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Abstract

Objectives: ACAT2 is the exclusive cholesterol-esterifying enzyme in hepatocytes and enterocytes. Hepatic ABCA1 transfers
unesterified cholesterol (UC) to apoAI, thus generating HDL. By changing the hepatic UC pool available for ABCA1, ACAT2
may affect HDL metabolism. The aim of this study was to reveal whether hepatic ACAT2 influences HDL metabolism.

Design: WT and LXRa/b double knockout (DOKO) mice were fed a western-type diet for 8 weeks. Animals were i.p. injected
with an antisense oligonucleotide targeted to hepatic ACAT2 (ASO6), or with an ASO control. Injections started 4 weeks
after, or concomitantly with, the beginning of the diet.

Results: ASO6 reduced liver cholesteryl esters, while not inducing UC accumulation. ASO6 increased hepatic ABCA1 protein
independently of the diet conditions. ASO6 affected HDL lipids (increased UC) only in DOKO, while it increased apoE-
containing HDL in both genotypes. In WT mice ASO6 led to the appearance of large HDL enriched in apoAI and apoE.

Conclusions: The use of ASO6 revealed a new pathway by which the liver may contribute to HDL metabolism in mice.
ACAT2 seems to be a hepatic player affecting the cholesterol fluxes fated to VLDL or to HDL, the latter via up-regulation of
ABCA1.
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Introduction

For many years, the inhibition of intracellular cholesterol

esterification has been considered as a potential strategy to prevent

atherosclerosis [1]. Acyl-coenzyme A:cholesterol acyltransferase

(ACAT) is an enzyme located in the endoplasmic reticulum that

catalyses the synthesis of cholesteryl esters (CE) by conjugating

cholesterol to long-chain fatty acids; mainly oleic and palmitic

acids. It is now clear that the two enzymes ACAT1 and ACAT2,

which are encoded by the Soat1 and Soat2 genes respectively,

localize in different cell types and have separate physiological

functions (for review see [2,3]). ACAT1 is ubiquitously expressed

and provides essential housekeeping functions to prevent the

toxicity induced by increasing amounts of unesterified cholesterol

(UC) in cells. Conversely, ACAT2 is exclusively expressed in

hepatocytes and enterocytes, and it synthesizes CE that can be

incorporated into apoB-containing lipoproteins (VLDL and

chylomicrons). In mice deletion of Soat1 or Soat2 genes revealed

a diverse role for the different ACAT enzymes in atherosclerosis.

In Soat1 knockout animals, ACAT1 deficiency led to a marked

alteration in cholesterol metabolism resulting in massive accumu-

lation of UC, which caused numerous skin and brain lesions, and

worsened atherosclerosis. Conversely, the deletion of the Soat2

gene has been consistently atheroprotective [4–6]. Previous studies

also suggest a clear atherogenic potential of ACAT2-derived CE

also in humans. In both women and men, the Atherosclerosis Risk

in Communities (ARIC) study revealed an association between the
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carotid intima-media thickness and the ACAT2-derived CE in

lipoproteins [7]. Also, the Uppsala Longitudinal Study of Adult

Men (ULSAM) showed an association between the ACAT2-

derived CE in lipoproteins and CVD mortality [8]. Finally,

ACAT2-derived CE in lipoproteins were able to predict coronary

artery disease in patients with symptoms of acute coronary

syndrome [9]. Athero-protection was also achieved in mice using

anti-sense oligonucleotide targeted to hepatic Soat2 mRNA (ASO6)

and resulting in a decreased ACAT2 activity in the liver [10].

These studies did not address whether a decreased hepatic

ACAT2 activity modifies HDL metabolism. In addition, inconsis-

tent results on HDL cholesterol levels were obtained in mice in

which ACAT2 activity was reduced by genetic manipulation

[4,6,11–14]. We hypothesized that a low ACAT2 activity in the

liver would result in a greater UC mass that in turn could be

secreted into nascent HDL by ABCA1. Hence, we reduced

hepatic ACAT2 activity by injection of ASO6 in male C57BL/6

and in Liver X Receptor (LXR) a/b double knockout (DOKO)

mice. In DOKO mice the link between ACAT2 activity and HDL

metabolism should be more evident. This mouse model is

characterized by a reduced bile acid (BA) synthesis, which is

paralleled by a maintained ABCA1 expression in the liver.

Considering the possible fate of cholesterol in the hepatocytes (i.e.

the esterification by ACAT2 to be incorporated in VLDL or

stored, the conversion into BA, and the efflux into nascent HDL) a

reduction of the ACAT2 activity in DOKO mice, may indeed lead

to a greater UC mass available for secretion into nascent HDL.

Finally, we also investigated whether the metabolic response

following a decreased hepatic ACAT2 activity was influenced by

the time frame in which the animals were fed a western type of

diet.

Our results identify hepatic ACAT2 as an important player for

HDL metabolism since the activity of this enzyme may influence

the intracellular cholesterol fated to secretion either into VLDL or

into HDL particles; the latter via an increased expression of the

ABCA1 protein.

Material and Methods

Animals and experimental design
Ten-week-old male wild-type (WT), and LXRa and LXR b

double knockout (DOKO) mice, on a pure C57BL/6 genetic

background (as previously described [15]), were housed on a

regular 12-h light/12-h dark cycle with free access to water and

food. Until the onset of the studies, mice were fed a chow diet

(Special Diet Services; SDS, NOVA-SCB, Sweden – Rat and

Mouse n.1 Maintenance, 9.5 mm pellet; RM1 (P)). During the two

experiments animals were fed a western-type diet, containing 10%

saturated fat and 0.2% cholesterol (w/w) (Harlan Laboratories -

TD.07346, 4% PO, 2% SBO, 0.2% Cholesterol Diet - 1/2"

pellet). In the first experiment (4-weeks), the diet was started 4

weeks prior to and maintained during the following 4 weeks of

treatment with biweekly i.p. injection (25 MPK) of either an anti-

sense oligonucleotide specifically targeted to hepatic ACAT2 gene

(ASO 6) [10] in half of the animals, or with a control anti-sense

oligonucleotide (ASOctrl) in the other half. In the second

experiment (0-weeks) WT and DOKO mice were given the

western-type diet for 10 weeks and concomitantly treated with the

same doses of ASO6 and ASOctrl used in the 4-weeks experiment.

In all the experiments, animals were fasted 4 hours prior to

euthanasia, which was performed by inhalation of carbon dioxide.

Blood, tissues and organs were then collected, and stored at

280uC until the analyses. The Swedish Board of Agriculture,

Ethical committee on Animal Experiments, Stockholm South

approved all the animal studies (Permit number: S17-07, 2007-03-

30).

Antisense Oligonucleotides (ASOs)
The 5-10-5 methoxy ethyl chimeric 20-mer oligonucleotides

with fully modified phosphorothioate backbones were kindly

donated by ISIS Pharmaceuticals (Carlsbad, CA, USA). ASO6

contained a sequence-targeting mouse Soat2. The ASOctrl l was

not complementary to the ACAT2 sequence and did not hybridize

with any specific gene target. The sequences of these ASOs were

as follows:

ASO6: 59-TTCGGAAATGTTGCACCTCC-39;

ASOctrl: 59-CCTTCCCTGAAGGTTCCTCC-39.

