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Abstract

We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic
range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are
expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These
traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential.
However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods
employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of
body size and geographic range with long term (1983 – 2010) local scale population variation of fishes in West Fork White
River (Indiana, USA). The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that
neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period.
Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait
evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be
influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly
by a taxon’s local scale habitat and biotic assemblages.
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Introduction

Attributing stream fish assemblage dynamics to random or

deterministic factors is a long standing theme of community

ecology [1,2]. A current paradigm is that assemblages are highly

organized by a variety of abiotic and biotic variables dictated by

geographic and evolutionary scale [3,4]. Specifically, local

assemblage variation is linked to local scale factors such as

predation [5], competition [6], habitat quality [7], and regional

scale factors such as watershed land use type and history [8],

stream size [9], and geologic history [10]. Unexplained assemblage

variation is typically attributed to random noise or other untested

mechanisms. Ultimately, however, assemblage patterns or char-

acteristics are an emergent product of variation at the population

level [11].

In addition to biotic and abiotic scale dependent factors, body

size and geographic range are not necessarily independent of

assemblage variation [12]. An inverse relationship between body

size and abundance is expected as a function of energetic

constraints [13] in both terrestrial [14] and aquatic [15]

assemblages/ecosystems. Furthermore, macroecological studies

have demonstrated a relationship between body size and

geographic range [16,17]. The expectation is that larger sized

individuals are more capable of long range movements and thus,

exhibit increased range sizes.

However, the utility of body size and geographic range as model

predictors to describe long term population dynamics is under-

studied. Conceptually, small bodied species are expected to exhibit

greater population variation as a result of higher intrinsic rates of

increase r [17]. Similarly, species with larger geographic ranges are

expected to be generalists for environmental niches [18] and more

likely to exhibit stable populations.

However, there are complications with testing the relationship

between population variation and traits such as body size and

geographic range. Traits are not independently distributed across

species, due to varying lengths of shared evolutionary history

among related species. Thus, comparative analyses account for the

expected covariance structure across species, based on hypothe-

sized evolutionary relationships. Testing for phylogenetic signal

(e.g. Blomberg’s K [19]) provides predictable patterns concordant

with expected levels of evolutionary covariance (Brownian motion

model of an evolutionary random walk), or alternatively,

covariances may be lower (indicating more diverging paths, or

convergence of unrelated species) or higher (indicating more

conserved traits). Furthermore, interpretation of phylogenetic
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signal values can facilitate conclusions regarding broad evolution-

ary process of trait convergence or divergence [20].

A second complication involves quantitative issues associated

with incorporating phylogeny into models which describe varia-

tion among taxa and the presence of collinearity among

predictors. Body size and geographic range are correlated [12],

yet, the relationship between these predictors and variation in

abundance is of great interest [21,22]. Incorporation of phylogeny

into a model describing variation in abundance while accounting

for collinearity among predictors is problematic with generalized

least squares methods. However, Bayesian inference is an

alternative statistical methodology which has been shown to result

in more precise parameter estimates in phylogenetic models while

accounting for collinearity among predictors [23,24,25].

The primary objective of this study was to test if body size and

geographic range influence long term variation in local scale

stream fish species abundance. Our secondary objective was to

evaluate the phylogenetic signal of body size and geographic range

associated with the stream fishes represented in our study. We

hypothesized that body size and geographic range are negatively

related to increased variation in long term population dynamics.

We expected that taxa with small bodies and small geographic

ranges would exhibit greater temporal variation in abundance as a

result of energetic constraints, r vs. K selection mode, and small

environmental niche.

Materials and Methods

Field collection
Fish were sampled yearly at six sites from 1983 to 2010 in the

West Fork White River in East-Central Indiana (Indiana

Department of Natural Resources Permit – JCD # 10-0098; see

Table 1). Fish were collected following Simon and Dufour [26]

and the Ohio Environmental Protection Agency for assessment of

streams in the Eastern Corn Belt Plains ecoregion (Ohio

Environmental Protection Agency (OEPA)) in accordance with

Table 1. Species included in analysis with descriptions of CV (long term population variation among sites), maximum body size
(cm), and geographic range (km2).

