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Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to exhibit therapeutic activity in cancer.
However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic
effects of TRAIL could be used for combinatorial therapy. Here we found that the ionophore antibiotic salinomycin acts in
synergism with TRAIL, enhancing TRAIL-induced apoptosis in glioma cells. Treatment with low doses of salinomycin in
combination with TRAIL augmented the activation of caspase-3 and increased TRAIL-R2 cell surface expression. TRAIL-R2
upmodulation was required for mediating the stimulatory effect of salinomycin on TRAIL-mediated apoptosis, since it was
abrogated by siRNA-mediated TRAIL-R2 knockdown. Salinomycin in synergism with TRAIL exerts a marked anti-tumor effect
in nude mice xenografted with human glioblastoma cells. Our results suggest that the combination of TRAIL and
salinomycin may be a useful tool to overcome TRAIL resistance in glioma cells and may represent a potential drug for
treatment of these tumors. Importantly, salinomycin+TRAIL were able to induce cell death of well-defined glioblastoma
stem-like lines.
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Introduction

Glioblastoma (GBM) is the most common and lethal brain

tumor and current standard therapies including surgery, chemo-

therapy and radiation provide no curative treatments. Thus,

developing of new treatment strategies remains as necessary as

ever [1].

A particularly promising novel therapeutic approach for GBM

is the reactivation of apoptosis by treatment with members of the

tumor necrosis factor (TNF) family, of which the TNF-related

apoptosis-inducing ligand (TRAIL) holds the greatest appeal [2].

TRAIL exerts its function by binding its membrane receptors,

designated TRAIL-R1/DR4, TRAIL-R2/DR5, TRAIL-R3/

DcR1 and TRAIL-R4/DcR2. Of these receptors, only TRAIL-

R1 and TRAIL-R2 transmit the apoptotic signal, while TRAIL-

R3 and TRAIL-R4 are thought to function as decoy receptors that

modulate TRAIL sensitivity [2].

TRAIL is a promising cancer drug because it induces apoptosis

almost specifically in tumor cells with minimal or no effect on

normal cells [3,4]. Unfortunately, a considerable number of cancer

cell types, including glioblastoma, have been found to be resistant

to the apoptotic stimuli of TRAIL. Therefore, the combination of

TRAIL with small molecules has been investigated as a strategy to

potentiate TRAIL cytotoxicity by the sensitization of TRAIL-

resistant cancer cells [5].

Salinomycin is a carboxylic polyether ionophore isolated from

Streptomyces albus [6] and commercially used as a coccidiostat for

poultry and a growth promoter for ruminants. Recently, Gupta et

al. have shown in a high-throughput screen that salinomycin was a

100 times more effective killer of breast cancer stem cells than

paclitaxel, a commonly used breast cancer chemotherapeutic drug

[7]. Although the mechanism of anticancer activity of salinomycin

is largely unknown, it appears that it might induce terminal

epithelial differentiation accompanied by cell cycle arrest rather

than trigger cytotoxicity [7]. The discovery of antineoplastic effects

of salinomycin by Gupta et al. has stimulated an intensive research

to investigate these new properties of the molecule and its potential

clinical use for the treatment of cancer [8]. Recent studies have

shown that salinomycin was able to block the proliferation of

cancer stem cells of gastrointestinal stromal tumors and also to

increase their sensitivity to the Kit/PDGFR inhibitor imatinib [9].

Furthermore, salinomycin was reported to inhibit cancer stem cells

derived from human lung adenocarcinoma A549 cells and

decreased in these cells the expression of stem cell markers [10].

Finally, salinomycin was able to target and to deplete mesenchy-

mal-like subpopulations, within squamous cell carcinomas [11].

The mechanism through which salinomycin affects cancer cell

proliferation is largely unknown. A recent report showed that

salinomycin induces apoptosis in human cancer cells through a

caspase-independent mechanism [12].

Other studies have shown that salinomycin is a p-glycoprotein

(Multi Drug Resistance 1) inhibitor [13] and overcomes p-

glycoprotein-mediated multidrug and apoptosis resistance [13,14].

In line with these observations, salinomycin was shown to sensitize

various types of cancer cells to doxorubicin and etoposide [15].

Very recently, it was shown that salinomycin acts as a very

potent inhibitor of the Wnt signalling cascade and, through this

mechanism, affected many Wnt target genes, including cyclin D1,
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fibronectin, LEF1 and depressed also LRP6 (Wnt co-receptor,

lipoprotein receptor related protein 6) levels inducing its degra-

dation [16]. Wnt/b-catenin signalling pathway seems to be

responsible also for the inhibitory effect exerted by salinomycin

on osteosarcoma tumor stem cells [17].

The effects of salinomycin on brain tumor cells do not have

been explored. In this context, a recent study, using the glioma

DBTRG-05MG cell line, showed that tumor cells surviving to

hydroxyurea or aphidicolin are slowly depleted by treatment with

salinomycin [18].

In the present study, we investigated the effects of TRAIL,

salinomycin and the combination of both agents in GBM cell lines.

The results demonstrated that salinomycin enhanced TRAIL-

induced apoptosis, mainly by up-regulating the expression of

TRAIL-R2.

Results

Antiproliferative effects of salinomycin and TRAIL on
GBM cell lines

We have evaluated the effect of salinomycin on the proliferation

of three human glioblastoma cell lines, U87MG, U251 and T98G.

Dose-response experiments carried out on cells exposed to

increasing concentrations of salinomycin (from 0.6 to 10 mM)

showed a decrease of viable cells, marked in U87MG cells and

moderate in T98G and U251 cells, respectively (Fig. 1A). Maximal

effects were observed at a salinomycin concentration correspond-

ing to 5–10 mM. In parallel, we have evaluated the sensitivity of

these cells to increasing doses of TRAIL, showing that only T98G,

but not U87MG and U251 cells were sensitive to the cytotoxic

effects of this death ligand (Fig. 1A, top panel). Cell growth

experiments carried out during 48 h exposure to these drugs

confirmed the results showing that salinomycin clearly inhibited

the growth of all these three cell lines, its effect being particularly

pronounced in U87MG cells (Fig. 1A, bottom panel).

