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Abstract

Although Kolmogorov-Smirnov (KS) statistic is a widely used method, some weaknesses exist in investigating abrupt
Change Point (CP) problems, e.g. it is time-consuming and invalid sometimes. To detect abrupt change from time series fast,
a novel method is proposed based on Haar Wavelet (HW) and KS statistic (HWKS). First, the two Binary Search Trees (BSTs),
termed TcA and TcD, are constructed by multi-level HW from a diagnosed time series; the framework of HWKS method is
implemented by introducing a modified KS statistic and two search rules based on the two BSTs; and then fast CP detection
is implemented by two HWKS-based algorithms. Second, the performance of HWKS is evaluated by simulated time series
dataset. The simulations show that HWKS is faster, more sensitive and efficient than KS, HW, and T methods. Last, HWKS is
applied to analyze the electrocardiogram (ECG) time series, the experiment results show that the proposed method can find
abrupt change from ECG segment with maximal data fluctuation more quickly and efficiently, and it is very helpful to
inspect and diagnose the different state of health from a patient’s ECG signal.
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Introduction

Detecting abrupt change from time series, called CP detection,

has attracted considerable attention in the fields of data mining

and statistics. CP detection [1,2,3,4,5] has been widely studied in

many real-world problems, such as atmospheric and financial

analysis [1], intrusion detection in computer networks [2], signal

segmentation in data stream [3], as well as fault detection in

engineering systems [4,5]. A good method of CP detection is by

comparing probability distributions of time series samples over

past and present intervals [6,7], in which a typical strategy is to

trigger an alarm for a CP as two distributions are becoming

significantly different. Various methods of change detection follow

this statistical framework, including the CUSUM (cumulative sum)

[7], the GLR (generalized likelihood ratio) [8,9] and the change

finder [4]. Generally, these approaches are limited by relying on

pre-specified parametric models such as probability density

models, autoregressive models, and state-space models. Therefore,

these methods tend to be less flexible in real-world CP detection

problems.

In community of statistics, some non-parametric approaches for

CP detection have been explored, in which non-parametric

density estimation is used for calculating the likelihood ratio

[10,11]. However, this kind of estimation is a hard problem

[12,13], and may not be promising in practice. As a nonpara-

metric method, the KS statistic quantifies a distance between the

empirical distribution function of the sample and the cumulative

distribution function of the reference distribution, or between the

empirical distribution functions of two samples [14,15]. Moreover,

the KS test is for the equality of continuous, one-dimensional

probability distributions that can be used to compare a sample

with a reference probability distribution, or to compare two

samples. The null distribution of this statistic is calculated under

the null hypothesis that the samples are drawn from the same

distribution or that the sample is drawn from the reference

distribution. The two-sample KS test is one of the most useful and

general nonparametric methods for comparing two samples, as it

is sensitive to differences in both location and shape of the

empirical cumulative distribution functions of the two samples.

Recently, non-parametric KS statistic and its modified version are

broadly investigated on several of application fields. For example,

the use of the KS statistic for testing hypotheses regarding

activation in blood oxygenation level-dependent functional MRI

data [16]; modeling the cumulative distribution function of rub-

induced AE signals and quantifying the goodness of fit with the KS

statistic, to offer a suitable signal feature for diagnosis [17]; abrupt

change point (CP) detection from electroencephalography signal

(EEG) [18], and gene expression time series database [19].

On the other hand, Wavelet Transform (WT) is another

promising approach for CP detection. In the past decade, WT

approach has emerged as an important mathematical tool for

analyzing time series [20,21,22,23,24]. It has found applications in

anomaly detection, time series prediction, image processing, and

noise reduction [20,24,25,26]. In particular, wavelets can repre-

sent general functions at different scales and positions in a versatile

and sophisticated manner, so the data distribution features can be

easily extracted from different time or space scales [26,27]. The

heart of wavelet analysis is Multi-Resolution Analysis (MRA), by

which a signal can be decomposed into sub-signals of different size

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e93365

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0093365&domain=pdf


resolution levels [7,27,28]. The properties of wavelets such as

localization, orthogonality, multi-rate filtering, are essential for

analysis of non-stationary and transient signals. WT can represent

a general function in terms of simple, fixed building blocks at

different scales and positions. These building blocks are generated

from a single fixed function called mother wavelet by translation

and dilation operations [29,30]. In addition, Haar Wavelet (HW),

as a simpler WT, owns some attracting features including fast for

implementation and ability to analyze the local feature. HW is a

very useful to find discontinuities and high frequency changes in

time series, and a potential candidate in modern electrical and

computer engineering applications, such as signal and image

compression, as well as abnormality detection from time series

[7,28].