Isolation of liver microsomes and ACAT2 activity assay
Liver samples (50 to 150 mg) were homogenized in 3 mL ice-

cold buffer containing 0.1 mol/L K2HPO4, 0.25 mol/L sucrose,

and 1 mmol/L EDTA, pH 7.4. A protease inhibitor cocktail

(Sigma) was added to the buffer before homogenization. The

homogenate was then centrifuged for 15 min at 12 000 g (4uC) to

remove cell debris. The resulting supernatant was centrifuged for

60 min at 100 000 g. The microsomal pellet from this spin was re-

suspended in 0.1 mol/L K2HPO4 at pH 7.4 and immediately

frozen at –80uC. Total ACAT enzymatic activity was determined

in hepatic microsomes as previously described [16], except that

pre-incubation included a cholesterol-saturated solution of b-

hydroxypropyl cyclodextrin for 30 min before addition of 14[C]

oleoyl Co-A (PerkinElmer, Uppland Väsby, Sweden). In separate

tubes, pyripyropene A, a specific ACAT2 inhibitor [17], was

included in the preincubation at a concentration of 5 mmol/L to

differentiate ACAT1 (uninhibited) and ACAT2 (total–ACAT1)

activities. Pyripyropene A was a kind gift of Prof. Hiroshi Tomoda,

Dept. of Microbial Chemistry, Graduate School of Pharmaceutical

Sciences, Kitasato University, Japan.

Preparation of liver plasma membrane and western blot
analysis

Liver samples (, 200 mg) were homogenized in 3 mL ice-cold

buffer containing 20 mmol/LTris-HCl, 0.25 M sucrose, and

2 mmol/L MgCl2. A protease inhibitor cocktail (complete MINI

Roche Diagnostics GmbH, Mannheim, Germany) was added to

the buffer before homogenization. The homogenate was then

centrifuged for 10 min at 20006g (4uC) to remove fat. The

resulting intermediate phase was centrifuged for 45 min at

32000 rpm using a Beckman Ultracentrifuge XL-70. The pellet

was re-suspended in 100 ml of Lysis Buffer (80 mmol/L NaCl,

50 mmol/L Tris-HCl, 2 mmol/L CaCl2, 1% TritonX-100 and

protease inhibitor cocktail), and immediately frozen at –80uC.

After protein determination (DCTM protein assay, Bio-Rad

Laboratories, Hercules, USA) membranes were pooled group-

wise. Reduced pooled membranes (10, 20, 30 mg or 40, 60, 80 mg

protein) were separated on a NuPage 3–8% Tris-Acetate gel and

then transferred onto nitrocellulose membranes (Invitrogen,

Carlsbad, USA). After blocking in 5% non-fat dry milk in PBS-

T (PBS with 0.1% Tween-20), the nitrocellulose membranes were

incubated overnight at 4uC with the primary antibody (Ab) specific

for the protein of interest in 5% non-fat milk powder in PBS-T.

ABCA1 was detected with mouse monoclonal Ab (1:1000,

ab18180, Abcam LtD, Cambridge, UK) and as secondary

antibody a peroxidase-conjugated goat anti-mouse antibody was

used (1:20000; Pierce Biotechnology, Inc., Rockford). SR-BI was

detected with rabbit polyclonal Ab (1:3000, ab396, Abcam LtD,

Cambridge, UK) and a peroxidase-conjugated donkey anti-rabbit

ACAT2 and HDL Metabolism
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antibody (1:60000; GE Healthcare, UK). LDLr protein was

detected with rabbit monoclonal Ab (1:3000, ab52818, Abcam

LtD, Cambridge, UK) and a peroxidase-conjugated donkey anti-

rabbit antibody (1:60000; GE Healthcare, UK). The specific

bands were detected using SuperSignal chemiluminescence kit

(Pierce Biotechnology, Inc., Rockford) and Bio-Rad Universal

Hood II and quantified by Bio-Rad Quantity One software (Bio-

Rad Laboratories, Hercules, USA). Signals were plotted by mg-

loaded protein and the slope of the curves was calculated by

method of least square. The slope of the ASOctrl group was set

equal to 100%.

Serum and liver lipid analysis
Serum lipoproteins were fractionated by size from 12 mL of

individual serum samples using a Superose 6 PC 3.2/30 column

(GE Healthcare Bio-Sciences AB, Uppsala, Sweden) as previously

described [18]. The respective lipoprotein fraction lipid concen-

trations were calculated after integration of the individual

chromatograms. ApoAI and apoE content was determined in

the lipoprotein fractions by western blot analysis using an anti-

mouse apoA-I (Rockland, Gilbertsville, PA, USA) and an anti-

mouse apoE (Calbiochem, Merk, Darmstadt, Germany) as

primary antibody. Lipids were extracted from ,100 mg liver

sample using 6 mL chloroform-methanol (2:1 v/v). The organ was

removed from the tubes containing the lipid extract, which was

then dried down under N2 and re-dissolved in a measured volume

of 2:1 chloroform/methanol. Diluted H2SO4 was added to the

extract, which was then vortexed and centrifuged to split the

phases. The aqueous upper phase was aspirated and discarded,

and an aliquot of the bottom phase was removed and dried down.

1% Triton X-100 in chloroform was then added, and the solvent

was evaporated [19]. Lipids were quantified on Tecan GENios

plate reader equipped with Magellan Software (Tecan Group Ltd,

Switzerland) using the respective enzymatic kit: Cholesterol/HP,

Triglyceride/GB (Roche Diagnostics, Indianapolis, USA), and

Free Cholesterol C (Wako Chemicals USA Inc.). The amount of

esterified cholesterol was calculated by subtracting the unesterified

cholesterol from the total cholesterol, and this difference was

multiplied by 1.67 to convert it to CE mass. Liver lipid levels were

normalized for the hepatic protein content measured according to

Lowry method in the tissues digested with NaOH (1 mol/L). To

obtain a relative index of hepatic bile acid synthesis, the

concentration of 7a-hydroxy-4-cholesten-3-one (C4) was assayed

in the liver lipid extract by isotope dilution-mass spectrometry as

previously reported, and the ratio of C4 to total cholesterol was

calculated [20,21].