Previous studies on other cancer models have reported a

consistent anti-proliferative activity of salinomycin. To this end we

have tried to analyse the mechanisms through which salinomycin

may exert its inhibitory effect on cell growth. Thus, we have first

explored the effect of salinomycin on cell cycle. Flow cytometry

analysis of the cell cycle on the salinomycin-sensitive cell line

T98G showed that this drug induced a significant accumulation of

tumor cells into S and G2/M fractions (Fig. 1B). A similar, but less

pronounced, effect of salinomycin has been observed also in the

other two cell lines, U87MG and U251 (Fig. 1B).

Salinomycin enhances TRAIL-induced apoptosis in GBM
cell lines

To evaluate the effect of the contemporaneous addition of

salinomycin and TRAIL in GBM cells, T98G and U251 cell lines

were treated with a low concentration (i.e., 1.2 mM) of salinomy-

cin, not suitable for inducing a significant reduction of viable cells

and in the absence or in the presence of increasing concentrations

of TRAIL. Interestingly, the addition of TRAIL, even at low

concentrations, i.e., at 10 ng/ml, caused a marked reduction of

viable cells, thus providing evidence that salinomycin and TRAIL

strongly synergize to induce glioblastoma cell death (Fig. 2A). To

provide a more direct evidence that salinomycin and TRAIL

synergize in inducing cell death of glioblastoma cells, we plotted

the cell viability data giving the 100% value both at measurements

performed either in the absence (0) or in the presence of 1.2 mM

salinomycin (Fig. 2B). This analysis provided evidence that in both

T98G and U251 cell lines salinomycin treatment greatly sensitizes

the cells to the cytotoxic effects of TRAIL.

To provide additional evidence about the capacity of salino-

mycin to enhance the sensitivity of glioblastoma cells to TRAIL,

we have explored the effects of this drug on other glioblastoma cell

lines. Thus, we have studied two additional glioblastoma cell lines,

A172 sensitive to TRAIL-mediated cytotoxicity and TB10

resistant to TRAIL. In both these cell lines there was clear

evidence that salinomycin enhances the sensitivity to TRAIL, as

shown by experiments similar to those performed for the other

glioblastoma cell lines (Fig. 2C and 2D).

According to these observations we conclude that salinomycin

and TRAIL synergize in inducing cell death of glioblastoma cells.

Since the cytotoxic effect of TRAIL is related to the induction of

apoptosis, we have examined the flow cytometry pattern of

Annexin V-FITC stained cells after treatment with TRAIL,

salinomycin and their combination (Fig. 3). Cells positive for

Annexin V-FITC and negative for propidium iodide (PI) are in

early stage of apoptosis as shown in Q4 quadrant, while cells

positive for both Annexin V-FITC and PI are in the late stage of

apoptosis or necrosis as shown in Q2 quadrant. Thus, the degree

of apoptosis correlates with the amount of positive Annexin V-

FITC cells. The results clearly showed that salinomycin-treated

cells were not able to bind Annexin V-FITC and therefore to

induce apoptosis. In contrast, the proportion of Annexin V-FITC

positive cells increased in response to TRAIL and even more after

the co-treatment with TRAIL and salinomycin, demonstrating

that salinomycin potentiates the apoptotic effect of TRAIL, both

in T98G and U251 cells (Fig. 3).

We have then investigated whether the cytotoxic effect of

salinomycin could be ascribed to a biochemical pathway involving

caspase activation. To this end we have performed two types of

experiments. First, we have evaluated the effect of salinomycin on

caspase-3 activation by Western blot analysis. Salinomycin alone

failed to induce any significant caspase-3 activation in both T98G

and U251 cells. Combining salinomycin with TRAIL resulted in a

clear caspase-3 activation as evidenced by the formation of

cleavage fragments of pro-caspase-3, corresponding to activated

caspase-3, and by the poly-ADP-ribose-polymerase (PARP)

cleavage (Fig. 4A). Next, we have tried to inhibit salinomycin-

induced cytotoxicity using the pan-caspase inhibitor zVADfmk.

The addition of zVADfmk was unable to protect T98G cells from

caspase-3 activation and PARP cleavage induced by salinomycin+
TRAIL treatment (Fig. 4A). In contrast, zVADfmk fully protected

from salinomycin+TRAIL-mediated caspase-3 activation and

PARP cleavage in U251 cells (Fig. 4A). Cell growth experiments

Figure 1. Effect of salinomycin and recombinant human TRAIL on viability and cell cycling of GBM cell lines. (A) GBM cells T98G,
U87MG and U251 have been plated either in the absence (not treated, NT) or in the presence of increasing concentrations of either salinomycin (Sal)
or TRAIL and the percentage of viable cells after 48 h of treatment (top panel) and the number of living cells at 24 and 48 h (bottom panel) have been
determined. Results reported in the top panel represent mean values 6 SEM observed in three separate experiments. ** and *** different from
control (NT) at significance level p,0.01 and p,0.001, respectively. Results reported in the bottom panel represent mean values observed in three
separate experiments. (B) Representative flow cytometric analysis of cell cycle of GBM cells grown for 48 h either in the absence (NT) or in the
presence of 10 mM salinomycin (Sal) (left panel). Proportion of cells into the various phases of the cell cycle, subdivided into three fractions G0–G1, S
and G2–M; the proportion of apoptotic sub-G1 cells is also reported (right panel). The data reported represent the mean values observed in three
separate experiments.
doi:10.1371/journal.pone.0094438.g001
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carried out during 24 h exposure to salinomycin, TRAIL and the

combination of both in GBM cells preincubated with zVADfmk

confirmed that the caspase inhibitor fully suppressed the cell death

induced by co-treatment with salinomycin and TRAIL in U251

cells, but not in T98G and U87MG cells (Fig. 4B).

