
Metabolomic Analysis of Diet-Induced Type 2 Diabetes
Using UPLC/MS Integrated with Pattern Recognition
Approach
Hui Sun, Shuxiang Zhang, Aihua Zhang, Guangli Yan, Xiuhong Wu, Ying Han, Xijun Wang*

Department of Pharmaceutical Analysis, Key Lab of Metabolomics and Chinmedomics, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University

of Chinese Medicine, Harbin, China

Abstract

Metabolomics represents an emerging discipline concerned with comprehensive assessment of small molecule endogenous
metabolites in biological systems and provides a powerful approach insight into the mechanisms of diseases. Type 2
diabetes (T2D), called the burden of the 21st century, is growing with an epidemic rate. However, its precise molecular
mechanism has not been comprehensively explored. In this study, we applied urinary metabolomics based on the UPLC/MS
integrated with pattern recognition approaches to discover differentiating metabolites, to characterize and explore
metabolic pathway disruption in an experimental model for high-fat-diet induced T2D. Six differentiating urinary
metabolites were found in the negative mode, and two (2-(4-hydroxy-3-methoxy-phenyl) acetaldehyde sulfate, 2-
phenylethanol glucuronide) of which were identified involving the key metabolic pathways linked to pentose and
glucuronate interconversions, starch, sucrose metabolism and tyrosine metabolism. Our study provides new insight into
pathophysiologic mechanisms and may enhance the understanding of T2D pathogenesis.
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Introduction

The prevalence of diet-induced obesity is increasing globally,

and posing significant health problems for millions of people in tne

world. Diet-induced obesity is a major contributor to the global

pandemic of type 2 diabetes (T2D). Typical civilization disease,

particularly T2D, represents one of the most significant global

health problems because it is associated with a large economic

burden on the health systems of many countries [1]. The WHO

predicted an estimated future number of 366 million affected

individuals in 2030 [2]. The burden of T2D is growing worldwide

and with it a more desperate need for better tools to detect,

diagnose and monitor the disease is required. Metabolomicss,

defined as ‘the quantitative measurement of the dynamic multi-

parametric metabolic response of living systems to pathophysio-

logical stimuli or genetic modification’, is increasingly being

applied to the study of disease, especially in metabolic disease [3].

New platform metabolomics, focused on a holistic investigation of

living systems to external stimuli based on the global metabolite

profiles in biological samples, provides variation of whole

metabolic networks for characterizing pathological states, as well

giving mechanistic insight into the biochemical effects of the drugs

[4]. Metabolomics technologies bring a wealth of opportunity to

develop new biomarkers which are important tools for identifying

diseases, predicting their progression and determining the

effectiveness, and doses of therapeutic interventions [5].

Metabolomics may be assumed that in individuals with T2D

many metabolic pathways are likely to be affected and presumably

play a role in their overall metabolic dysfunction. Thus, the

identification of new biomarkers and pathways can improve the

characterization of pathophysiological alterations associated with

T2D [6]. Understanding the biochemical networks will help to

clarify diabetes etiology, and should foster the discovery of new

biomarkers of disease risk and severity. We have previously

reported an analysis of targeted quantitative metabolomics, where

we have shown that many known and novel observations of

metabolic changes may be discovered using such a metabolomics

approach [7–10]. The method has the power to identify

perturbations of the body’s metabolic homeostasis and thereby

offers access to markers of metabolic pathways that are impacted

by the disease [11–13]. By utilizing this comprehensive biochem-

ical profiling approach, we seek to identify metabolites with

different concentrations in T2D, and thereby allowing new

insights into the pathophysiological progression of this important

metabolic disease.

Various analytical techniques, with multivariate data analysis,

such as partial least squares-discriminant analysis (PLS-DA) have

been applied in metabolomics-based metabolism studies [14].

UPLC coupled with MS has become one of the widely applied
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techniques in metabolomics owing to its high sensitivity and

reproducibility [15–20]. Herein, urinary metabolomics based on

UPLC-MS was applied to investigate the metabolic profiles and

potential biomarkers in a rat model of T2D, which may facilitate

understanding the pathological changes of T2D and obtain a

systematic view of dissection of mechanisms of T2D.