However, most of these methods above are time-consuming,

and not scalable to large-scale datasets due to their time

complexity. Moreover, some of them, e.g., KS, is occasionally

insensitive even invalid for less significant data fluctuation,

especially when abrupt change occurs near two endpoint areas.

To detect abrupt change from time series quickly and

efficiently, a novel non-parametric method is proposed based

on multi-level HW and a modified KS statistic. In this method,

we combine superiorities of both KS statistic and HW

methods, and try to find an abrupt change in terms of

maximal data fluctuation existing between two adjacent

segments of a diagnosed time series. This paper is organized

as follows. Section II implements the integrated HWKS

method in detail. First, the two BSTs termed TcA and TcD,

are constructed by means of multi-level HW from a diagnosed

time series. Then, the framework of HWKS method is

implemented by introducing a modified KS statistic and two

search criteria based on TcA and TcD. Last, two HWKS-

based algorithms are designed to implement CP detection from

the diagnosed time series. Section III evaluates the perfor-

mance of HWKS by comparing KS, HW, and T methods, via

simulated time series and real ECG datasets. Section IV gives

conclusion from previous sections.

Method

The flow diagram of the integrated HWKS framework

(Fig. 1) is composed of three parts. First, the two BSTs, TcA

and TcD are constructed from a diagnosed time series.

Second, abrupt CP is detected from root to leaf nodes of

TcA in terms of a modified KS statistic and two search rules.

Last, the performance of HWKS is evaluated by comparing

with KS, HW, and T methods.

A. Construction of TcA and TcD
Like all wavelet transforms, multi-level HW decomposes a

discrete signal into two sub-signals with half its length. One sub-

signal is a running average or trend; the other sub-signal is a

running difference or fluctuation. HW is performed in several

stages or levels [28]. It can be described using scalar products with

scaling signals and wavelets. The discrete signals are synthesized

by beginning with a very low-resolution signal, successively adding

on details to create higher resolution versions, and ending with a

complete synthesis of the signal at the finest resolution. Generally,

by using k-level HW, a discrete time series signal Z = {z1, z2,…,

zN}, can be decomposed into the kth-level trend cAk, and k level

fluctuations, i.e.,cD1, cD2,…, cDk, k = 1, 2, .., log2 N. As shown in

Fig. 2, the k-level HW is the mapping Hk defined by [8],

Z
Hk

(cAk cDk
�� cDk{1

�� :::j cD2
�� cD1

�� ), ð1Þ

The multi-resolution analysis (MRA) is the heart of

wavelet analysis [23,29], in terms of MRA, we can conceptu-

alize the process of HW as a projection of time series with

size N to total N different vectors vi and wi, termed as

scaling signals and wavelet basis vectors, respectively.

The discrete signal Z, average and detail signals are expressible

as:

Z~Akz
Xk

i~1

Di,1ƒkƒlog2 N, ð2Þ

Ak~(Z:Vk)Vk~
XN=2k

i~1

(Z:vk
i )vk

i ~
XN=2k

i~1

(cAk,i)v
k
i ð3Þ

Di~(Z:Wi)Wi~
XN=2i

j~1

(cDk,j)w
i
j , ð4Þ

Thereafter, the following equations can be obtained,

Z~Akz
Xk

i~1

Di

~
XN=2k

i~1

(Z:vk
i )vk

i z
Xk

i~1

XN=2i

j~1

(Z:wi
j)w

i
j

~
XN=2k

i~1

(cAk,i)v
k
i z

Xk

i~1

XN=2i

j~1

(cDi,j)w
i
j

~cAk:Vkz
Xk

j~1

cDj:Wj,

ð5Þ

Ak~cAk:Vk

~ cAk,1,cAk,2,:::,cA
k,N=2k

� �
: vk

1,vk
2,:::,vk

N=2k

� �
,

~(ak
1,ak

2, . . . ,ak
N-1,ak

N,)

ð6Þ

Dk~cDk:Wk

~ cDk,1,cDk,2,:::,cD
k,N=2k

� �
: wk

1,wk
2,:::,wk

N=2k

� �
,

~(dk
1,dk

2, . . . ,dk
N-1,dk

N,)

ð7Þ

where vk
i is k-level Haar scaling signals, wk

j is k-level Haar

wavelets, |vk
i | = |wk

j | = N.