Salinomycin enhanced TRAIL-induced apoptosis through
TRAIL-R2 upregulation on the cell surface

Salinomycin could potentiate TRAIL-mediated cytotoxicity on

GBM cells acting through different mechanisms. One of these

mechanisms could be related to a stimulation of either TRAIL-R1

or TRAIL-R2, the two receptors that mediate the cytotoxic effects

of TRAIL, activating the extrinsic cell death pathway. Thus, in a

first set of experiments we evaluated the effect of agonistic anti-

TRAIL-R1 (Mapatumamab) and anti-TRAIL-R2 (Lexatumamab)

on cell growth. Lexatumamab, but not Mapatumamab, when

added alone induced cell death in the TRAIL sensitive T98G cell

line; in contrast, in the U251 cell line, resistant to TRAIL,

Lexatumamab failed to induce cell death. The combination of

Lexatumamab and salinomycin, even at low doses, resulted in a

very pronounced cytotoxicity (Fig. 5). Given these results it seemed

of interest to evaluate a possible modulatory effect of salinomycin

treatment on TRAIL-R2 expression in GBM cell lines. Flow

cytometry and Western blot experiments clearly showed that

salinomycin treatment induced an upmodulation of TRAIL-R2

expression in T98G and U251 cells (Fig. 6).

In order to provide direct evidence that the stimulatory effect of

salinomycin on TRAIL-mediated apoptosis could be at least in

part mediated through TRAIL-R2 upmodulation, TRAIL-R2

expression was knockdown using specific siRNA. To this end,

T98G and U251 cells have been treated with a siRNA specific for

TRAIL-R2 or with a control scrambled siRNA, or with a siRNA

specific for TRAIL-R1. Cells treated with these various siRNAs

were then incubated for 24 hours with no additives (control) or

with either TRAIL (50 ng/nl) or with salinomycin (10 mM) or

both agents at the above doses. The results of these experiments

(Fig. 7) have shown that in T98G and U251 cells: (i) siRNA

TRAIL-R2, but not control siRNA or siRNA TRAIL-R1,

significantly reduced TRAIL-R2 expression, as assessed by flow

cytometry experiments (Fig. 7, top panels); siRNA TRAIL-R2, but

not siRNA TRAIL-R1 or control siRNA, was able to consistently

reduce the inhibition of cell vitality or the increase in apoptotic

cells induced by TRAIL or salinomycin+TRAIL, but not by

salinomycin alone (Fig. 7, middle and bottom panels). These

observations support a functional role for TRAIL-R2 in mediating

the stimulatory effect exerted by salinomycin on TRAIL-mediated

apoptosis of glioblastoma cell lines.

Effects of salinomycin treatment on caspase-8 activation
and mitochondrial membrane depolarization

In a subsequent set of experiments we have explored the

functional role of caspase-8 activation in the capacity of

Figure 2. Synergistic induction of cell death by salinomycin and TRAIL. (A) T98G and U251 cell lines have been grown for various periods of
time (indicated in each panel) in the absence (NT) or in the presence of 1.2 mM salinomycin (Sal) added alone or in combination with increasing doses
of TRAIL (from 10 to 200 ng/ml). At the end of the incubation the percentage of viable cells was determined by trypan blue exclusion test. The data
represent the mean 6 SEM values observed in three separate experiments. *** different from control (NT) at significance level p,0.001. (B) T98G and
U251 cells have been grown in the presence of increasing concentrations of TRAIL (from 10 to 200 ng/ml) either in the absence (Sal 0) or in the
presence of 1.2 mM salinomycin (Sal 1.2 mM). The results are plotted assuming the 100% value of cell vitality for either Sal 0 or Sal 1.2 mM, in the
absence of TRAIL. The data represent mean values observed in three separate experiments. * and ** different from control (NT) at significance level
p,0.05 and p,0.01, respectively. (C) A172 cell line has been grown for 48 h in the absence (NT) or in the presence of increasing concentrations of
TRAIL (from 10 to 100 ng/ml), 1.2 mM Salinomycin (Sal) added alone or in the presence of increasing TRAIL concentrations. TB10 cell line has been
grown in the absence (NT) or in the presence of increasing concentrations of Salinomycin (Sal, from 0.6 to 10 mM) or in the presence of 50 ng/ml
TRAIL (TRAIL) added alone or in combination with increasing concentrations of Salinomycin. At the end of the incubation period the percentage of
viable cells was determined by trypan blue exclusion test. The data represent the mean6SEM values observed in three separate experiments. (D) The
A172 and TB10 cells were grown as reported in C and the results were plotted assuming the 100% value of cell viability for either Sal 0 or Sal 1.2 mM
(A172 cells) or for either TRAIL 0 or TRAIL 50 ng/ml (TB10 cells). The data represent mean values observed in three separate experiments.
doi:10.1371/journal.pone.0094438.g002

Figure 3. Effect of salinomycin and TRAIL added alone or in
combination on the induction of apoptosis. T98G and U251 cells
were incubated for 24 h either in the absence (NT) or in the presence of
salinomycin (10 mM), TRAIL (50 ng/ml) or salinomycin+TRAIL (at the
above concentrations). The induction of apoptosis was evaluated by
Annexin V-FITC and propidium iodide (PI) staining.
doi:10.1371/journal.pone.0094438.g003
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salinomycin to potentiate the antitumor effects of TRAIL. Western

blot analysis showed that salinomycin elicited a marked increase in

caspase-8 activation, as evidenced on the basis of the decrease of

pro-caspase-8 levels in TRAIL-sensitive T98G, but not in U251

cells (Fig. 8A).