Cell culture and materials
Cell culture media, trypsin-EDTA, and gentamicin were

purchased from Gibco/Invitrogen (Paisley, Scotland). Fetal bovine

serum (FBS), serum albumin, the ACAT inhibitor Sandoz 58-035,

and 8-(4-Chlorophenylthio)adenosine 39,59-cyclic monophosphate

sodium salt (cpt-cAMP) were from Sigma-Aldrich (Stockholm,

Sweden). [1,2-3H(N)]-cholesterol was from PerkinElmer (Uppland

Väsby, Sweden). Tissue culture flasks, plates, and tubes were from

Thermo Fisher Scientific/Nunc (Roskilde Site, Denmark) or Falcon

(Lincoln, NY, USA). Human serum, prepared from blood of healthy

donors, was provided by the Dept. of Clinical Immunology and

Transfusion Medicine, Karolinska University Hospital, Huddinge,

Sweden (http://www.karolinska.se/Karolinska-Universitetslabora-

toriet/Kliniker/Immunologi-transfusionsmedicin/). The blood was

donated for general research purposes. The donors gave informed

consent that the blood could be used for preparation of serum for

research purposes, but were not explicitly asked about consent to

publish data. All samples were anonymized, i.e. not possible to trace

back to the blood donor. Ethical permission was not warranted for

requiring blood components per se, as this did not pose any extra

harm to the donors (regular blood donation was performed). Lipid

poor apoA-I isolated was isolated and purified from human serum as

previously described [22]. J774.A1 murine macrophages were

purchased from American type culture cell (LGC standards AB),

and maintained in RPMI with L-Glutamine plus 10% FBS and

gentamicin in 5% CO2. Fu5AH rat hepatoma cells [23–26] were a

kind gift of Prof. Franco Bernini (Dept. of Pharmacy, University of

Parma, Italy). Fu5AH were cultured in High glucose DMEM plus

10% FBS and gentamicin. Ultima GoldTM was from PerkinElmer

(Uppland Väsby, Sweden).

Quantification of serum cholesterol efflux capacity (CEC)
Mouse sera from the 4-weeks and 0-weeks experiment were

tested as cholesterol acceptors in different cell models to evaluate

the CEC. J774 murine macrophages incubated with cpt-cAMP

were used as a model of total cholesterol efflux, since all the efflux

pathways are active [27,28]. J774 cultured under basal conditions

were used to evaluate the aqueous diffusion [26,27]. The ABCA1-

mediated cholesterol efflux was the difference between the

cholesterol efflux measured by J774 incubated with cpt-cAMP

and the cholesterol efflux measured by J774 cultured in basal

condition [26,27]. SR-BI mediated cholesterol efflux was mea-

sured using Fu5AH rat hepatoma cells, a stable highly SR-BI-

expressing cell line [29]. In brief, cells were plated into 24-well

plates in medium containing 10% FBS. Monolayers were washed

with PBS and incubated for 24 h in medium containing 1% FBS,

[1,2-3H(N)]-cholesterol and ACAT inhibitor (2 mCi/mL). Cells

were then incubated for 18 h with medium plus 0.2% BSA and

ACAT inhibitor (2 mCi/mL), with 0.3 mmol/L cpt-cAMP when

appropriate. Cells were then harvested with NaOH (1 M) and

counted by liquid scintillation. These cells provided baseline (time

0) values for total [1,2-3H(N)]-cholesterol content. Cell monolayers

were then incubated with 1% (v/v) mouse serum in medium for

4 h. Cell media were centrifuged to remove floating cells, and

radioactivity in the supernatant was determined by liquid

scintillation counting. Cholesterol efflux was calculated as: (cpm

in medium at 4 h/cpm at time 0) x 100. For each experiment

aimed to measure the serum CEC by ABCA1, we monitored

ABCA1 up-regulation in J774 cells as increased efflux to human

apoA-I (20 mg/mL) from cells treated with cpt-cAMP compared to

untreated cells. Pooled human serum from 20 healthy donors was

tested in every experiment as an acceptor (2% v/v) in order to

monitor and correct for the inter-assay variability in cholesterol

efflux.

2D gel electrophoresis
Serum HDL subclasses were separated by 2D electrophoresis, in

which agarose gel electrophoresis was followed by non-denaturing

polyacrylamide gradient gel electrophoresis and subsequent

immunoblotting [23]. In the first dimension, serum (5 mL) was

run on a 0.5% agarose gel; agarose gel strips containing the

separated lipoproteins were then transferred to a 3-20%

polyacrylamide gradient gel. Separation in the second dimension

was performed at 30 mA for 4 h. Fractionated HDLs were then

electroblotted onto a nitrocellulose membrane and detected with

an anti-mouse apoA-I (Rockland, Gilbertsville, PA, USA) or an

anti-mouse apoE (Calbiochem, Merck, Darmstadt, Germany)

antibody and visualized by enhanced chemiluminescence (GE

Healthcare Biosciences, Uppsala, Sweden). Densitometric analysis

was performed with a GS-690 Imaging Densitometer and the

Multi-Analyst software (Bio-Rad Laboratories, Hercules, CA,

ACAT2 and HDL Metabolism
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USA). Serum content of preb-HDL was expressed as percentage

of total apoA-I.

RNA extraction, cDNA synthesis, and qPCR analysis of
mRNA expression levels

RNA from liver tissue was isolated using RNeasy Mini Kit

(QIAGEN GmbH, Hilden, Germany) according to the manufac-

turer’s protocol. The concentration and quality of the purified

total RNA were determined spectrophotometrically at OD260 nm

and by the OD260/280 ratio, respectively. Synthesis of single-

stranded cDNA was carried out on 0.5 mg RNA using iScript

cDNA synthesis kit (Bio-Rad Laboratories, Inc., Hercules, CA)

following a standard protocol. PCR primers were designed using

Primer Express Software version 2.0, a program especially

provided for primer design using ABI qPCR machines. qPCR

assay on the basis of SYBR Green I technology was performed

with ABI 7500 fast qPCR system (Applied Biosystems, Foster City,

CA). For each pair of primers, a dissociation curve analysis was

conducted to validate the specificity of the PCR amplification.

Primers were used at a concentration of 100 mmol/L in qPCR

analyses and the sequences are listed in Table S1. We calculated

relative changes employing the comparative method using Tfiib as

the reference gene and controls as calibrators as indicated in the

figures.

Statistical analysis
Statistics was calculated using Statistica software (Stat Soft Inc.,

USA). As indicated in the text or in each figure, differences

between the treatment groups were determined by the Mann

Whitney test. Multi-way analysis of variance (ANOVA) test

followed by post-hoc comparisons of group means according to

the least significant difference (LSD) method was used when

comparing the effect of treatment in the different mouse

genotypes. Outlier rejection was performed prior to the analysis.

Mean, standard error of the mean (SEM), and p-values were used

for descriptive purposes. A p-value ,0.05 was considered

statistically significant.