Materials and Methods

Chemicals and reagents
Acetonitrile (HPLC grade) was purchased from Dikma Tech-

nology Inc. (Dima Company, USA). Deionized water was purified

by theMilli-Q system (Millipore, Bedford, MA, USA). Formic acid

(HPLC grade, FA) was purchased from honeywell Company

(USA). Leucine enkephalin was purchased from Sigma-Aldrich

(MO, USA). High fat emulsion was prepared by our laboratory.

Briefly, lard 20 g, methyl thiouracil 1 g, cholesterol 5 g, sodium

glutamate 1 g, sugar 5 g, fructose 5 g, propylene glycol 30 ml

were mixed and added water volume to 100 ml and prepared for

high fat emulsion (see Ref 21).

Ethics Statement
Our study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the Heilongjiang University of Chinese

Medicine. The protocol was approved by the Committee on the

Ethics of Animal Experiments of the Heilongjiang University of

Chinese Medicine (Permit Number: CEAE-HUCM-0126104). All

efforts were made to minimize suffering.

Animal handling
Male Wistar rats (weighting 180–220 g) were supplied by GLP

Center of Heilongjiang University of Chinese Medicine (Harbin,

China). The room temperature was regulated at 2561uC with

4065% humidity. A 12-h light/dark cycle was set, free access to

standard diet and water. The animals were allowed to acclimatize

for 7 days prior to dosing and putted in the metabolism cages

during the urine collection periods specified below. After

acclimatization, animals were randomly divided into the control

and model groups. Wistar rats were treated with a high fat

emulsion (10 ml/kg) by ig for 10 consecutive days to induce T2D

(see Ref 21, 22). The rats in the control group were treated with

0.9% saline in the whole procedure for 10 consecutive days. On

the last day, rats were deeply anesthetized and then sacrificed.

Blood was collected from the abdominal aorta, plasma and serum

were separated via centrifuged at 6000 rpm for 20 min at 4uC.

The serum was used for biochemical assay according to the

manufacturer’s instructions of commercial kits. The activities and

levels of fasting serum glucose (FSG), triglycerides (TG), total

cholesterol (TC), malondialdehyde (MDA), superoxide dismutase

(SOD), free fatty acid (FFA), and rate constant for plasma glucose

disappearance (KITT) were determined by using commercially

available kits. All procedures completely complied with the

manufacture. All animal care and experimental procedures were

performed in compliance with the Ethical Committee of

Heilongjiang University of Chinese Medicine. All efforts were

made to ameliorate suffering of animals.

Sample collection and preparation
All rats of each group were housed in metabolic cages (1 per

cage). Urine was collected daily (at 6:00 a.m.) from metabolism

cages at ambient temperature throughout the whole procedure

and centrifuged at 13,000 rpm at 4uC for 5 min, and the

supernatants were stored frozen at 280uC until analysis. All these

samples were thawed at room temperature before analysis and

centrifuged at 13,000 rpm for 5 min. An aliquot of 5 uL was

injected for UPLC/MS analysis after filtered through a 0.22 um

membrane filter.

Metabolic profiling
Chromatography. UPLC/ESI-Q-TOF/MS was used for

the global analysis of urine samples. Chromatographic analysis

was performed in a Waters ACQUITY UHPLC system controlled

with Masslynx (V4.1, Waters Corporation, Milford, USA). An

aliquot of 6 mL of sample solution was injected onto an

ACQUITY UPLC BEH C18 column (50 mm62.1 mm, 1.7 mm,

Waters Corporation, Milford, USA) at 35uC, the flow rate was

0.5 mL/min, and injection volume was 2 mL. The optimal mobile

phase consisted of a linear gradient system of (A) 0.1% formic acid

in water and (B) 0.1% formic acid in acetonitrile, 0–1 min, 99–

90% A; 1–4 min, 90–80%A; 4–6 min, 80–65%A; 6–9 min, 65-

1%A; 9–11 min, 1%A; 11–11.5 min, 1–99%A, 11.5–13 min,

99% A. In addition, the QC sample was used to optimize the

condition of UPLC-Q-TOF/MS, as it contained most information

of whole urine samples. A QC sample was operated every 6 urine

samples to evaluate stability during sequence analysis. Whenever

one sample injection was finished, a needle wash cycle was done to

remove the remnants and prepare for the next sample. In addition,

the eluent was transferred to the mass spectrometer directly, that

is, without a split.