Since early mitochondrial perturbations are observed during the

induction of apoptosis and other types of cell death [19], we have

evaluated the loss of mitochondrial membrane potential (DYm)

using the JC-1 dye. JC-1 is cationic dye that exhibits potential-

dependent accumulation in mitochondria by fluorescence emission

shift from green (,520 nm) to red (,590 nm). Consequently,

mitochondrial depolarization is indicated by a decrease in the red–

green fluorescence intensity ratio. This analysis provided clear

evidence that salinomycin was able to induce a pronounced

increase in the proportion of cells exhibiting a loss of DYm when

added alone, and this effect was potentiated by the combination of

salinomycin with TRAIL (Fig. 8B). It’s important to note that in

the TRAIL-sensitive T98G cells, the death ligand itself induced a

mitochondrial perturbation, which markedly increased due to the

synergistic action of salinomycin and TRAIL (Fig. 8B, left panel).

In contrast, in U251 cells, which are markedly less sensitive than

T98G cells to the pro-apoptotic effects of TRAIL, the loss of DYm

after TRAIL and salinomycin co-treatment is probably mainly due

to salinomycin action (Fig. 8B, right panel).

Combined treatment with salinomycin and TRAIL
markedly inhibits glioblastoma xenograft growth

To evaluate the antitumor effect of salinomycin, TRAIL, or the

combined treatment in vivo, we generated subcutaneous xenografts

by inoculating the U251 cell line in the flank nude mice. When the

tumor reached a volume of about 100 mm3, approximately 4

weeks post inoculum, treatment was started. Tumor size and body

weight were measured twice a week during treatment. As shown in

Fig. 9A, treatment with TRAIL did not modify tumor growth

kinetic, as compared to controls; salinomycin induced a limited

Figure 4. Mechanism of cell death induced by salinomycin+TRAIL. (A) Western blot analysis of cellular extracts derived from T98G and U251
cells incubated for 24 h either in the absence (NT) or in the presence of either salinomycin 10 mM, TRAIL (50 ng/ml) or salinomycin+TRAIL (at the
above concentrations) or salinomycin+TRAIL+the caspase inhibitor zVADfmk (40 mM). The cell extracts were first run on SDS-PAGE, transferred to
nitrocellulose membranes and blotted with either anti-human caspase-3, anti-human PARP or anti beta-actin. One representative experiment out of
three performed is shown. (B) T98G, U87MG and U251 cells have been grown for 24 h in the different experimental conditions reported in the figure
and then analysed for cell vitality. The proportion of viable cells is reported (mean values 6 SEM observed in three separate experiments). ***
different from control (NT) at significance level p,0.001.
doi:10.1371/journal.pone.0094438.g004
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delay in tumor growth, not reaching statistical significance. Finally,

combined treatment with salinomycinnand TRAIL elicited a

marked inhibitory effect on xenograft development (p = 00.2

versus untreated mice; p = 0.03 versus TRAIL-treated mice;

p = 0.045 versus salinomycin-treated mice). Tumor weight, mea-

sured after sacrifice, (Fig. 9B) confirms a pronounced and

significant decrease of tumor development in mice treated with

the combination of salinomycin and TRAIL, as compared to the

other experimental groups. Histologic analysis of tumor sections

showed a markedly decreased cellularity in Salinomycin+TRAIL-

treated mice, compared to all other experimental groups (NT,

Salinomycin or TRAIL) (Fig. 9C). As expected the number of

apoptotic tumor cells was markedly higher in tumor-bearing mice

Figure 5. Effect of agonistic anti-TRAIL-R1 (Mapatumamab) or
anti-TRAIL-R2 (Lexatumamab) mAbs on the induction of cell
death of T98G, U87MG and U251 cell lines. The cells were
incubated for 24 h with the indicated concentration of salinomycin
(Sal), Mapatumamab (Mapa) and Lexatumamab (Lexa) and then
analysed for cell vitality. The results represent the mean values 6

SEM observed in three separate experiments. *** different from control
(NT) at significance level p,0.001.
doi:10.1371/journal.pone.0094438.g005

Figure 6. Effect of salinomycin on TRAIL-R2 expression. (A)Flow
cytometric analysis of TRAIL-R2 expression of T98G and U251 cells
grown for 24 h in the absence (NT) or in the presence of 10 mM
salinomycin (Sal). (B) Western blot showing protein levels of TRAIL-R2 in
U251 cells after treatment for the indicated time with TRAIL,
salinomycin (Sal), TRAIL+salinomycin (TRAIL+Sal) and TRAIL+salinomy-
cin+zVAD.
doi:10.1371/journal.pone.0094438.g006
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treated with Salinomycin+TRAIL compared to all other experi-

mental groups (Fig. 9D).

Sensitivity of glioblastoma neurospheres to salinomycin
and TRAIL

A subpopulation of glioblastoma stem-like cells (GSCs) that

shares properties with neural precursor cells has been described,

exhibiting resistance to therapy and therefore being considered

responsible for the high recurrence rate of glioblastoma [20].

Therefore, given the anti-cancer stem properties of salinomycin, it

seemed particularly important to evaluate a possible effect of this

drug added alone or in combination with TRAIL on the growth

and apoptosis of GSCs. To perform this analysis we have used

glioblastoma neurosphere lines GSC1, GSC30 and GSC83,

previously isolated and extensively characterized in our laboratory

[21,22]. The individual sensitivity of these glioblastoma neuro-

sphere clones to the antiproliferative and apoptosis-inducing

effects of salinomycin and TRAIL was variable (Fig. 10). However,

in spite this consistent variability, the addition of salinomycin

(either at 1 or 5 mM) together with TRAIL (10 ng/ml) elicited a

significant increase of the inhibitory effect on cell growth and on

the stimulatory effect on tumor cell apoptosis (Fig. 10).