Results

In order to control for the efficacy of ASO6 treatment, we

examined Soat2 expression in the two organs where ACAT2 is

exclusively expressed [3], the intestine and liver. In agreement

with previous studies [13], ASO6 administration led to a specific

down-regulation of ACAT2 in the liver (Figure 1 A) without

modifying the expression in proximal or distal intestine (Figure 1

B, C). When the feeding with the western type of diet was started 4

weeks after the ASO injection (4-weeks), ASO6 reduced hepatic

Soat2 mRNA by about 80% in both WT and DOKO mice. The

reduction of Soat2 was coupled with more than 80% reduction in

the liver microsomal activity of ACAT2 in both genotypes (ASO6

vs ASOctrl: 0.0860.01 vs 1.2160.14 ng/mg/min in WT,

p,0.005; and 0.1560.03 vs 0.8660.06 ng/mg/min, p,0.01; in

DOKO respectively). Also when the diet challenge was started

concomitantly with the treatment (0-weeks), a similar reduction of

liver microsomal activity of ACAT2 was observed in both WT

(ASO6 vs ASOctrl: 0.0360.004 vs 0.5560.10 ng/mg/min;

p,0.005) and DOKO (ASO6 vs ASOctrl: 0.1460.02 vs

0.6860.06; p,0.005) mice. As seen in the 4-weeks experiment,

the reduction in ACAT2 activity followed a significant reduction

in hepatic Soat2 mRNA expression in both genotypes (Figure 1A).

Liver lipid content in ASO6 treated mice
We evaluated the lipid content in the liver samples from all the

experiments performed. As ASO6 treatment reduced hepatic

ACAT2 activity more then 80% in both the 4-weeks and 0-weeks

experiment, hepatic CE mass was diminished. As shown in

Figure 1D, ASO6 treatment in the 4-weeks experiment reduced

hepatic CE levels by 91% in WT mice, whereas only a 30%

reduction was observed in DOKO mice receiving ASO6. A

similar effect was observed in the 0-weeks experiment where

ASO6 lowered hepatic CE levels up to 91% in WT and up to 50%

in DOKO mice. Hepatic ACAT2 knock down by ASO6 did not

result in accumulation of UC in the liver as previously observed in

a different mouse genotype [13]. In the 4-weeks experiment

hepatic UC was not affected by ASO treatment in either WT or

DOKO mice, whereas in the 0-weeks experiment ASO6 led to a

21% reduction of hepatic UC only in WT mice (Figure 1E).

ACAT2 knockdown has been reported to alter triglyceride (TG)

metabolism in mice, thus lowering hepatic TG levels [30]. We

quantified the hepatic TG content in both the 4-weeks and 0-

weeks experiments (Figure 1F). In WT mice ASO6 lowered

hepatic TG, although significantly only in the 0-weeks experiment.

Liver TG mass was not affected by ASO6 in DOKO mice, which

showed decreased hepatic TG levels compared to their wild type

counterparts independently of the treatment (p,0.001 and

p,0.01 in the 4-weeks and 0-weeks experiments respectively;

Factorial ANOVA). In order to assess whether hepatic ACAT2

knock down induces BA synthesis, and to confirm that LXR

DOKO mice have a reduced synthesis, we also quantified hepatic

C4. As shown in Figure 1G, in both experimental conditions

ASO6 led to an increase of liver C4 content in both WT and

DOKO mice. As expected C4 levels in DOKO mice were

significantly lower that in WT mice independently of the

treatment (4-weeks and 0-weeks: p,0.001, Factorial ANOVA).

ACAT2 activity and ABCA1 expression in the liver
Since we did not observe any accumulation of UC following

hepatic ACAT2 down-regulation, we hypothesized that UC could

be channelled into nascent HDL through the ABCA1 transporter,

whose expression was analysed at both mRNA, and protein levels

in liver membranes. In the 4-weeks experiment, ASO6 treatment

of WT induced a 133% increase in hepatic ABCA1 protein,

whereas no effects were observed at the mRNA level (Figure 2A).

In DOKO mice (Figure 2B) ASO6 led to a 171% increase of the

ABCA1 protein compared to ASOctrl. Abca1 mRNA was slightly

reduced by ACAT2 down-regulation in this mouse genotype. Also

in the 0-weeks experiment, hepatic ACAT2 depletion by ASO6

led to about a doubling of the ABCA1 protein expression in liver

membranes of both WT and DOKO mice (Figure 2 C and D.

However, under these experimental conditions the Abca1 mRNA

levels increased in WT mice (Figure 2C).

Serum lipid lipoprotein profile
The analysis of the serum lipid profile revealed that in WT mice

ASO6 did not affect the total levels of TC or UC (Table 1). Instead

it led to a redistribution of cholesterol within the different

lipoprotein fractions (Figure 3 A, B, E, F). As expected the

reduction of ACAT2 expression in the liver reduced TC in the

VLDL fractions (4-weeks: 0.2560.02 vs 0.5660.09 mmol/L,

p,0.005; 0-weeks: 0.1560.03 vs 0.6660.09 mmol/L, p,0.005).

Interestingly in the TC serum lipoprotein profile, ASO6 treatment

led to the appearance of a new peak between LDL and HDL

particles in both experiments (Figure 3A and E). This effect was

even more pronounced when the distribution of UC in serum

lipoproteins was analysed (Figure 3B, F), and it was also present

ACAT2 and HDL Metabolism
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when phospholipids (PL) were analysed (Figure 4). In order to

further characterize this new peak, pooled serum from WT mice

from the 0-weeks experiment was separated by size exclusion

chromatography (SEC), and lipoprotein fractions were collected.

Figure 1. Effect of hepatic ACAT2 down regulation on Soat2 expression, and on the liver lipid content. Soat2 mRNA was quantified by
real-time RT-PCR in samples from liver (A), proximal (B) and distal intestine (C). Data were standardized for Tfiib mRNA expression, and normalized to
WT Ctrl in each experiment. Cholesteryl ester (CE; D), unesterified cholesterol (UC; E), and triglyceride (TG; F) mass was measured in liver lipid extracts
by enzymatic assays as described in the methods section. Cholesteryl esters were calculated subtracting the mass of unesterified cholesterol to total
cholesterol, and adjusted for the mass of the moiety of fatty acid in CE. Liver lipid levels were normalized for the hepatic protein content. 7a-hydroxy-
4-cholesten-3-one (C4; G) mass was measured in the liver lipid extracts by LC-MS/MS, and normalized for the hepatic total cholesterol (TC) mass. Error
bars represent the median. Mann Whitney test, * p,0.05, ** p, 0.01, *** p,0.001.
doi:10.1371/journal.pone.0093552.g001

ACAT2 and HDL Metabolism

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e93552



Analysis of apoA-I and apoE content by Western blot revealed an

increased content of both these apolipoproteins in the fractions (nr

30-39) corresponding to the lipoprotein peak formed by ASO6

treatment (Figure 4). In DOKO mice ASO6 treatment did not

change the plasma levels of TC, but led to an increase in serum

UC (Table 1). This effect was more pronounced in the 0-weeks

experiment. In the 4-weeks experiment DOKO mice receiving

ASO6 showed higher levels of TC in the HDL lipoprotein

fractions compared to ASOctrl treated animals (Figure 3E, F). In

both experiments ASO6 treatment strongly increased the HDL-

UC in DOKO mice (Table 1 and Figure 3D, H). In both WT and

DOKO mice from the 4-weeks experiment down-regulation of

ACAT2 increased serum TG levels in the apoB-containing

lipoprotein fraction (1.1660.06 vs 0.7460.09 mmol/L in WT,

p,0.01; 0.2960.05 vs 0.0960.01 mmol/L in DOKO, p,0.01).