Taxa CV (min – max) Maximum body size (cm) Geographic range (km2)

Moxostoma spp. 0.40 – 1.10 78 1787287

Hypentelium nigricans 0.52 – 0.96 61 1581169

Catostomus commersonii 0.72 – 1.39 64 8850545

Minytrema melanops 0.57 – 1.04 50 1739172

Carpiodes cyprinus 0.71 – 1.73 66 2364892

Carpiodes velifer 3.26 – 4.80 50 1110876

Cyprinus carpio 0.66 – 1.24 120 8850545

Notropis rubellus 2.00 – 4.80 9 1697659

Cyprinella whipplei 1.96 – 3.31 16 497304

Cyprinella spiloptera 1.02 – 3.32 12 1516050

Notropis stramineus 1.39 – 4.80 8.1 3024895

Notropis photogenis 1.11 – 2.09 14 481459

Pimephales notatus 1.33 – 2.75 11 2784561

Luxilus chrysocephalus 0.70 – 2.94 18 1200793

Lythrurus umbratilis 1.59 – 4.80 8.6 1260469

Ictalurus punctatus 1.24 – 4.69 127 4899489

Ameiurus natalis 1.00 – 3.09 47 3623129

Dorosoma cepedianum 1.29 – 3.17 52 4559801

Ambloplites rupestris 0.40 – 0.86 43 2204814

Pomoxis nigromaculatus 1.00 – 2.11 49 3196197

Pomoxis annularis 1.15 – 1.84 53 2985169

Micropterus salmoides 0.60 – 1.28 97 3468067

Micropterus dolomieu 0.47 – 0.97 69 1817217

Lepomis gibbosus 3.16 – 4.80 40 1980638

Lepomis microlophus 2.09 – 4.69 25 1523148

Lepomis megalotis 0.71 – 0.90 24 2693156

Lepomis cyanellus 0.78 – 1.00 31 3849721

Lepomis macrochirus 0.64 – 1.19 41 3574355

Percina caprodes 0.82 – 1.29 18 3911619

Percina maculata 1.11 – 2.88 11 2035511

Etheostoma nigrum 2.06 – 4.81 7.2 3713135

Etheostoma blennioides 1.26 – 4.21 17 818767

doi:10.1371/journal.pone.0093522.t001

Fish Populations Do Not Vary with Size or Range
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American Fisheries Society guidelines for the safe and ethical use

of fishes in research (http://fisheries.org/). Sampling was

completed at normal pool water levels while turbidity was less

than 40 Nephelometric Turbidity Units. All sites were sampled

with a boat mounted Smith-Root model 5.0 GPP electrofisher

with a 5000-watt generator. Sampling proceeded on a linear reach

for a distance of 15 times the wetted width with a minimum

distance of 500 m. Fish were collected using a 3 mm stretch mesh

net and placed into a live well for processing. All fish (see Table 1)

were identified to species using regional keys [27], counted, and

released at the site. Voucher specimens curated at the Bureau of

Water Quality, Muncie, Indiana were also used for species

identification. All sites were sampled as part of the Bureau of

Water Qualities long-term fisheries monitoring program in White

River.

Figure 1. Phylogeny of study taxa with body size (BS) and geographic range (GR) categories. Darker bars indicate higher values. See
Table 1 for raw data values.
doi:10.1371/journal.pone.0093522.g001
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Data summary
Abundance per site was expressed as electrofishing catch per

1000 km. Body size and geographic range for each taxon were

estimated using the Fish Traits database and standardized to their

z-score (fishwild.vt.edu/fishtraits/[27]). Z-scores were calculated

as follows:

z~
x{�xxð Þ

s

Where x is the observation, x2 is the mean value of the sample,

and s is the standard deviation of the sample. The Fish Traits

database has been concatenated from numerous regional and local

distribution and life history studies [28] and can be used in large

taxonomic scale studies [29]. Taxonomic relationships used in

comparative analyses (Figure 1) were from published molecular

studies of Catostomidae [30], Cyprinidae [31,32,33], Centrarch-

idae [34], Percidae [35], and Ictaluridae [36]. Higher order

relationships (e.g. family) were from Betancur-R et al. [37].

Statistical analysis
Long term variation in species abundance was estimated as the

coefficient of variation, cv, for each species at each site.

cvij ~
sij

�xxij

Where cvij is the coefficient of variation for species i at site j, sij is

the standard deviation of species i at site j, and x2
ij is the mean

abundance of species i at site j. Given the setup of the model only

taxa that were collected at least once at each site over the

collection period could be included. This resulted in a single

species by site matrix of cv values (i.e. for species by sites).