As above mentioned, one of the mechanisms responsible for the

cooperative effect induced by salinomycin on TRAIL sensitivity of

glioblastoma cells lines seems to be related, at least in part, to a

stimulatory effect on TRAIL-R2 expression. Thus, we have

evaluated the effect of salinomycin on TRAIL-R expression of

GSC neurosphere lines. All the three untreated GSC clones clearly

expressed TRAIL-R2 (a higher expression was observed in

GSC30 and GSC83, compared to that observed in GSC1), but

not TRAIL-R1, whose expression was virtually undetectable (data

not shown). Salinomycin addition clearly increased TRAIL-R2

expression, as shown by the analysis of mean fluorescence intensity

values observed in three separate experiments (Fig. 10C).

Discussion

High-grade astrocytomas, that include glioblastoma multiforme

and anaplastic astrocytoma, are the most common and aggressive

primary malignant brain tumors in adults. Despite improvements

in overall survival with addition of temozolomide to radiation in

the adjuvant setting, the prognosis of patients affected by these

tumors remains particularly poor. For these reasons there is

absolute need for the development of innovative therapies. In this

context, particularly interesting seems the identification and

evaluation of a new category of drugs of recent identification,

selected according to their capacity to inhibit the growth of cancer

stem cells. One of the first drugs active against cancer stem cells

was salinomycin [7]. Given the peculiar properties of this

antibiotic, it seemed of interest to evaluate a possible antitumor

activity of this compound against glioma tumor cells. At the best of

our knowledge, this is the first report describing the antitumor

properties of salinomycin against malignant gliomas.

A major finding of our study is that we demonstrate for the first

time that salinomycin enhances TRAIL-induced apoptosis in

glioblastoma, at least in part through TRAIL-R2 upmodulation.

Although many cancer cells are preferentially sensitive to TRAIL-

induced apoptosis, the sensitivity of glioblastoma cells is highly

variable, and most short-term primary glioblastoma cultures, as

well as many glioblastoma cell lines, are TRAIL insensitive [23].

Various mechanisms operating in glioblastoma cells have been

involved in TRAIL resistance of these cells: FLIP overexpression

due to its stabilization mediated by PTEN loss [24]; absent/low

caspase-8 and/or TRAIL-R2 expression [25]; impaired cell death

signaling originated from TRAIL-R activation [26]. Recent

studies have identified a new mechanism of TRAIL resistance

observed in some glioblastoma cell lines (including TB10, U251

and U87MG) and mediated by overexpression of miR-21 and

miR-30b/c, responsible for the targeting of caspase-3 and Tap63

mRNAs [27]. It is important to note that in the present study we

have included three TRAIL-resistant cell lines, U251, TB10 and

U87MG. Salinomycin was able to induce TRAIL sensitivity of

U251 and TB10 cell lines, but not of U87MG. We do not know

the exact molecular mechanisms responsible for U87MG cells

resistance to TRAIL sensitization, but preliminary evidence

suggests that it could be related to low caspase-8 expression (data

not shown). Our observations are in line with a recent study

showing that U87MG cells are completely resistant to TRAIL; in

this study it was provided evidence that TRAIL resistance of

these cells could be related to an enhanced expression of the

anti-apoptotic protein Mcl-1 and agents lowering the levels of this

protein restore TRAIL sensitivity [28].

TRAIL-R2 upmodulation induced by salinomycin seems to be

relevant to explain the stimulatory effect of this drug on TRAIL-

mediated cell death and this for several reasons. First, TRAIL-R2,

but not TRAIL-R1, is the main TRAIL receptor expressed on

glioblastoma cells and its activation may trigger caspase-8 cleavage

and initiation of apoptosis [29]. Second, several agents that

upmodulate TRAIL-R2 expression in glioblastoma cells, such as

cisplatin [30], lanatoside C [31], nelfinavir [32], the protesome

inhibitor SC68896 [33] restore TRAIL sensitivity of glioblastoma

cells. Third, the level of TRAIL-R2 expression on glioblastoma

cells positively correlates with patient’s survival and alone

represents an independent and significant prognostic factor for

survival [34]. The suggestion that TRAIL-R2 upmodulation by

salinomycin is a biochemical event essential for the stimulatory

activity of this drug on TRAIL-mediated apoptosis is directly

supported by experiments carried out silencing expression of

TRAIL-R2 expression in glioblastoma cell lines using a specific

siRNA. Thus, our experiments have shown that inhibition of

TRAIL-R2 expression in T98G and U251 cells almost completely

abrogated the stimulatory effect of salinomycin on TRAIL-

mediated apoptosis. This observation suggests a potential use of

salinomycin to bypass the intrinsic resistance of glioblastoma cells

to TRAIL-mediated apoptosis. It is of interest to note that a recent

study reported that monensin, a ionophore structurally related to

Figure 7. Effect of silencing of RNA encoding TRAIL-R2 on the cell growth inhibition and induction of cell death induced by
salinomycin or TRAIL added alone or in combination. T98G (left panels) and U251 (right panels) cells have been incubated for 72 h either with
siRNA C or siRNA TRAIL-R1 or siRNA TRAIL-R2 and then incubated for additional 24 hours either in the absence of additives (Control, C) or in the
presence of either salinomycin (10 mM) or TRAIL (50 ng/ml) or both compounds at the above doses. At the end of this time the cells have been
recovered and evaluated for TRAIL-R2 expression (top panels) by flow cytometry or for the cell survival (middle panels) by cell counting after trypan
blue staining or for the evaluation of cell death (assayed by flow cytometry after labelling with annexin V and propidium iodide). The data reported in
the figure represent mean values 6 SEM observed in three separate experiments. The statistical analysis of the data showed: in top panels a very
significant difference between siRNA TRAIL-R2 and si RNA C and siRNA TRAIL-R1 (for both p,0.01); in middle and bottom panels a very significant
difference for both TRAIL and TRAIL+Salinomycin-treated samples between siRNA TRAIL-R2 and siRNA C (p,0.01) and siRNA TRAIL-R1 (p,0.01).
doi:10.1371/journal.pone.0094438.g007
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salinomycin, overcomes TRAIL resistance in glioblastoma cell

lines through TRAIL-R2 upmodulation and c-FLIP downregula-

tion [35]. Interestingly, salinomycin induces apoptosis of cisplatin-

resistant ovarian cancer cells through TRAIL-R2 upmodulation

[36], thus indicating that an increased expression of this receptor

may represent a general mechanism through which salinomycin

enhances the sensitivity of tumor cells to the death ligand TRAIL.