In the 0-weeks experiment, this effect was only observed in

DOKO mice (0.7260.08 vs 0.5260.05 mmol/L in WT;

0.3560.03 vs 0.0860.01 mmol/L in DOKO, p,0.005).

Effect of ACAT2 disruption on serum cholesterol efflux
capacity (CEC)

Since changes in serum lipid profiles were observed in both WT

and DOKO mice treated with ASO6, we investigated whether the

effect on HDL fractions would affect the capacity of serum to

accept cholesterol from macrophages. CEC is strictly related to the

composition of the lipoproteins present in the serum, and more

importantly to the capacity of the different HDL subclasses to act

as a lipid acceptor [26]. Thus, serum samples from all the

Figure 2. Hepatic ACAT2 down regulation increases the ABCA1
protein independently of the mRNA expression. Liver membrane
proteins were pooled group-wise, loaded, and separated on Tris-
Acetate Gels. After transfer onto nitrocellulose membrane, samples
were incubated with anti-mouse ABCA1 antibody. ABCA1 band (<
250 kD) was detected by chemiluminescence, and signals were plotted
by mg-loaded protein. The slope of the curves was calculated by
method of least square, and the slope of the ASOctrl group was set
equal to 100%. Hepatic Abca1 mRNA was quantified by real-time RT-
PCR. Data were standardized for Tfiib mRNA expression, and normalized
to WT Ctrl in each experiment. In the mRNA data error bars represent
the median. Mann Whitney test, ** p, 0.01.
doi:10.1371/journal.pone.0093552.g002 Figure 3. Effect of hepatic ACAT2 down regulation on serum

lipoprotein profile. Serum lipoproteins were separated by size
exclusion chromatography, and the total (left panels) and unesterified
cholesterol (right panels) content was determined by a system for on-
line detection. Black solid lines are the average chromatogram for the
ASOctrl treated group, and grey solid lines are the average
chromatogram for the ASO6 treated group (n = 6–8). Lipoprotein
profiles of WT mice are shown in panels A, B, E, and F. Lipoprotein
profiles of LXR DOKO mice are represented in panels C, D, H and G.
doi:10.1371/journal.pone.0093552.g003
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experiments were tested using cAMP-treated J774 macrophages as

cholesterol donors [27]. As shown in Figure 5, serum from both

WT and DOKO mice treated with ASO6 was a more efficient

cholesterol acceptor than serum from ASOctrl treated mice, but

this was seen only in the 4-weeks experiment. No differences in

serum CEC were observed comparing serum from ASO6 treated

WT and DOKO mice with their respective control from the 0-

weeks experiment.

Effect of ASO6 on HDL subclasses
The presence of specific HDL subclasses determines HDL

functionality and serum CEC. Therefore, we investigated whether

ASO6 could affect the distribution of the HDL particle, providing

us with a possible explanation for the effects we observed on the

lipid lipoprotein profile and serum CEC. HDL were separated by

2D gel electrophoresis, and immunoblotted against apoA-I or

apoE. As shown in Figure 6 (left panels), in WT mice from the 4-

Figure 4. Hepatic ACAT2 down regulation led to formation of apoE-rich HDL. Serum samples from WT mice treated with ASO6 or ASOctrl
were pooled (n = 3–6) and ultracentrifugated. Lipoproteins with a density , 1.21 g/L were then separated by SEC, collecting the lipoprotein fractions
every 3 min. As described in the method section, apolipoprotein (apo) AI and E content (A) were determined in the different fractions by western blot
analysis. Phospholipids (PL) were quantified enzymatically.
doi:10.1371/journal.pone.0093552.g004

Table 1. Lipid quantification in serum and HDL lipoproteins.

4-weeks 0-weeks

mmol/L WT ASOctrl WT ASO6 DOKO ASOctrl DOKO ASO6 WT ASOctrl WT ASO6 DOKO ASOctrl DOKO ASO6

TC 5.3060.33 5.5460.21 6.1060.30 5.3060.27 4.8760.36 4.2660.41 7.6760.24 6.3360.59

HDL-TC 4.2360.26 4.6260.17 2.1560.05 2.8760.28 3.7860.34 3.6860.33 2.6560.12 2.4960.39

UC 1.4560.11 1.6460.17 1.4560.07 2.0160.29 1.2960.11 1.3960.14 2.5560.14 4.6660.88*

HDL-UC 1.1360.12 1.1760.14 0.4160.01 1.0460.10{ 0.9160.08 1.0460.10 0.7260.06 1.9460.27{

PL 5.8760.61 7.0760.29 4.4560.23 6.4160.60* 5.6560.26 5.3360.27 5.1160.21 5.4460.57

HDL-PL 5.0360.61 6.4560.32 2.4660.17 4.6060.17{ 4.8260.22 4.6160.22 2.5060.37 3.5460.39

TG 1.0960.13 1.2960.06 0.2260.02 0.4360.05* 0.5860.04 0.7860.07 0.1360.01 0.4860.11`

HDL-TG 0.3560.09 0.1360.03 0.1260.03 0.1460.01 0.0660.01 0.0660.01 0.0660.01 0.0560.02

Serum lipoproteins were separated by size exclusion chromatography, and the concentration of total (TC) and unesterified (UC) cholesterol, phospholipids (PL), and
triglycerides (TG) was determined by a system for on-line detection. Data are expressed as average 6 SEM (n = 6–8). Mann Whitney test, *p,0.05, { p,0.01, ` p,0.005.
doi:10.1371/journal.pone.0093552.t001
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weeks experiment ASO6 treatment did not affect the pre-b-HDL,

but led to the appearance of larger a-particles. Conversely in

DOKO mice, hepatic ACAT2 down-regulation induced the

appearance of smaller a-HDL, and significantly increased the

pre-b-HDL content. For both mouse genotypes from the 0-weeks

experiment, no differences were observed in HDL subclasses

between ASO6 and ASOctrl treatment (Figure 6 right panels).

In both experiments ASO6 increased the amount of apoE-

containing HDL, without modifying the particle size (Figure 6

bottom panels). In the 4-weeks experiment we observed an

average of 26% increase in apoE-containing HDL when WT

ASO6 treated mice were compared to randomly selected ASOctrl

treated animals. For DOKO mice the average increase was 128%.

In the 0-weeks experiment the average increase in apoE-

containing HDL of ASO6 treated WT mice was of 122%, while

in DOKO mice was about 100%. In both genotypes from the 4-

weeks and 0-weeks experiment, apoE-containing HDL from

ASO6 treated animals showed a progressive shift of migration

towards preb position.