We modeled cvij as a linear function of body size and

geographic range incorporating phylogenetic relationships follow-

ing de Villemereuil et al. [23]. Here cvij is modeled as a

multivariate normal distribution where the mean is a linear

function of body size, bsi, and geographic range, gri, and the

variance-covariance matrix, S, is proportional to the shared

branch lengths from the root of the tree to the common ancestor of

each pair of taxa (Figure 2).

cvij *mnorm mi ,
X� �

mi ~ a z b1 bsi z b2 gri

Where mi is the mean of each species cv from the multivariate

normal distribution (mnorm), a is the intercept and represents the

hypothetical mean cv with a body size and geographic range of

zero, and b1 and b2 are model coefficients representing the effect

of body size and geographic range.

We used published molecular hypotheses to represent the

phylogenetic relationship between species and used this single tree

with an inverse-Wishart prior as a prior for the variance-

covariance matrix, S [23]. We assumed equal branch lengths.

As caveat to this analysis, if model parameters are identified as

important the robustness of the model to choice of variance-

covariance structure could be evaluated by generating and using a

distribution of random trees [38] as the prior for the variance-

covariance matrix.

Since body size and geographic range are known to be

correlated [12] we used a Bayesian Lasso approach to include

both variables in the model. The Bayesian Lasso is a variable

selection technique that uses a double-exponential prior on the

coefficients [24,25]. The Bayesian Lasso will pull the weakest

parameter to 0 thus providing a variable selection method with

correlated predictors.

We used Bayesian inference to estimate parameters of the

model. Bayesian inference is based on Bayes’ Theorem:

P hjXð Þ~ P X jhð ÞP hð ÞÐ
P(X jh)P hð Þdh

Where P(X|h) is the likelihood function and represents the

probability of the data, X, given the parameters, h, P(h) is the prior

distribution of the parameters, h, and the denominator is a

normalizing parameter.

We used vague (i.e., noninformative) priors for all model

parameters except the variance-covariance matrix, S, to specify

our prior uncertainty about the model parameters. The variance-

covariance matrix, S, prior was constructed as the inverse of the

single phylogenetic tree matrix specified above in a Wishart prior.

We used the freely available JAGS 3.3 program [39] implemented

in R 2.15.3 [40] using the rjags package [41]. Complete model

specifications in the JAGS language can be found in Appendix S1

of the Supporting Information. We ran 3 MCMC chains for a

total of 125,000 steps, discarding the first 25,000 steps as a burn-in

period, and thinning every 5 steps. The burn-in period is necessary

to reduce the effect of the starting values on the MCMC results

[42]. Convergence of the MCMC algorithm was assessed using the

Brooks-Gelman-Rubin (BGR) scale-reduction factor [43]. The

BGR factor is the ratio of between chain variability to within chain

variability. Convergence is obtained when the upper limit of the

BGR factor is close to 1.00 indicating there is not more variability

between chains compared to within chains. Values below 1.10 are

considered acceptable [42]. We additionally performed a posterior

predictive check to evaluate model fit. This was conducted by

calculating the posterior mean of the overall coefficient of

variation for each species at each step in the Markov Chain.

The 95% credible intervals from the estimated coefficient of

variation was compared to the mean value for each species.

Figure 2. Variance-covariance matrix of a generalized phylo-
genetic tree. Variance is set to the branch length from the root to the
tip and the covariance is the branch length from the root to the most
recent common ancestor (adapted from de Villemereuil et al. 2012).
doi:10.1371/journal.pone.0093522.g002
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Results

Summary
The analysis included 48,071 individuals comprised of 32

species collected from 6 sites along the West Fork White River

(Muncie, IN, USA) spanning 1983 to 2010 (Table 1). Taxon body

size range was from 6.5 to 155 cm (mean 35 cm) and geographic

ranges were from 481,459 to 8,850,545 km2 (mean

2,831,692 km2).

Bayesian hierarchical model
The BGR statistic for all parameters were less than 1.10

indicating the model converged after 100,000 iterations (33,333

steps per chain). The 95% credible interval estimates of the

parameters for body size and geographic range overlapped 0

(Table 2), indicating there is no credible evidence to support a

relationship with species coefficient of variation given the

phylogenetic tree. When modeled separately with a normally

distributed prior the posterior distribution of the body size and

geographic range coefficient did not overlap 0. All of the 95%

credible intervals from the posterior predictive check of the cv

overlapped the observed mean value (Figure 3). Species with high

observed average cv corresponded with a high credible interval

values.