However, we cannot exclude that salinomycin may stimulate the

sensitivity of glioblastoma stem cells to TRAIL, acting through

molecular mechanisms differrent from TRAIL-R2 upmodulation.

In fact, in line with this hypothesis, studies carried out in breast

cancer [37] and ovarian cancer [38] cell lines have reported an

inhibitory effect of salinomycin on surviving expression, dependent

upon Stat3 inhibition.

However, salinomycin on its own causes a cytotoxic effect on

glioblastoma cells, related to the activation of a caspase-

independent cell death pathway. In fact, salinomycin-sensitive

glioblastoma cell lines did not show caspase activation following

salinomycin treatment; furthermore, zVAD, a pan-caspase inhib-

itor was unable to protect glioblastoma cells from salinomycin-

Figure 8. Effect of salinomycin and TRAIL added alone or in combination on caspase-8 activation and mitochondrial function. (A)
Western blot analysis of cellular extracts derived from T98G and U251 cells incubated for 8 h and 24 h respectively, either in the absence (NT) or in
the presence of salinomycin (10 mM), TRAIL (50 ng/ml) or salinomycin+TRAIL (at the above concentrations). The cell extracts were first run on SDS-
PAGE, transferred to nitrocellulose membranes and blotted with either anti-human caspase-8 or anti beta-actin. One representative experiment out
of three performed is shown. (B) Analysis of the mitochondrial membrane potential (Ym) in T98G and U251 cells grown in the various conditions
reported in the figure for 8 h and 24 h (T98G) or 48 h (U251). The proportion of cells exhibiting low Ym is reported.
doi:10.1371/journal.pone.0094438.g008
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induced cell death; finally, salinomycin-treated cells fail to bind

annexin V, a typical feature of apoptotic cells. These findings are

at variance with those reported in other tumor cell types, such as

prostate cancer cells [39] and chronic lymphocytic leukemia [16],

where salinomycin induces cell death by apoptosis [39]. It is of

interest to note the results recently reported for another drug,

lanatoside C. In fact this drug, like salinomycin, acts in

glioblastoma cells as a sensitizer to TRAIL-induced cell death

via TRAIL-R2 upregulation; furthermore, both lanatoside C and

salinomycin, on their own, induce cell death of glioblastoma cells

by a caspase-independent mechanism; finally, lanatoside C, like

salinomycin, causes a decrease of mitochondrial membrane

potential [40].

One important caveat for the potential clinical use of

salinomycin is its severe toxicity. In fact, some incidents occurred

in humans when salinomycin was accidentally ingested at

relatively high doses [41]. In these cases, as well as in cases of

animal poisoning, a significant neuromuscular toxicity was

observed. In line with these findings, a recent study provided

evidence that salinomycin at the micromolar range (1–10 mm)

cause in vitro a cytotoxic effect on murine dorsal root ganglia

neurons by means of calpain and cytochrome c-mediated caspase

9 and subsequent caspase 3 activation [42]. Therefore, in view of a

possible clinical use of this antibiotic it is particularly important to

identify drug combinations, allowing both to potentiate the

antitumor activity of salinomycin and to decrease the concentra-

tion of this drug. The combination of salinomycin with either

TRAIL or an agonistic anti-TRAIL-R2 antibody seems to fulfill

both these requests. In fact, we observed a synergistic interaction

between salinomycin and TRAIL, showing that salinomycin in the

nanomolar range was able to greatly potentiate TRAIL-induced

cell death of glioblastoma cells.

Studies carried out during the last years have shown that

glioblastomas and other brain cancers contain cell hierarchies of

tumor cells, with highly tumorigenic cells that display stem cell

features and are capable of creating a complex tumor upon

transplantations [20]. Glioblastoma stem cells are resistant to

chemotherapy and radiotherapy and have also an increased

capacity for invasion and angiogenesis and are, therefore,

important therapeutic targets [20]. Given the scarce sensitivity of

glioblastoma cells and, particularly, of glioblastoma CSCs to

various anticancer agents, it seemed particularly interesting to

investigate their sensitivity to salinomycin, a drug active against

various types of CSCs. Through the analysis of three glioblastoma

neurosphere clones we obtained evidence that they are scarcely

sensitive to salinomycin and moderately sensitive to TRAIl, but

are markedly inhibited in their growth and survival by the

combined addition of these two agents. At the best of our

knowledge, this is the first study reporting a high sensitivity of

glioblastoma CSCs to the combined addition of salinomycin and

TRAIL. Only a recent study reported the scarce sensitivity of two

glioblastoma CSC clones to salinomycin; only the combined

addition of salinomycin and a histone deacetylase inhibitor,

valproic acid, elicited a moderate cytotoxic effect on these cells

[43].

In conclusion, the results of the present study provide an initial

set of observations suggesting a significant anti-glioblastoma

activity of salinomycin in combination with TRAIL. Future

studies will assess the real impact of this drug combination in

malignant glioma therapy.

Materials and Methods

Cell culture
The glioblastoma cell lines T98G, U87MG, U251 and A172

were obtained through the courtesy of Dr R Pallini (Neurosurgery

Institute, Sacre Heart Catholic University Rome, Italy). These cell

lines were initially obtained from ATCC and were currently

characterized for their immunophenotypic features. The TB10 cell

line [44] was isolated in the laboratory of Dr R. Pallini and

obtained through the courtesy of this investigator.