In addition, we can represent HW with k-level approximation

and detail coefficient vectors by the following matrices, namely

McA and McD:
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McA~

cA1,1 ::: cA1,N=2

::: cAk,j 0

cAm,1 0 0

2
664

3
775,

McD~

cD1,1 ::: cD1,N=2

::: cDk,j 0

cDm,1 0 0

2
664

3
775,

ð8Þ

where 0ƒkƒm~log2 N, 1ƒjƒN=2k. Suppose the size of a

diagnosed sample Z is divisible k times by 2, we can further denote

the jth element in cAk and corresponding averaged signal in Ak, as

well as the jth element in cDk and corresponding detail signal in Dk

as follows:

cAk,j~
1

(
ffiffiffi
2
p

)^k
(
Xb

i~a

zi), ð9Þ

ak,a~:::~ak,b~
1

(
ffiffiffi
2
p

)
cAk,j, ð10Þ

cDk,j~
1

(
ffiffiffi
2
p

)^k
(
Xc

L~a

zL{
Xb

R~cz1

zR), ð11Þ

dk,a~:::~dk,b~
1

(
ffiffiffi
2
p

)
cDk,j, ð12Þ

where 2ƒkƒlog2 N, and 2k(j{1)z1ƒiƒj � 2k; a~2k(j{1)

z1, c~2k(j{1)z2(k{1), and b~2k � j. Therefore, a diagnosed Z

can be decomposed into cA and cD matrices by means of k-level

HW. Thereafter, as shown in Fig. 3, TcA and TcD are built in terms

of McA and McD, as well as original elements in Z = {z1, z2,…, zN}.

In TcA, and TcD, non-leaf nodes in different level are constructed

from McA, and McD, respectively; and then leaf nodes are derived

Figure 1. The integrated scheme of HWKS method for fast CP detection, which includes three parts: construction of two BSTs,
namely TcA and TcD; CP detection of HWKS in terms of two search criteria; and evaluation of HWKS method.
doi:10.1371/journal.pone.0093365.g001

Figure 2. The diagram of multi-level HW for time-series signal
Z, it is composed of k-level cA and cD vectors, i.e., the average
and difference coefficients vectors.
doi:10.1371/journal.pone.0093365.g002
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directly from the elements in Z. The constructions of TcA and TcD

are implemented by Algorithm 1 in detail.

Algorithm 1.

Input: Z = {zi : 1 # i # N},a diagnosed time series

Output: two BSTs, TcA and TcD

Initiate the level of HW, k, (1 # k # log2(N));

Declare two matrices, McA and McD;

For i = 1 to k do

[cAi, cDi] = Call HW(Z, i);

McA(i) = cAi; McD(i) = cDi;

end

Construct TcA and TcD from McA and McD, as well as Z.

Output TcA and TcD

B. HWKS method based on a modified KS statistic
KS test is one of the most useful and general non-parametric

methods for comparing two samples, because it is sensitive to those

differences in both location and shape of the empirical cumulative

distribution functions (e.c.d.f) of two samples [31,32]. Suppose

Y~fy1,:::,yNg is a time series, we observe,

Y~f (i=N)zX , i~1,:::,N,

where X~fxigi~1,::::,N are discrete and centred i.i.d. random

variables, and f is a noisy signal with unknown distribution.

Thereafter, we can deal X as a normal time series with distribution

function Fm(x), and Y as an abnormal time series with distribution

function Gn(x). Then, we can assemble a diagnosed time series Z,

and define it as below:

Z~ X ,Yf g~ Z1,Z2f g~fz1, . . . ,zc,zcz1, . . . ,zng, ð13Þ

To detect an abrupt CP from Z, a modified KS statistic is defined

to evaluate the distribution distance between X and Z [15,33,34]:

Dmn(x)D(
mn

mzn
)1=2 sup

x[R

DGn(x){Fm(x)D, ð14Þ

if a change point c occurs in Z, there exists a value zc satisfies

Fm(zc)=Gn(zc), and Dmn(zc)wd, zc[[z1, zn], d[R.