Mass spectrometry
The mass spectrometry was operated by electrospray ionization

in the negative ionization mode. The eluent was introduced into

the high-definition mass spectrometer (Waters Corp., Milford,

USA) analysis, and the optimal conditions of analysis were as

follow: the source temperature was set at 110uC, desolvation gas

temperature was 350uC, cone gas flow was 50 h, desolvation gas

flow was 600 L/h; the capillary voltage was 2.3 kV, the sampling

cone voltage was 35 V, microchannel plate voltage was 2450 V

and extraction cone voltage was 3.0 V. The data acquisition rate

was set to 0.14 s/scan, with a 0.1 s inter scan delay. Data were

colected in centroid mode from 100 to 1000 Da. For accurate

mass acquisition, a lock-mass of leucine enkephalin at a

concentration of 0.2 ng/mL was used via a lock spray interface

at a flow rate of 100 ml?min-1 monitoring for negative ion mode

([M+H]2 = 556.2615) to ensure accuracy during the MS analysis.

Multivariate data analysis and data processing
UPLC-MS raw data were imported into the MassLynx TM

software (Waters Corp.) for peak detection and alignment.

Intensity of each ion was normalized with respect to the total

ion count to generate a data matrix that consisted of the retention

time, m/z value, and the normalized peak area. Multivariate data

matrix was analyzed by EZinfo software 2.0 (Waters Corp.,

Milford, USA). All the variables were pareto-scaled prior to PLS-

DA. Here, PLS-DA were used to process the acquired UPLC-MS

data. In the PLS-DA modeling, endogenous metabolites that

contribute to the classification were identified in loading plots,

which showed the importance of each variable to the classification.

Student’s t-test was performed to identify features with differential

abundances across groups.

Identification of metabolic pathway
Biomarkers of interest were extracted from PLS-DA loading

plots based on their contribution to the variation and correlation

within the data set. With regard to the identification of potential
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biomarkers, the ion spectrum was matched with the structure

message of metabolites acquired from biochemical databases, such

as HMDB, http://www.hmdb.ca/; KEGG, http://www.genome.

jp/kegg/; METLIN, http://metlin.scripps.edu/; Chemical Enti-

ties of Biological Interest (http://www.ebi.ac.uk/Databases/);

MassBank, http://www.massbank.jp/; Scripps Center for Mass

Spectrometry (http://masspec.scripps.edu/index.php) and Lipid-

maps (http://www.lipidmaps.org/). The reconstruction and path-

way analysis of potential biomarkers was performed with MetPA

software based above database source.

Results

Multivariate statistical analysis of rat urine
The biochemistry parameters of the control group and T2D

group were summarized in the Table 1. The biochemical results

observed in the T2D group did show significant difference

compared to the control group. In this study, a PLS-DA method

was established and employed to identify biomarkers which were

related to T2D development. As Fig. 1, there is a distinguished

classification between the clustering of the control and T2D

groups. According to the results of S-plot, a total of 6912 variable

ions (Fig. 2) were significantly different between the control and

model groups. Finally, 6 of them in negative mode were identified

by searching MS and MS/MS fragments in metabolites database,

and finally confirmed by commercial standards (table S1).

Identification of metabolite candidates
The information including the retention time, the exact mass

and the ms/ms data were supplied by the robust UPLC-MS

platform. The precise molecular mass was determined within a

reasonable degree of measurement error using Q-TOF, and the

potential element composition, degree of unsaturation and

fractional isotope abundance of the compounds were also

obtained. Metabolite identification was conducted with high

resolution MS and MS/MS fragments, as well as database

analyses. We searched for the presumed molecular formula in the

ChemSpider, Human Metabolome Database, KEGG, and Small

Molecule Pathway Database to confirm possible chemical

compositions. According the protocol described above, six

endogenous metabolites were identified and summarized in

table S1.