The human GBM cell lines U87MG, T98G, U251, A172 and

TB10 were grown in DMEM medium (Gibco, Invitrogen, Milan,

Italy) containing 10% fetal bovine serum (FBS). The cells were

routinely checked for the presence of mycoplasma.

Isolation, growth and analysis of glioblastoma
neurospheres

Glioblastoma stem cells (GSCs) were isolated from tumor

surgical specimens through mechanical dissociation of the tumor

tissue and cultured at clonal density in serum-free medium

supplemented with EGF and basic-FGF, as previously reported

(21). This procedure was used to obtain the formation of

exponentially growing neurospheres that maintain an undifferen-

tiated state when grown in this serum-free medium (21). The

tumorigenic and the main phenotypic properties of the isolated

stem-like clones was previously described in detail (21). The

sensitivity of three different glioma stem-like clones (GSC1,

GSC30 and GSC83) to salinomycin and TRAIL was used in this

study. The properties of these three neurosphere glioblastoma

clones were previously reported (22).

Reagents
Salinomycin was purchased from Sigma Co (St. Louis, USA).

Recombinant human TRAIL (rh superkiller TRAIL) was

purchased from Alexis Co (Alexis, Co, Lausen, Switzerland) and

recombinant human soluble TRAIL-R2 was purchased from

Peprotech (Peprotech, Rocky Hill, NJ, USA). The agonistic

monoclonal antibodies to TRAIL-R1 (Mapatumamab) and

TRAIL-R2 (Lexatumamab) are fully human antibodies of IgG1

isotype [45,46] and were generously provided by Human Genome

Sciences (Rockville, MD, USA). In some experiments the cells

were preincubated with a pan-caspase inhibitor, N-benzyloxy-

carbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVADfmk, Sig-

ma, St Louis, USA).

Figure 9. Salinomycin in combination with TRAIL markedly inhibits the growth of glioblastoma xenografts. 16106 U251 cells were
injected subcutaneously into nude mice as described in Materials and Methods, and treatment was started when the tumors reached 100 mm3. TRAIL
(5 mg/Kg) and salinomycin (200 ng/kg) were administered 3 times/week, intraperitoneally. Control mice received vehicle only, according to the same
schedule. Tumor volume was measured by caliper. Tumor fold increase is reported inn the Figure. Data represent the mean of 5 tumors6SEM, and
significance of the results was evaluated by ANOVA and Bonferroni post-tests, as described in the section on statistical methods. A) Tumor growth
kinetic; B) Tumor weight post-sacrifice; Representative pictures of tumor mass harvested at sacrifice, for each of the four experimental subgroups (top
panels) and tumor weight post-sacrifice (mean of 56SEM); C) Tumor histological analysis of tissutal sections stained with Hematoxylin Eosin
(representative pictures); D) Immunofluorescence analysis of tumor apoptotic cells detected by TUNEL reaction (representative pictures): left panels:
Hoechst 3326 staining; middle panels: TUNEL staining; right panels: merged of both stainings.
doi:10.1371/journal.pone.0094438.g009
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Cell cycle analysis by propidium iodide/fluorescence
activated cell sorting

Cells were harvested with trypsin, washed, fixed and resus-

pended in 400 ml of propidium iodide (PI) solution (50 mg/ml PI,

0.1% Triton X-100, and 0.1% sodium citrate in PBS) (Cycle Plus

DNA Staining Kit, Becton Dickinson, San José, CA, USA). The

cells were then analyzed by flow cytometry using a software

dedicated for DNA analysis (ModFit LT Software, Verity Software

House, Tophsam, ME, USA).

Western blot analysis
Whole cell extracts were obtained lysing the cells in a buffer

containing 20 mM HEPES, 50 mM NaCl, 10 mM EDTA, 2 mM

EGTA, 0.5% NP-40, 1 mM DTT, 0.1 mM PMSF, 2 mg/ml

Leupeptin, 2 mg/ml Aprotinin, 25 mM NaF, and 10 mM

Na3VO4. After incubation for 30 min on ice, the protein lysates

were cleared of debris by centrifugation at 10,000 g for 10 min.

The protein concentration in the soluble supernatant, was

determined using the Bio-Rad protein assay (Bio-Rad, Richmond,

VA, USA). Cellular lysates were resolved by 12% SDS-PAGE

under reducing and denaturing conditions and transferred to

nitrocellulose filter. The blots were blocked using 5% non-fat dry

milk in TBST (10 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1%

Tween 20) for 1 hour at room temperature, followed by

incubation with primary antibodies overnight at 4uC. After

washing with TBST, the filters were incubated with appropriate

horseradish-peroxidase-conjugated secondary antibodies (Bio-

Rad, CA, USA) for 1 hour at room temperature. Immunoreac-

tivity was revealed by using an ECL detection kit (Pierce. IL,

USA). The primary antibodies were anti-caspase-3 (Upstate

Biotechnology, Lake Placid NY, USA), anti-caspase-8 (Upstate

Biotechnology, Lake Placid NY, USA), anti-PARP (R&D System

Inc., Minneapolis, MN), anti-TRAIL-R2 (Alexis Biochemicals,

San Diego, CA, USA) and anti-actin (Oncogene research

Products, Cambridge, MA), the last used as loading control.

Flow cytometry analysis of TRAIL-R2
T98G and U251 cells were detached from the tissue culture

flasks using a non-enzymatic detaching solution (Sigma, St Louis,

USA). Cell aliquots were washed twice in cold PBS and then

incubated with 5 mg/ml of PE-conjugated anti-TRAIL-R2 (R&D

System, Minneapolis, USA) for 1 h at 4uC. The isotypic control

antibody was mouse IgG conjugated with PE (R&D System,

Minneapolis, USA). After three washes with PBS, cells were

immediately analyzed for fluorescence using FAC-Scan (Becton

Dickinson, San José, CA, USA).