As hypothesized Fm(x) and Gn(x) are not available, but instead,

the e.c.d.f of Fm(x) and Gn(x) can be derived from two time series

X and Z. Then, Fm(x) and Gn(x) are defined by,

Fm(x)~Pm(Xƒx)~
1

m

Xm

i~1

I(xiƒx), ð15Þ

Gn(x)~Pn(Zƒx)~
1

n

Xn

j~1

I(zjƒx), ð16Þ

where Fm(x) and Gn(x) count the proportion of the sample points

below level x. For any fixed point x[R, the law of large numbers

implies that

Fm(x)~
1

m

Xc

i~1

I(xiƒx)?E I(xiƒx)~F (x), ð17Þ

Gn(x)~
1

n

Xn

j~1

I(zjƒx)?E I(zjƒx)~G(x), ð18Þ

where F (x) and G(x) are true underlying distribution of two time

series X and Z, i.e. the proportion of the sample in the set ({?,x�
approximates the probability of this set. It is easy to say that this

approximation holds uniformly over all x[R : sup
x[R

DGn(x){

Fm(x)D?0, i.e., the largest difference between Fm(x) and Gn(x)
goes to 0 in probability. The key observation in KS test is that the

Figure 3. The diagrams of TcA and TcD, derived from a diagnosed time-series Z by means of k-level HW.
doi:10.1371/journal.pone.0093365.g003
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distribution of this supremum does not depend on the ‘unknown’

distribution P in diagnosed Z, if P is continuous distribution. In

addition, we have,

P((
mn

mzn
)1=2 sup

x[R

jGn(x){Fm(x)jƒd)?

H(d)~1{2
X

({1)i{1e{2i2s,
ð19Þ

where H(s) is the c.d.f. of KS distribution [35].

In terms of the definition of non-leaf nodes in TcA in equations

(9), we can denote the jth element zj of Z and define a new element

zk,j used in HWKS method as,

zj~ak,jz
Xk

i~1

di,j[zj§ak,j , ð20Þ

zk,j~
1

2k
(
Xb

i~a

zi)~
(
ffiffiffi
2
p

)^k

2k
cAk,j

~
(
ffiffiffi
2
p

)^(kz1)

2k
ak,a~:::~

(
ffiffiffi
2
p

)^(kz1)

2k
ak,bƒza,:::,zb,

ð21Þ

where cAk,j is a non-leaf node of TcA, zk,j is a new element

defined in terms of cAk,j, and 1ƒkƒlog2 N, 1ƒjƒN=2k;

a~2k(j{1)z1, and b~2k � j. Then, a revised KS statistic for

HWKS is defined as:

D’mn(k,j)D(
mn

mzn
)1=2 sup

zk,j[R

DGn(zk,j){Fm(zk,j)D

~(
nm

nzm
)1=2 sup

zk,j[R

f1
n

(
Xn

j~1

I(zjƒzk,j)){
1

m

Xm

i~1

I(xiƒzk,j)g
�����

�����,
ð22Þ

where D’mn(k,j) measures the distribution distance between X and

Z at a selected node cAk,j in TcA, and larger value of D’mn(k,j)

means that more significant change occurs in Z.

Thereafter, we define a KS test for X and Z as,

H0 : Fm~Gn vs: H0 : Fm=Gn, ð23Þ

if null hypothesis is true then, the distribution of D’mn can be

tabulated as it depends only on n. Moreover, if n is large enough

then the distribution of D’mn is approximated by KS distribution.