Biomarker network and metabolic pathway
reconstruction

The related pathways of the biomarkers were investigated by

searching the KEGG and HMDB, and a network of some

biomarkers was established. Metabolic pathway analysis with

MetPA revealed that potential biomarkers are mainly involved in

the pathway of pentose and glucuronate interconversions, starch

and sucrose metabolism, and tyrosine metabolism that changed

specifically in the setting of T2D (Fig.3). Two distinct metabolites

(2-phenylethanol glucuronide, 2-(4-hydroxy-3-methoxy-phenyl)a-

cetaldehyde sulfate) identified from these pathways were involved

in T2D development, which indicated that dysfunction of multi-

pathways were involved in the pathological process of T2D. The

detailed construction of the metabolism pathways with higher

score was shown in Fig.3. Results suggested that these target

pathways showed the marked perturbations over the time-course

of T2D and could contribute to development of T2D.

Discussion

Metabolomics is a rapidly evolving discipline that involves the

systematic study of endogenous small molecules that characterize

the metabolic pathways of biological systems [23]. It has been

studied extensively in human diseases, and has resulted in

significant advances in the understanding of the pathophysiology

of diseases. Diabetes represents one of the most important global

health problems and approximately 90% of patients with diabetes

have T2D, and its incidence remains highest in the world [24].

Fortunately, metabolomics has introduced new insights into the

pathology of diabetes as well as methods to predict disease onset

and has revealed new biomarkers. Recently, a variety of

Figure 1. PLS-DA plot derived from the UPLC/MS profiles of rat urine samples demonstrating separation of control group (black)
and T2D group (red) rats.
doi:10.1371/journal.pone.0093384.g001
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biomarkers reflecting T2D pathologies have been developed to

gain new insights into metabolic pathways and pathophysiological

mechanisms [25]. Because some of the processes identified above

may result in metabolic ‘‘signatures’’ in the urine which would be

useful for T2D diagnosis as well as therapeutic responsiveness.

Although great effort has been put forth to uncover the complex

molecular mechanisms exploited in the pathogenesis of T2D

disease, satisfactory explanation remains to be discovered.

In our study, an UPLC–MS-based urine metabolomics

approach coupled with multivariate statistical methods provide a

powerful approach to clearly differentiate patients with T2D from

matched controls and identify the potential biomarkers. Urine

samples collected were analyzed by UPLCESI-QTOFMS oper-

ating in negative ionization mode. The mass to charge ratio (m/z)

and retention time and abundance data generated were subjected

to PLS multivariate data analysis. The loading S-plot generated

from PLS is a convenient way of visualizing those ions with the

highest contribution to the separation between control and T2D in

relation to their correlation to the model. PLS-DA is a well-

established supervised multivariate statistical analysis method

which has been widely used in metabolomic studies. Results

indicate that PLS-DA revealed a very good visual separation

between the T2D and control samples. Interestingly, 6 distinct

metabolites identified from these pathways, many are in various

stages of progress at the T2D. For simplicity, only parent

compounds are shown in Table S1. Further study of these

metabolites may facilitate the development of non-invasive

biomarkers and more efficient therapeutic strategies for T2D.

Further investigations are also underway to clarify the precise

pathogenesis why T2D induced these results. Furthermore, it is

noteworthy that 2 metabolites together are important for the host

response to T2D through metabolism pathways. Using functional

analysis and the KEGG pathway database, we identify several

biologically relevant metabolic pathways which are altered in this

disease. T2D related metabolites were tightly correlated with

pentose and glucuronate interconversions, starch and sucrose

metabolism, pyrimidine metabolism, and tyrosine metabolism

network that are strongly associated with T2D development.

These biochemical changes are helpful to understand the key

features of T2D. In addition, these metabolic features provided

useful clues for future mechanism exploration and identification of

therapeutic targets of T2D.