Phylogenetic signal
Body size exhibited low phylogenetic signal (K 0.57; P,0.001;

Figure 1) indicating size distributions among taxa less similar than

expected. Geographic range also had low phylogenetic signal (K

0.33; P = 0.07; Figure 1).

Discussion

Long term variation in stream fish population abundances did

not covary with body size or geographic range of taxa. This

finding is contrary to our initial expectations; however, we do not

interpret this as evidence that White River stream fish assemblages

are random or stochastic. In a recent study of the same White

River fish assemblage, Jacquemin and Doll [29] attributed a

significant portion of the long term variation to differences in

habitat and niche breadth (measured as association with particular

substrate types, flow regime, woody debris, submerged vegetation,

and distribution elevation) and responses to environmental

variation among species. Specifically, Jacquemin and Doll [29]

found that species with more general habitat niches showed

smaller fluctuations in abundance through time. We interpret this

as evidence that local scale stream fish assemblages are more

closely aligned with environmental variation as a result of their

respective niches than other traits such as body size or geographic

range. However, while long term data provide a robust measure of

local assemblage variation we suggest expanding spatial and

taxonomic coverage through the addition of sites in other

watersheds that may yield different results.

Ignoring multicollinearity in model parameters (e.g., body size

and geographic range) can result in increased standard errors of

Table 2. Parameter estimates from the coefficient of variation
model.

Effect Median 95% Credible interval

Intercept 1.44 1.19 – 1.69

Geographic range –0.08 –0.48 – 0.13

Body size –0.17 –0.58 – 0.04

Parameter estimates are considered statistically significant when 95% credible
intervals do not overlap 0.
doi:10.1371/journal.pone.0093522.t002

Figure 3. Results of the coefficient of variation posterior predictive check from the Bayesian hierarchical model. Points are mean
estimates from the 95% credible intervals, vertical bars are the bounds of the 95% credible intervals, and solid triangles are observed mean coefficient
of variation values for each species.
doi:10.1371/journal.pone.0093522.g003
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the coefficients which can result in variables being found non-

significant in traditional analysis. Thus, the relationship between

variation in abundance with body size and geographic range is

often conducted independently [16,21,22]. Typically, multicolli-

nearity issues are addressed by increasing sample size or removing

one of the intercorrelated variables. Increasing sample size is often

not an option, particularly when analyzing long term data sets.

Further, removal of a variable may not be an option when there is

strong theoretical justification for including both. This study is the

first to our knowledge that tests for a relationship between

variation in abundance with body size and geographic range in the

same model. The methods used here permit the inclusion of the

correlated variables and provided a quantitative method of

determining what variable is more important in driving variation

in abundance when the correlated variables are considered

important when tested individually.

Interestingly, our results for phylogenetic signal (low K values) of

body size and geographic range implies less similarity among close

relatives in the assemblage than expected under a Brownian

model. Low K values are typically attributed to high levels of

divergence, the opposite of niche conservatism [20]. One potential

source of influence outside of divergence may also be our use of

branch lengths in the analysis. Kraft et al. [44] interpret an

assemblage level of highly ‘derived traits’ as evidence for habitat

filtering influence on taxonomic assemblage variation. Further

study of phylogenetic signal of ecologically relevant traits may

improve understanding of assembly patterns in freshwater stream

assemblages.

We suggest that our results are particularly relevant to

conservation biology. Rabinowitz [45] and others [46,47] identi-

fied utility in using life history traits to define rarity and extinction

risk. Our results expand on these studies to indicate traits that may

not covary with long term population dynamics. We suggest that

while body size and geographic range did not contribute directly

to long term variation at the population level that these species

traits could explain variation at the assemblage level. Post hoc

graphical observations of the dataset support a generally lower

abundance among taxa that are larger and generally higher

abundance among taxa that are smaller in the White River fish

assemblage (as predicted in mammals [14], and for other North

American fishes [16]). Ultimately, any information for long term

covariates of threatened or endangered species could be incorpo-

rated into management plans. The inclusion of evolutionary

relationships into community assembly studies can provide insight

into species distribution patterns and population dynamics [48].
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