On the other hand, suppose Fm=Gn, since Fm and Gn are the true

c.d.f. of X and Z, bylaw of large numbers the e.c.d.f, Fm will

converge to Gn, and for large n we will have,

sup
zk,j[R

DGn(zk,j){Fm(zk,j)Dwd,D’mnw(
mn

mzn
)1=2d, ð24Þ

If H0 fails then,

D’mnw(
mn

mzn
)1=2d?z? as n?z?: ð25Þ

Therefore, to test H0 we make a detection rule,

d~
H0 : D’mnƒc

H1 : D’mnwc

�
, ð26Þ

where c depends on the level of significance a, and can be found by

using KS distribution when n is large.

a~R(d=H0DH0)~R(D’mn§cDH0)&1{H(c), ð27Þ

If sup
k

sup
j

D’mn(k,j)j jƒC(a), H0 is true i.e., no change point

occurs. On the other hand, if sup
k

sup
j

D’mn(k,j)j jwC(a), then

hypothesis H1 is true i.e., an abrupt change is detected.

C. HWKS-based CP Detection
To detect abrupt change from diagnosed Z, an optimal path

needs to be obtained from root to leaf nodes in TcA accurately and

quickly. Therefore, as shown in Fig. 4, two search criteria are

introduced in terms of TcA and TcD. The first search criterion is

defined based on TcA as follows:

Criterion 1. Suppose the current non-leaf node in TcA we

selected is cAk,j, and its left-child and right-child nodes are

cAk-1,2j-1 and cAk-1,2j, respectively,

(a) if (D’mn(k{1,2j{1)wD’mn(k{1,2j) and D’mn(k{1,2j{1)
wC(a)) hold true, then the left-child node cAk-1,2j-1 is

selected to be involved into the current search path in TcA;

(b) if (D’mn(k{1,2j{1)vD’mn(k{1,2j) and D’mn(k{1,2j)
wC(a)) hold true, then the right-child node cAk-1,2j-1 is

selected to be involved into the current search path in TcA.

Proof. In terms of the definitions of zk,j and D’mn in equation

(21) and (22), D’mn(k{1,2j{1), and D’mn(k{1,2j) can be written

as

D’mn(k{1,2j{1)D(
nm

nzm
)1=2 DGn(zk{1,2j{1){Fm(zk{1,2j{1)D

~(
nm

nzm
)1=2 f1

n
(
Xn

a~1

I(zaƒzk{1,2j{1)){
1

m

Xm

b~1

I(xbƒzk{1,2j{1)g
�����

�����,
~(

nm

nzm
)1=2 f1

n
(
Xn

a~1

I(zaƒ
(
ffiffiffi
2
p

)̂ (k{1)

2k
cAk-1,2j-1))

����� {
1

m

Xm

b~1

I(xbƒ
(
ffiffiffi
2
p

)̂ (k{1)

2k
cAk-1,2j-1)g

�����

ð28Þ

D’mn(k{1,2j)D(
nm

nzm
)1=2 DGn(zk{1,2j ){Fm(zk{1,2j )D

~(
nm

nzm
)1=2 f1

n
(
Xn

a~1

I(zaƒzk{1,2j )){
1

m

Xm

b~1

I(xbƒzk{1,2j )g
�����

�����,
~(

nm

nzm
)1=2 f1

n
(
Xn

a~1

I(zaƒ
(
ffiffiffi
2
p

)̂ (k{1)

2k
cAk-1,2j))

����� {
1

m

Xm

b~1

I(xbƒ
(
ffiffiffi
2
p

)̂ (k{1)

2k
cAk-1,2j)g

�����

ð29Þ

where zk{1,2j{1 and zk{1,2j are two diagnosed points in

accordance with cAk-1,2j-1 and cAk-1,2j in TcA. In terms of

Criterion 1, if (D’mn(k{1,2j{1)wD’mn(k{1,2j) holds true, as

plotted in Fig. 5, it indicates that more significant distribution

distance exists in the left sub-tree covered by cAk-1,2j-1, than in the

right one covered by cAk-1,2j, and vice versa. That is, abrupt CP

occurs in the left segment of Z with more probability than in the

right one. On the other hand, If D’mn(k{1,2j{1)wC(a)) is

satisfied, it means that the distribution distance overtakes a critical

value given in an identical data distribution.

Criterion 1 guarantees that if abrupt CP occurs in Z, the left or

the right sub-tree with bigger distribution distance is selected to be

involved into the current search path, and then the other half part

(28)

(29)
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is discarded. Thereafter, an optimal search path can be detected

from root to leaf nodes in TcA after about log2 (n) search steps.

