maintenance, of waking as a result

of REM sleep. The aim of this modeling study, similar to other

recent physiologically-based modeling work on sleep-wake regu-

latory networks [20–25], is to participate in the investigation of

neuronal regulation of sleep and play the same role of providing a

framework for understanding and interpreting experimental

observations as the phenomenological two-process model [49]

and the reciprocal interaction model [3] have done for the past 40

years, but in the context of our increased knowledge of the

underlying physiology of sleep-wake regulation.

Methods and Model

Experimental sleep recordings and sleep scoring
Ethics statement. Experimental procedures were approved

by the University of Michigan Committee for the Care and Use of

Animals (permit #08194) and were in accordance with the

National Institutes of Health Guide for the Care and Use of

Laboratory Animals. All surgery was performed aseptically under

sodium pentobarbital anesthesia, and every effort was made to

minimize suffering.

Recordings of rat sleep under baseline conditions and after 24 h

of REM sleep deprivation were conducted as previously described

[34]. Briefly, six male Fischer 344 rats (Simonsen Laboratories,

Gilroy, CA) were used in the study. Under sodium pentobarbital

anesthesia, the following electrodes were implanted by aseptic

surgery for the purpose of electroencephalography (EEG) record-

ing and analysis of behavioral state: 2 superficial cortical electrodes

(relative to bregma AP: +0.3 and ML: +1.0 for left frontal; AP: -3.0

and ML: 22.0 for right parietal), 1 deep electrode targeted to the

left dorsal hippocampus (AP: 23.0, ML: +2.0 and DV: 22.9), 1

sinus ground and 1 recording wire into each dorsal neck muscle to

record nuchal electromyography (EMG). After recovery from

surgery and habituation to the recording apparatus, each rat was

recorded under the following conditions: (1) 8 h of natural sleep-

wake behavior, and (2) 8 h of natural sleep-wake behavior,

preceded by 24 h of REM sleep deprivation. Animals were

deprived of REM sleep using the multiple platforms-over-water

method [50]. Recordings commenced 2 hours into the light phase

of the 12-hour light:12-hour dark cycle (lights on at 6:00am) to

which the animals were habituated.

EEG and EMG recordings were analyzed to determine

behavioral state. Each 8 h recording session was analyzed in

10 s epochs. Three trained experimenters were blinded to the

condition of each rat and scored each record for REM sleep,

NREM sleep and waking [51]. The average pair-wise agreement

for the three scorers was w0:8 for total sleep, NREM sleep and

REM sleep. REM sleep was identified by low amplitude and

desynchronized cortical EEG, synchronized hippocampal EEG in

the h band (4–9 Hz) and quiescent EMG. Sleep-scored data from

5 animals were used in this study as the sleep patterning statistics

(such as mean bout duration, number of bouts and percent time

spent in each state) of the 6th animal differed by more than 2

standard deviations from the average sleep patterning statistics of

the other 5 animals.

To avoid effects due to recording initiation and circadian

modulation, sleep-scored data for hours 2–5 of the 8 h recording

for each rat (n = 5) were used for model development.

Model formalism
We constructed the single flip-flop and coupled flip-flop models

using our previously developed neuronal population firing rate and

neurotransmitter formalism [24]. In this formalism, the firing rate

of a pre-synaptic population, fX (t) (in Hz), induces expression of

neurotransmitter concentration, cX (t), which, in turn, acts as

input to post-synaptic populations. For a single flip-flop pair of

populations, the firing rate and neurotransmitter equations are

fX
0
~(X?(gY ,X

:cY ){fX )=tX , cX
0
~(cX?(fX ){cX )=tcX ð1Þ
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fY
0
~(Y?(gX ,Y

:cX ){fY )=tY , cY
0
~(cY?(fY ){cY )=tcY ð2Þ

where X ,Y~W ,S for the wake/sleep flip-flop or X ,Y~Ron,Roff

for the REM-on/REM-off flip-flop. Since we consider only

inhibitory influences of all neurotransmitters, the weighting

parameters for the post-synaptic influence of all neurotransmitter

gi,j are negative. The time constants tX ,tY ,tcX ,and tcY reflect the

time dynamics associated with firing rate response and neuro-

transmitter expression, respectively, at the population level.