Figure 5. Impact of hepatic ACAT2 down regulation on serum
CEC. J774 murine macrophages were radiolabeled with [3H]-cholesterol
for 24 h, equilibrated in a BSA-containing medium 6 cpt-cAMP
0.3 mmol/L for 18 h. Efflux was measured after 4 h of cell incubation
with medium containing 1% serum from WT (black bars) and LXR DOKO
(grey bars) mice treated with ASOctrl (empty bars) or ASO6 (filled bars).
Efflux is expressed as cpm in medium/cpm T0 6 100. Error bars
represent the median. Mann Whitney test, ** p,0.01.
doi:10.1371/journal.pone.0093552.g005

Figure 6. Hepatic ACAT2 knock-down modifies HDL subclasses. HDL subclasses were separated by non-denaturing two-dimensional gel
electrophoresis and transferred onto a nitrocellulose membrane, on which lipoproteins were detected with an anti-mouse apoA-I or apoE antibody; a
representative animal in each group is shown. Preb-HDL content was calculated as percentage of total apoA-I signal from 2D-electrophoresis
developed against apoA-I. Error bars represent the median. Mann Whitney test, * p,0.05.
doi:10.1371/journal.pone.0093552.g006
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Changes in HDL subclasses and cholesterol efflux
mechanisms

In the 4-weeks experiment, hepatic ACAT2 down-regulation

led to changes in apoA-I-containing particle distribution and

resulted in increased capacity of serum to promote cholesterol

efflux from macrophages. Since cholesterol efflux occurs by several

mechanisms characterized by a preferential acceptor [31], serum

samples from the 4-weeks experiment were tested for their

cholesterol acceptor capacity using different cell lines selectively

expressing specific lipid transporters. Reflecting the presence of

larger mature HDL secondary to hepatic ACAT2 knockdown,

serum from ASO6 treated WT mice showed increased capacity to

promote cholesterol efflux by aqueous diffusion and by SR-BI

transporter when compared to serum from ASOctrl treated WT

(Figure S1 A and B). Serum from ASO6 treated DOKO mice was

more efficient than serum from DOKO mice treated by ASOctrl,

in promoting cholesterol efflux through the ABCA1 transporters

(Figure S1 C). Indeed, in DOKO mice ASO6 treatment resulted

in increased serum levels of pre-b-HDL (Figure 4), which have

been demonstrated to be a preferential acceptor for the ABCA1-

mediated efflux [32]. Efflux via aqueous diffusion (AD) was also

increased to serum from DOKO mice when hepatic ACAT2 was

reduced.

Effect of hepatic ACAT2 down-regulation on genes
involved in lipid metabolism

The reduced hepatic ACAT2 activity by ASO treatment ought

to affect the pool of UC that can signal to and activate the LXR

system. Surprisingly, no consistent LXR activation was observed

in any of the experiments, as assessed by the hepatic gene profile of

LXR target genes (Table 2). Cyp7a1 and Abcg5; were not affected

by the ASO6 treatment, whereas Abcg8 and Scd1 were respectively

increased only in WT and DOKO from the 0-weeks experiment.

A decreased hepatic ACAT2 activity appeared to result in a down-

regulation of the genes under control of the SREBP2 system, but

only in WT mice from the 4-weeks experiment (Table 2). Indeed

ASO6 treatment resulted in reduced mRNA expression of Ldlr,

Pcsk9, Hmgcr and Hmgcs (see Table 2 and Figure S2). Some of these

effects were also seen in DOKO mice (Table 2). However, hepatic

ACAT2 down-regulation did not reduce the expression of

SREBP2 target genes when the dietary challenge was started

together with ASO6 treatment (0-weeks; Table 2). As shown in

Figure S2, LDLr protein expression was analysed in liver

membrane pools. In the 4-weeks experiment hepatic ACAT2

down-regulation did not affect LDLr protein in WT (Figure S2 A),

whereas it reduced the receptor by 98% in DOKO mice (Figure

S2 C). A similar reduction was also observed in DOKO animals

from the 0-weeks experiment (Figure S2 G).

In spite of the minor effects seen for TG content in the liver of

WT animals (see above), in the 4-weeks experiment ASO6

treatment reduced the mRNA of genes involved in fatty acid

synthesis, which was likely mediated by a SREBP1-c down-

regulation (i.e. Fasn and Acc1; Table 2). However, in the 0-weeks

experiment, we did not observe this effect. In these experimental

conditions, ASO6 increased Scd1 and Acc1 mRNA levels in the

liver of DOKO mice (Table 2). Triacylglycerol hydrolase 1 and 2

mRNA expression was significantly reduced in LXR DOKO mice

compared to WT independently of the treatment (4-weeks: Tgh1,

p,0.01 and Tgh2, p,0.001; 0-weeks: Tgh1, p,0.001 and Tgh2,

p,0.001; Factorial ANOVA). ASO6 did affect the expression of

these genes in WT mice (Table 2). Only in the 4-weeks experiment

and in DOKO mice did ACAT2 down-regulation lead to slightly

increased Tgh1 mRNA levels (Table 2). We also evaluated the

hepatic expression of the HDL receptor SR-BI, both at mRNA

and protein levels. As shown in Figure S2 (right panels), hepatic

ACAT2 down-regulation led to a reduction of SR-BI protein

expression in the liver membranes, without affecting the mRNA.

In the 4-weeks experiment ASO6 reduced SR-BI by 28% and 6%

in WT and DOKO respectively (Figure S2 B and D). In the 0-

weeks experiment hepatic ACAT2 down-regulation led to a

reduction in SR-BI protein expression by 8% in WT and 36% in

DOKO mice (Figure S2 F and H).

Discussion

Our main aim with this study was to uncover a possible link

between hepatic ACAT2 activity and HDL metabolism in mice.

We hypothesized that the excess of UC in the hepatocytes due to a

lower activity of ACAT2 may be also shunted into nascent HDL

by ABCA1. In order to better unravel this mechanism we decided

to include LXR a/b double knockout mice in our experiments. In

these animals UC should be more available to secretion in to

nascent HDL because of lower bile acid synthesis paralleled by a

maintained ABCA1 expression in the liver.

We have previously reported that the hepatic ABCA1 protein

was up-regulated when the expression of hepatic ACAT2 was

reduced, independently of the levels of Abca1 mRNA expression

[33]; an effect also seen in apoB100only-LDLr2/2 mice [13]. In

mice where ACAT2 was selectively knocked out in the liver,

hepatic Abca1 mRNA was increased [14]. However, the protein

expression of ABCA1 was not reported in these studies. Here we

clearly demonstrate that down-regulation of hepatic ACAT2

activity results in a strong stimulation of ABCA1 protein

expression in liver membranes, and that this process is definitively

independent from LXRs. The up-regulation of the ABCA1

protein expression results from an as yet unidentified post-

transcriptional process, since it is clearly independent of Abca1

mRNA expression. Intracellular UC may play a role since it has

been shown that UC loading induces ABCA1 expression in several

cell models [34]. Wang et al showed that hepatocytes from mice

depleted of NPC1 accumulate FC and have an up-regulation of

ABCA1 protein. Cathespin D, a lysomal proteinase, has been

proposed as a possible player in this upregulation [35]. Further-

more Rab8 over-expression was found to increase ABCA1 protein

in human primary macrophages, without affecting the mRNA

levels [36]. Finally, palmitoylation of ABCA1 by the palmitoyl

transferase DHHC8 is essential for its localization at the plasma

membrane and contributes to its efflux function [37]. In the

present work, we quantified the mRNA expression of these genes

(Table 2), and found that ACAT2 downregulation did not affect

their expression. However, we cannot completely exclude their

participation in the ABCA1 up-regulation, since only the mRNA

expression was evaluated.