Unfortunately, if (D’mn(k{1,2j{1)~~D’mn(k{1,2j) or

(max(D’mn(k{1,2j{1),D’mn(k{1,2j))vC(a)) are true, then

Criterion 1 is invalid for CP detection. Therefore, another search

criterion is introduced based on TcD, and defined as below.

Criterion 2. Suppose D’mn(k{1,2j{1)~~D’mn(k{1,2j)
or (max(D’mn(k{1,2j{1),D’mn(k{1,2j))vC(a)) is satisfied,

the non-leaf node cDk,j in TcD is selected, in accordance with

the current non-leaf node cAk,j in TcA, with its left-child node

cDk{1,2j{1 and right-child node cDk{1,2j, respectively,

(a) if cDk{1,2j{1

�� ��w cDk{1,2j

�� �� holds true, then the left-child

node cAk-1,2j-1 is selected to be involved into the current

search path in TcA;

(b) if cDk{1,2j{1

�� ��v cDk{1,2j

�� �� holds true, then the right-child

node cAk-1,2j is selected to be involved into the current

search path in TcA.

Proof. In accordance with the definition of cDk,j in equation

(11), cDk-1,2j-1 and cDk-1,2j can be written by

cDk-1,2j-1~
1

m
(
XL1

La~L0

zLa{
XL2

Lb~L1z1

zLb)~DL(k{1,2j{1), ð30Þ

cDk-1,2j~
1

n
(
XR1

Ra~R0

zRa{
XR2

Rb~R1z1

zRb)~DR(k{1,2j), ð31Þ

where L0~2k(j{1)z1, L1~2k(j{1)z2(k{2), L2~2(k{1)

(2j{1); R0~2(k{1)(2j{1)z1, R1~2(k{1)(2j{1)z2(k{2),

R2~2(k{1)(2j), and m~n~(
ffiffiffi
2
p

)(k{1). In terms of equation

(30), and (31), DL , and DR can reflect data fluctuation of two

segments, namely ZL and ZR in Z covered by cDk-1,2j-1 and

cDk-1,2j, respectively. None loses of generalization, if

cDk{1,2j-1

�� ��w cDk{1,2j

�� �� is true, it means that bigger data

fluctuation exists in Z.L than in Z.R. That is, a potential abrupt

change exists in ZL covered by cDk-1,2j-1 with more probability

than in ZR covered by cDk-1,2j. Therefore, in terms of criterion 2,

left-child node cAk-1,2j-1 is selected to be involved into current

search path in TcA, and vice versa.

In terms of two search criteria above, two HWKS-based

algorithms are implemented to detect abrupt change from a

diagnosed time series Z. In Algorithm 2, the distribution

distance between X and Z is calculated in terms of a selected

non-leaf node cAk,j in TcA. In this function, the confidence

interval is set by a~0:05, and C(a)~1:3258. For simplicity, we

only output the nodes that the value of D’mn overtakes C(a),
otherwise output zero. In Algorithm 3, an optimal path is

detected from root to leaf nodes in TcA in terms of two search

criteria, and then an estimated CP is obtained from a

Figure 4. The scheme of two search criteria for CP detection of HWKS. (a) Criterion1 based on TcA, and (b) Criterion 2 based on TcD ensure
that an optimal path of abrupt CP can be detected from root to leaf nodes in TcA.
doi:10.1371/journal.pone.0093365.g004
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diagnosed Z. The pseudocodes can be found in Algorithm 2

and 3 in detail.

D. Evaluation of HWKS
Many methods have been proposed for CP detection. In this

part, the following typical methods are used to evaluate and verify

the performance of the proposed HWKS method.

KS statistic [15]. In KS method, firstly, we divide a

diagnosed sample data Z into two segments, namely, Zm = {z1,

z2,…, zm}, and zN-m = {zm+1, zm+2,…, zN-m}. Then, KS statistic

for these two segments is defined by,

Dmn(x)D(
m(N{m)

N
)1=2 sup

x[R

DFN{m(x){Fm(x)D

~(
m(N{m)

N
)1=2 sup

x[R

D
XN{m

i~mz1

I(Zivx){
Xm

j~1

I(Zjvx)D,
ð32Þ

where N is the size of the diagnosed sample Z; m is the size of

segments Zm, that is the current diagnosed position in Z.