Because different experimental techniques lead to differences in

absolute reported neurotransmitter concentrations, we normalize

each neurotransmitter concentration between 0 and 1. The

functions X?(:) represent the steady state activation functions

for population firing rates and are given by the standard sigmoidal

form of neuronal firing rate models [52,53]

X?(c)~
1

2
Xmax(1z tanh ((c{bX )=aX )), ð3Þ

where aX and bX govern the slope and half-activation level of the

activation function, respectively. The functions cX?(:) represent

the steady state expression functions for neurotransmitter concen-

trations and follow a saturating profile

cX?(f )~ tanh (f =cX ), ð4Þ

with slope dictated by cX . In simulations of the model networks,

states of wake, NREM sleep, and REM sleep were interpreted

based on firing rates of neuronal populations and concentration

levels of their associated neurotransmitters.

In each flip-flop, transitions between states are governed by a

homeostatic drive that promotes sleep in the wake/sleep flip-flop

and promotes REM sleep in the REM-on/REM-off flip-flop. The

sleep-promoting homeostatic drive, h(t), describes the universally

recognized propensity for sleep that increases during time awake

and decreases during sleep, and is thought to involve the

neuromodulator adenosine (reviewed in [29]). The REM sleep-

promoting homeostatic drive, stp(t), represents the proposed

short-term process underlying REM sleep homeostasis [15], and

while its underlying physiological mechanisms have not been

identified, we model it similarly as the sleep-promoting homeostat

such that stp increases during NREM sleep and decreases during

REM sleep. The equations governing the homeostatic drives are:

h
0
~H(fW{hW )(hmax{h)=th,up

zH(hW {fW )(hmin{h)=th,down

ð5Þ

stp
0
~H(hRon{fRon)(stpmax{stp)=tstp,up

zH(fRon{hRon )(stpmin{stp)=tstp,down

ð6Þ

where H(z) is the Heaviside function defined as H(z)~0 if zƒ0
and H(z)~1 if zw0, and hX (X~W ,Ron) are fX threshold values

indicating the occurrence of wake or REM sleep, respectively. The

parameters xmin,xmax (x~h,stp) give the minimum and maximum

values, respectively, that the drive variables can attain and

tx,up,tx,down dictate the time scales of their increase and decrease,

respectively. To incorporate the sleep-promoting homeostatic

drive into the wake/sleep flip-flops, we model the effects of

adenosine on the VLPO [54–56] by setting the half-activation

level of the sleep population’s steady-state activation function, S?,

to be dependent on h. Since there is less physiological evidence to

support how the REM-sleep homeostatic drive affects either the

REM-on or REM-off populations, we turn to a previous analysis

of flip-flop models for REM sleep control that indicated that

transition dynamics are more robust when the REM sleep-

promoting homeostatic drive acts on the REM-off population

[27]. Thus, we set the half-activation level of the REM-off steady

state activation function, Roff
? , to be a function of stp. The

equations for the sleep and REM-off steady state activation

functions are as follows (compare to Equation (3)):

S?(c,h)~
1

2
Smax(1z tanh ((c{bS(h))=aS)) ð7Þ

Roff
? (c,stp)~

1

2
Roff

max(1z tanh ((c{b
Roff (stp))=a

Roff )) ð8Þ

where bx(y)~k2
x(y{k1

x) for x~S,Roff and y~h,stp, respectively.

For the wake/sleep flip-flop, k2
Sv0 such that as h increases during

wake, bS(h) decreases to promote activation of the sleep

population and terminate the wake bout. For the REM-on/

REM-off flip-flop, k2

Roff w0 such that as stp increases during

NREM sleep, b
Roff (stp) also increases to promote inactivation of

the REM-off population and allow the REM-on population to

activate.

A full listing of model equations and parameter values is given in

Appendix S1 and Table S1.