The liver is the major organ for HDL synthesis (by lipidation of

apoA-I through ABCA1) as shown by the study of liver-specific

ABCA1 knockout mice [38]. Whether ACAT2 disruption in mice

would have an impact on HDL metabolism was unclear, since

previous studies have shown contrasting results on the lipid

content in HDL [4,6,11–14]. In apoE knockout [4] and LDLr

knockout [6] mice an increase in HDL cholesterol was observed

when ACAT2 was knocked out. However, no changes in HDL

lipid composition were observed in different ACAT22/2 mouse

genotypes [12,13], or in mice where ACAT2 was selectively

knocked out in the liver or intestine [14]. In the present work we

showed that after ASO6 treatment decreased hepatic ACAT2,

HDL lipid composition changed only in DOKO mice (increased

levels of HDL-UC). Hepatic Lcat mRNA was not affected by
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ASO6 treatment suggesting that the HDL-UC increase is not

mediated by a reduction in the levels of this enzyme.

HDL lipoproteins are not just simple lipid carriers, but are a

complex and heterogeneous class of particles, differing in physical

and chemical properties, protein and lipid composition, metabo-

lism and functions [39]. Treatment of WT mice with ASO6

revealed the appearance of a new peak in the serum lipoprotein

profile, which elutes between the typical peak for LDL and HDL

particles. We demonstrated that these newly generated lipopro-

teins are large HDL particles enriched in apoA-I and apoE. Thus,

reduction of hepatic ACAT2 activity does not change plasma lipid

levels, but rather leads to a redistribution of lipids within the

different lipoprotein particles. The newly generated particle

appeared independently of the dietary conditions, as was the

increase in hepatic ABCA1 expression. This effect could not be

observed from the lipid profile of DOKO mice. The big peak

generated by the increase in HDL-UC could have possibly masked

the peak of the new generated particles for this mouse genotype.

Interestingly, large apoE-rich HDL particles seem to be associated

with increased hepatic ABCA1 protein expression. This phenom-

enon has been observed in mice treated with the LXR agonist

T090137 [40], in mice overexpressing hepatic ABCA1 [41], and

in transgenic mice expressing human NPC1L1in the liver [42].

Lipid poor apoE can directly interact with ABCA1 and be

lapidated [43]. This process generates particles with a preb-

migration, and a diameter ranging between 9 and 15 nm [43]. By

2D-gel electrophoresis analysis, we found that ASO6 treatment

increased the amount of apoE-containing HDL in both WT and

LXR DOKO mice, and that the apoE-containing HDL formed

show a progressive shift of migration towards preb position and an

estimated size between 12 and 15 nm. This effect was independent

of the dietary challenges.

We also investigated if the changes in HDL metabolism

secondary to hepatic ACAT2 knock down resulted in improved

HDL functionality. Thus, we measured the capacity of serum to

promote cholesterol efflux. This parameter and the different

mechanisms involved in cholesterol efflux have been shown to be

strongly dependent on the different HDL sub-classes present in the

circulation [26,44]. Indeed, we observed that only when the apoA-

I containing particle distribution was modified by ASO6

treatment, serum cholesterol efflux capacity was increased.

Importantly, we showed that changes in the efflux pathways

involved reflected the changes in preb- and a-HDL subclasses.

These effects were observed only when the western type diet was

started prior to the ASO6 treatment, but not when diet and

treatment were started concomitantly. In our study we found that

serum CEC is positively correlated with both serum and HDL PL

content (Figure S3). When the diet was started concomitantly with

the treatment ASO6 did not alter the serum PL content,

conversely to what observed when the diet was started 4 weeks

before the ASO6 treatment. This effect may partly explain the lack

of increased serum CEC we observed when the diet was started

concomitantly with the ASO6 treatment. It has been shown

previously that cellular cholesterol efflux is strongly dependent on

the phospholipid content of the extracellular acceptor [32,45,46].

In the hepatocytes cholesterol can be esterified by ACAT2 and

packed into VLDL, or fluxed into nascent HDL or converted into

bile acids. In the present study we also demonstrated that hepatic

ACAT2 knock down led to an increased bile acid synthesis, as

shown by the higher levels of 7a-hydroxy-4-cholesten-3-one in the

liver of the ASO6 treated mice.

Another important finding in this study is the unexpected lack of

LXR activation in response to the down-regulation of hepatic

ACAT2 activity. No evident changes in mRNA abundance of the

Table 2. Hepatic expression of genes involved in lipid metabolism.

4-weeks 0-weeks

Gene (a.u.) WT ASOctrl WT ASO6 DOKO ASOctrl DOKO ASO6 WT ASOctrl WT ASO6 DOKO ASOctrl DOKO ASO6

Srebp2 0.9260.04 0.6360.13 1.2560.17 0.9360.05 0.9960.14 1.1760.41 0.3060.04 0.3060.01

Hmgcr 1.1560.12 0.52460.10* 0.8460.06 0.5760.05* 2.7761.03 1.8860.33 0.1760.02 0.2860.10

Hmgcs 1.2560.23 0.4360.16* 0.9060.09 0.5560.11* 0.4060.13 0.3260.08 0.1060.01 0.1860.06*

Pcsk9 1.5160.39 0.1860.07{ 0.2360.08 0.0860.02 1.4760.35 1.6760.48 0.1960.05 0.3060.14

Lcat 0.7560.09 0.8160.15 0.9660.10 0.6560.11 0.7860.07 0.8160.04 0.2360.03 0.2560.0

Lipc 1.3260.21 1.5060.29 0.8160.09 0.6760.24 0.7160.21 0.6860.11 0.2360.0 0.1560.07

Cyp7a1 2.3061.17 4.2361.10 1.2960.25 0.8060.16 1.7460.50 1.9860.37 0.2460.08 0.3760.16

Abcg5 1.3760.22 1.1860.30 0.2460.03 0.1660.02 2.7861.03 1.8860.33 0.1760.02 0.2860.10

Abcg8 1.5460.26 1.7460.60 0.3460.03 0.2460.04 1.5460.23 2.6360.41* 0.6560.10 0.4560.12

Scd1 2.8660.77 1.6960.52 0.0260.01 0.0260.00 1.4360.27 1.1460.17 0.00460.00 0.0160.01*

Fasn 1.5060.33 0.1560.05` 0.0460.01 0.0360.01 1.4560.56 1.4760.31 0.0560.00 0.0560.02

Acc1 1.5060.33 0.4260.10` 0.3860.02 0.2660.03 1.4360.27 1.1360.17 0.00460.00 0.0160.01*

Srebp1c 0.6060.15 0.3460.17 0.00160.0 0.0060.00 0.6160.14 1.2160.23 0.0060.00 0.0060.00

Tgh1 1.8460.30 1.6460.17 0.5060.04 0.7260.0{ 1.2960.18 1.4760.36 0.2660.04 0.3760.15