Emerging metabolomicss provides a powerful platform for

discovering novel biomarkers and biochemical pathways to

Figure 2. S-plot of PLS in rat urine samples represents the impact of the metabolites on the clustering results. Urine samples from
control group and T2D group rats were subjected to UPLC/MS. The PLS model was then used to generate a loadings S-plot showing ions important
to the clustering of samples. Box data points indicate that ions most responsible for the variance in the score plot.
doi:10.1371/journal.pone.0093384.g002

Table 1. Biochemistry results of rat by diet-induced type 2 diabetes.

Group FSG (mmol/l) TG(mmol/l) T-CHO(mmol/l) MDA(nmol/ml) SOD(U/ml) FFA(mmol/l) KITT Urine (ml/12 h)

Control 4.3660.61 0.3360.09 1.5560.45 11.56 65.77 84.83623.58 987.356216.04 0.6960.30 12.9364.08

Model 23.6366.77*** 0.6960.49* 2.8761.05** 17.33 66.33* 50.16615.68** 1299.656348.90* 0.3760.25* 48.88611.68***

Note: FSG, fasting serum glucose; TG, triglycerides; TC, total cholesterol; MDA, malondialdehyde; SOD, superoxide dismutase; FFA, free fatty acid; KITT, rate constant for
plasma glucose disappearance
* significant difference from control at p,0.05;
** Significant difference from control at p,0.01;
*** Significant difference from control at p,0.001.
doi:10.1371/journal.pone.0093384.t001

Metabolomic Analysis of Diet-Induced T2D

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e93384



distinguish between diseased and non-diseased status information

and improve diagnostic, prognostication and therapy [26]. As

emerging platforms in the biomedical arena, metabolomics can

make use of multivariate statistical analysis to search for disease-

related potential biomarkers and metabolic pathways [27,28].

Metabolomic network has led to the integration of metabolites

associated with the caused perturbation of multiple pathways,

most specifically in elucidating mechanisms of disease progression

and for biomarker discover. The results not only indicated that

urine metabolomic methods had sufficient sensitivity and specific-

ity to distinguish T2D from healthy controls, but also have the

potential to be developed into a clinically useful diagnostic tool,

and could also contribute to a further understanding of disease

mechanisms. Additionally, this unbiased technique, particularly

and uniquely associated with the disease, has greatly enhanced our

ability to identify novel pathways that are potentially involved in

T2D pathogenesis. It is hoped that further integration of this

techniques will yield a more comprehensive understanding of T2D

disease etiology and the biological pathways.

Conclusions

Emerging high-throughput metabolomics technologies have

been widely applied, aiming at the discovery of candidate

biomarkers for disease and may help to understanding the

mechanism of T2D occurrence on the metabolic level. Herein,

we illustrate how metabolomics can be utilized to explore the

mechanisms of T2D which affect different ‘key pathway’. T2D is

one of the most common diseases in the world, but currently it is

difficult to determine the precise pathophysiology. Here, we

applied the metabolomics approach based on the UPLC/MS to

systematically investigate T2D. Interestingly, 3 distinct pathways

such as pentose and glucuronate interconversions, starch and

sucrose metabolism, and tyrosine metabolism etc. were found

associated with T2D according to ingenuity pathway analysis.

Based on our findings, it is suggested that metabolomics approach

is highly effective in aiding biomarker identification of T2D. The

continuous, dynamic, and noninvasive detection of metabolites in

the urine of T2D rats was successfully demonstrated, and will

increase our understanding of the pathophysiological processes

involved and help us to identify potential biomarkers to develop

new therapeutic strategies.

Supporting Information

Table S1 A list of potential urinary biomarkers of urine
samples from type 2 diabetes.

(DOC)

Figure 3. A systemic view of metabolic pathways that associate with T2D in this study, providing a disease specific picture of
human physiology. Identifying network pathway by MetPA software (A). Putative metabolic pathways of pentose and glucuronate
interconversions (B), starch and sucrose metabolism (C), and pyrimidine metabolism (D) were inferred from rat urine of intermediates during
substance metabolism. The map was generated using the reference map by KEGG. Red denotes affected metabolites related to the pathway. a, 2-
phenylethanol glucuronide; b, 2-(4-hydroxy-3-methoxy-phenyl)acetaldehyde sulfate.
doi:10.1371/journal.pone.0093384.g003
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