Analysis of mithocondrial depolarization
5,59,6,6-tetrachloro-1,19,3,39-tetraethylbenzimidazzolylcarbo-

cyanine (JC-1, Pharmingen, USA) was used to measure mito-

chondrial depolarization in T98G and U251 cells. Cells were

treated for appropriate time with different compounds, then

collected by trypsinization and incubated in complete media for

10 min. Then, the cells were incubated in 5 mg/ml JC-1 at 37uC
for 15 min and washed with PBS. Both red (lem: 590 nm for FL2-

H) and green (lem: 527 nm for FL1-H) fluorescence emissions

were analysed by FACS at excitation wavelength of 488 nm.

Apoptosis assessment by Annexin V staining
After drug treatments, cells were resuspended in 200 ml staining

solution (containing Annexin V fluorescein and propidium iodide

in a Hepes buffer, Annexin V-FITC Staining Kit, Pharmingen,

San Jose, CA, USA). Following incubation at room temperature

for 15 min, cells were analyzed by flow cytometry. Annexin V

binds to those cells that express phosphatidylserine on the outer

layer of the cell membrane, and propidium iodide stains the

cellular DNA of those cells with a compromised cell membrane.

This allows for the discrimination of live cells (unstained with

either fluorochrome) from apoptotic cells (stained only with

Annexin V) and necrotic cells (stained with both Annexin V and

propidium iodide).

Cell transfection
Transient transfections of T98G and U251 cells with small

interfering (si)RNA were carried out using Lipofectamine 2000

(Invitrogen, Carlsbad, CA, USA). Two chemically synthesized

siRNAs (Silencer Select Pre-designed and Validated siRNA) to

TRAIL-R1 (S16764) and TRAIL-R2 (S16756), and scrambled

siRNAs were purchased from Ambion and transfected at 10 nM

final concentration. After 72 hours, the cells were treated with no

additives (Control) or 50 ng/ml TRAIL or 10 mM Salinomycin or

both drugs at the above doses. After 72 hours, the expression of

TRAIL-R2 was assayed by flow cytometry.

Xenograft assays
All animal procedures were performed according to the national

Animal Experimentation guidelines (D.L.116/92) upon approval

of the experimental protocol by the Institutional Animal Exper-

imentation Committee. NSG mice were purchased from JACK-

SON Laboratories and maintained in microisolation cages. For

the xenograft assay, U251 cells (106 cells in 100 mL of saline/

Matrigel (BD Pharmigen San Jose, Ca), 1:1 v/v) were injected

subcutaneously into the right flank of 6-weeks-old female animals.

The size of the tumors was measured by caliper twice a week, and

tumor volumes were calculated using the following formula: p/

66d26D. Treatments were started after tumor reached approx-

imately 100 mm3. TRAIL (5 mg/kg) and salinomycin (200 ng/kg)

were administered 3 times/week, intraperitoneally. Control mice

received vehicle only, according to the same schedule.

The statistical significance of the results was evaluated by

ANOVA and Bonferroni post-tests. All statistical analyses were

performed using GraphPad Prism v.4.0 for Windows (GraphPad

Software, San Diego, CA, www.graphpad.com) and statistical

Figure 10. Effect of salinomycin and recombinant TRAIL on cell growth (A), cell death (B) and TRAIL-R2 (C) expression of GSC
neurospheres. A and B – Glioblastoma neurosphere clones GSC1, GSC30 and GSC83 were grown for 48 hours either in the absence (C) or in the
presence of either TRAIL (10 ng/ml) or Salinomycin 1 mM or Salinomycin 5 mM or Salinomycin 1 mM+TRAIL or Salinomycin 5 mM+TRAIL and the
number of viable cells was determined by the quantification of cellular ATP content using the Cell Titer-Glo Luminescen Cell Viability Assay Kit (A) and
the percentage of apoptotic cells by the Annexin-V binding assay (B). The results represent the mean values observed 6 SEM observed in three
separate experiments, each performed in duplicate. For all these treatments and for all the three neurosphere clones, the difference between the
values observed for TRAIL and Salinomycin 1 mM+TRAIL or Salinomycin 5 mM+TRAIL were statistically significant (p = ,0.05 or ,0.01) and the values
observed for Salinomycin 1 mM and Salinomycin 1 mM+TRAIL or Salinomycin 5 mM and Salinomycin 5 mM+TRAIL (p = ,0.05 or ,0.01) were
statistically significant. (C) Flow cytometric detection of TRAIL-R2 expression in GSC1 cells grown for 24 h either in the absence or in the presence of
salinomycin (1 or 5 mM). The results are expressed in terms of mean fluorescence intensity (MFI) values observed in three separate experiments (mean
values6SEM). The differences between the values observed between 1 mM or 5 mM salinomycin and control are statistically significant (both p,0.01).
doi:10.1371/journal.pone.0094438.g010

Salinomycin and Glioblastoma Cells

PLOS ONE | www.plosone.org 14 April 2014 | Volume 9 | Issue 4 | e94438

www.graphpad.com


significance was accepted up to 0.05. P values are displayed on the

graphs using a single asterisk for significances ranging from 0.05 to

0.01, two asterisks for values between 0.001 and 0.01 and three

when statistical differences produced significance below 0.001.

The presence of apoptotic cells in the tumor sections was

evaluated by the TUNEL reaction, using the Boheringer

Mannheim in situ Cell Detection Kit, Immunofluorescence.

Statistical analysis
Data were analyzed using parametric statistics with one-way

analysis of variance (ANOVA). Post hoc tests included the Student’s

t-Test and the Tukey multiple comparison tests as appropriate

using Prism (GraphPad, San Diego, CA, USA). Data are

presented as mean value 6 SEM from free independent

experiments. Significance was set at p,0.05.
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