Sources of variability in the model
To incorporate experimentally-documented variability of neu-

rotransmitter release into the model [57], we multiplicatively

scaled the steady state release functions for each neurotransmitter,

cX?, by a noise factor, jX (t) whose amplitude randomly varied

(with uniform distribution and unit mean) at discrete times

dictated by a Poisson process. Another source of variability

included in the model represents external excitatory stimuli to the

wake population resulting in brief wake bouts that fragment sleep

states as is characteristic of rat sleep patterning. These inputs are

modeled by the addition of random amplitude, brief excitatory

inputs occurring at discrete times dictated by a Poisson process,

d(t), in the argument of the steady-state activation function of the

wake population, W?.

Interactions between the wake/sleep and REM-on/REM-
off flip-flops

As described above, analysis of the dynamics of state transitions

in the experimental sleep recordings under baseline conditions and

during recovery sleep following REM sleep deprivation informed

the interactions between the wake/sleep and REM-on/REM-off

flip-flops included in the model (Fig. 4A). Activity of the wake

population influences the REM sleep homeostatic drive stp such

that when the model is in the wake state, stp decays to a low level,

stpr, forcing the half-activation of the REM-off population,

bRoff (stp), to a low level and promoting its activation. When the

wake population is inactive, stp dynamics are governed by Eq. (6)

(see Eq. S15 in Appendix S1). We model an indirect effect of

activity in the REM-on population on the wake population such

that when the model is in REM sleep, the frequency of the

external excitatory stimuli targeting the wake population, d(t), is

increased.

Coupled Flip-Flop Model for REM Sleep Regulation
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Numerics
Statistical analysis was performed in the MATLAB software

package (The MathWorks, Natick, MA). The administrative code

was also written in MATLAB. Differential equation integration

was performed using the XPP software package [58] (www.math.

pitt.edu/bard/xpp/xpp.html), interfaced with MATLAB via

system calls. Two dimensional bifurcation diagrams were created

using XPP, and the higher dimensional diagram in Fig. S1B was

created using MATCONT (www.matcont.ugent.be).

Supporting Information

Figure S1 Modulation of the single wake/sleep flip-flop
model by neurotransmitter expression variability. Mod-

ulation of the single wake/sleep flip-flop model by neurotransmit-

ter expression variability. A: h coordinates of the right (RKW ) and

left (LKW ) knees of the hysteresis loop as jS is varied (black dotted

curve, jW ~1) and as jW is varied (red solid curve, jS~1). B:

Distance between RKW and LKW as both jS and jW are varied.

Solid colored bands are contours indicating equal distance

between the knees. White x’s indicate values where the knees do

not exist.

(EPS)

Figure S2 Effects of model variability on distributions
of wake and sleep bout durations. Effects of model

variability on distributions of wake (A,C) and sleep (B,D) bout

durations. A,B: Variable neurotransmitter expression levels result

in positively skewed, Gaussian-like distributions with a positive tail

of long wake bouts. C,D: Random excitatory inputs to the wake-

promoting population result in a bi-modal distribution of wake

bout durations (C) and an exponential-like distribution of sleep

bout durations (D). Bout durations of the deterministic model are

indicated by vertical black lines in all plots; distributions were

normalized by the area under their curves.

(EPS)

Figure S3 Modulation of the REM-NREM hysteresis
loop in the post-REM sleep deprivation condition. Values

of stp at the right knee (upper curve, RKS ) and at the left knee

(lower curve, LKS ) of the S-shaped curve of fixed point solutions

(S) of the fast subsystem of the REM/NREM flip-flop, as a

function of k2
Roff . Observe that the stp interval between the knees

(vertical distance between curves) grows as k2
Roff decreases from the

baseline value of 7.

(EPS)

Appendix S1 Full model equations, analysis of the
effects of model variability on the dynamics of a single
flip-flop model, and analysis of the differences between
the model baseline and post-REM sleep deprivation
conditions.

(PDF)

Table S1 Model parameter values for baseline sleep
case.

(PDF)
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