Tgh2 1.5560.16 1.4460.04 0.1760.03 0.0760.01 1.2660.20 0.8460.21 0.0560.01 0.1360.07

Ctsd 3.9461.88 0.6860.17 5.7861.45 2.8760.47 0.8360.14 0.9160.20 1.5160.24 0.7760.24

Zdhhc8 1.1360.23 1.2860.24 3.0260.96 2.4060.53 0.5960.09 0.7460.12 0.4960.06 0.4760.10

Rab8a 0.8460.07 1.0660.24 2.2660.41 1.5960.39 0.6660.10 0.9460.20 0.2860.02 0.4360.14

mRNA was quantified by real-time RT-PCR. Data were standardized for Tfiib mRNA expression, and normalized to the expression of each gene in WT Ctrl in each single
experiment. mRNA data are expressed as average 6 SEM (n = 6–8). Mann Whitney test, *p,0.05, { p,0.01, ` p,0.005.
doi:10.1371/journal.pone.0093552.t002
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classical LXR target genes were observed upon ASO6 treatment.

Conversely, decreased hepatic cholesterol esterification in mice led

to a down-regulation of the SREBP2 transcriptional pathway since

the abundance of Ldlr, Pcsk9, Hmgc reductase and synthase mRNA

were decreased. However, this was only evident when the liver was

preloaded with dietary cholesterol before down-regulation of

ACAT2 activity, since no effects on SREBP2 target genes were

observed when ASO6 treatment was started concomitantly with

dietary cholesterol challenge. In this latter experimental condition

treatment of WT mice with ASO6, the levels of hepatic UC were

reduced, and this difference may explain some of the discrepancies

observed between the 4-weeks and 0-weeks experiment.

In LXR DOKO compared to WT mice, ACAT2 down-

regulation was less effective in reducing hepatic CE in both

experiments. For the first time, we have shown here that Tgh1 and

Tgh2 expression is extremely low in LXRa/b double knockout

mice. Since carboxylesterases can also catalyse the hydrolysis of

CE, the reduced expression of Tgh1 and Tgh2 observed in LXR

DOKO may explain the elevated CE content in the livers of LXR

DOKO mice, as well as the failure to mobilize it by hydrolysis

upon reduction of cholesterol esterification by ASO6 treatment.

A limitation of our study can be represented by the fact that we

only investigated liver lipid storage/synthesis, hepatic conversion

of cholesterol into bile acids and HDL formation process. Two

other important pathways of the hepatic lipid metabolism (i.e.

VLDL production and biliary cholesterol secretion) have not been

evaluated even if they are known to play a role in HDL

metabolism. However the effect of ACAT2 deletion on these

pathways has been previously studied. It has been shown that the

total apoB accumulation rate in liver perfusate from ACAT2 KO

mice was not different from that of their respective littermates

[47], and ASO6 treatment led to a reduction of biliary cholesterol

secretion in apoB100only-LDLr2/2 mice [13].

It is known that ASOs can present non-target effect. In the

present work we did not test the effect of ASO6 treatment in

ACAT2 knock out (KO) mice to rule out that possibility.

Nevertheless, we ran a third experiment (data not shown) feeding

ACAT2 KO animals and their respective littermates for 6 weeks

with the same western type of diet used in the ASOs experiments.

ACAT2 KO showed a similar phenotype to that we observed by

ASO6 treatment. Compared to their littermates, ACAT2 KO

mice showed double the expression of ABCA1 protein in the

hepatic liver membranes together with the appearance of the new

HDL lipoprotein particle peaks in the lipid profile.

In conclusion, the use of anti-sense oligonucleotide targeted to

hepatic ACAT2 revealed a new pathway by which the liver may

contribute to HDL metabolism in mice. ACAT2 seems to be an

important hepatocyte player that influences intracellular choles-

terol fluxes either into VLDL lipoproteins or into HDL particles,

the latter via the up-regulated ABCA1 transporter. The relevance

of these findings for the human condition does not seem to be

futile. A negative correlation between the hepatic ACAT2 activity

and the plasma levels of HDL cholesterol and apoA-I was

described in normolipidemic non-obese Chinese patients [48], and

a functional variant of the SOAT2 gene was identified as an

independent genetic determinant of plasma HDL cholesterol levels

in the LCAS and TexGen cohorts [49]. Thus SOAT2 has been

listed among those genes that influence HDL plasma level in

humans [50]. Also, it is worth to remember that treatment with

ASO6 generates a condition in mice similar to that in humans,

where a low hepatic activity of ACAT2 [51] is present together

with elevated intestinal ACAT2 activity [52]. Mice and non-

human primates have high hepatic ACAT2 activity [3]. However,

the lack of plasma CETP activity [53] or the high rate of

hydrolysis of triglyceride rich lipoproteins positively influences the

genesis of HDL respectively in these two species. In humans, low

hepatic ACAT2 activity may be needed to keep up the lipidation

of apoAI. Considering the role of HDL for innate immunity

[54,55], a low hepatic ACAT2 activity may have been a strong

evolutionary advantage.

Supporting Information

Figure S1 Efflux mechanisms involved in serum choles-
terol efflux capacity (CEC). Cells were radiolabeled with

[3H]-cholesterol for 24 h, equilibrated in a BSA-containing

medium for 18 h and exposed for 4 h to 1% serum from WT

(left panels) and LXR DOKO (right panels) mice treated with

ASOctrl or ASO6. SR-BI-mediated efflux (A) was assessed in

Fu5AH rat hepatoma cells; aqueous diffusion-mediated efflux (B)

was assessed in J774 macrophages; ABCA1-mediated efflux (C)

was assessed in J774 macrophages: ABCA1 contribution was

calculated as the difference between the efflux determined in J774

cells treated with cpt-cAMP 0.3 mM or grown under basal

condition. Mean and SEM are shown. Mann Whitney test,

*p,0.05; **p,0.01.

(TIF)

Figure S2 Effect of hepatic ACAT2 down regulation on
LDLr and SR-B expression in the liver. Liver membrane

proteins were pooled group-wise, loaded, and separated on Tris-

Acetate Gels. After transfer onto nitrocellulose membrane,

samples were incubated with anti-mouse LDLr or SR-BI antibody.

LDLr band (< 140 kD), and SR-BI bands (< 75 kD free and

<50 kD glycosylated form) were detected by chemiluminescence,

and signals were plotted by mg-loaded protein. The slope of the

curves was calculated by method of least square, and the slope of

the ASOctrl group was set equal to 100%. Hepatic Ldlr and Srb1

mRNA were quantified by real-time RT-PCR. Data were

standardized for Tfiib mRNA expression, and normalized to WT

Ctrl in each experiment. mRNA data are expressed as average 6

SEM (n = 6–8). Mann Whitney test, * p, 0.05.

(TIF)

Figure S3 Correlation between serum cholesterol efflux
capacity, serum and HDL phospholipids.

(TIF)

Table S1 Sequences of the mouse primers.

(DOCX)
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