HW [28,33]. In this method, the fluctuation coefficient vector

cD1~fcD1,1,cD1,2,:::,cD1,N=2,g is calculated by one-level HW

Figure 5. The scheme of search strategy in Criterion 1 in terms of distribution distance between X and Z. The dotted red line refers to a
supposed CP, namely Zc, the solid black line, and green one stands for the points of zk-1,2j, and zk-1,2j-1, respectively.
doi:10.1371/journal.pone.0093365.g005

Algorithm.2.
Input: a normal time series input X, and a diagnosed

time series Z, as well as current non-leaf node
cAk,j selected in TcA.

Output: RS, the distribution distance between X and Z
at the selected non-leaf node cAk,j in TcA.

Set Ca = 1.3258;

RS = 0;
Calculate zk,j in terms of cAk,j;

Sx = Calculate the e.c.d.f of zk,j in X;

Sz1 = Calculate the e.c.d.f of z-
k,j in Z;

Sz2 = Calculate the e.c.d.f of zk,j in Z;

D1 = abs(Sz1-Sx); D2 = abs(Sz2-Sx);

If (D1.D2) &&(D1.Ca) Then

{Select D1;

RS = D1;}

elseif (D1,D2) &&(D2.Ca) Then

{Select D2;

RS = D2;}

elseif (D1 = = D2) || (max (D1, D2),Ca) Then

RS = 0;

Endif

Output RS(cAk,j);

Algorithm.3.
Input: X, Z, TcA, and TcD derived from Z.

Output: The estimated abrupt CP from TcA and TcD.

Set b = 1; N = length (z); k = log2(N);

Set the first node of optimal search path is the root node in
TcA:
For i = 1 to k do

a = k-i+1;

Call Algorithm 2 to calculate the distribution
distance between X and Z at two non-leaf node
cAa-1,2b-1 and cAa-1,2b-1 , respectively;

Set S1 = RS(cAa-1,2b-1), S2 = RS(cAa-1,2b);

If (S1.S2) Then

{The current selected node = cAa-1,2b-1;

b = 2b-1;}

elseIf ((S1,S2) Then

{The current selected node = cAa-1,2b;

b = 2b;}

elseIf ((S1 = = S2) Then

{If(cDa-1,2b-1. cDa-1,2b) Then

{ The current selected node = cAa-1,2b-1;

b = 2b-1; } endif

If(cDa-1,2b-1, cDa-1,2b) Then

{ The current selected node = cAa-1,2b;

b = 2b; } endif }

} Endif
End for

Output b, and zb
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from a diagnosed time series Z, and then an estimated CP can be

found by comparing the values of elements in vector cD1. The

elements in cD1 is defined as,

cD1,j~
1ffiffiffi
2
p (

Xj�2
i~2(j-1)z1

({1)iz1zi), ð33Þ

where 1ƒjƒN=2. To find an abrupt change, a critical value d is

given in terms of an identical data distribution. If

max
1ƒjƒN=2

cD1,j

�� ��w ffiffiffi
2
p

:d holds true, then an abrupt CP occurs in a

diagnosed sample Z.

T-statistic[36]. T, also known as Welch’st-test, is used only

when two population variances are assumed different (the two

sample sizes may or may not be equal) and hence must be

estimated separately. A diagnosed sample Z is divided into

Zm = {z1, z2,…, zm} and ZN-m = {zm+1, zm+2,…, zN-m}. Then, T

statistic is calculated as,

t~
�ZZm{�ZZN{m

s�ZZm{�ZZN{m

,S�ZZm{�ZZN{m
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1

m
z

S2
2

N{m

s
, ð34Þ

where �ZZm, and �ZZN{m are the sample mean of two segments in

diagnosed Z, S* is unbiased estimator of standard deviation, and m,

n is the size of two segments in Z.

Results and Discussion

First, we evaluate the performance of HWKS on the simulated

time series datasets, the sensitivity, efficiency, and accuracy of

HWKS is analyzed by comparing KS, HW, and T methods.

Then, we apply HWKS, and other three methods, to distinguish

normal and abnormal ECG segments from the assembled ECG

time series samples, and diagnose the different states of health

from a patient’s abnormal ECG time series segments.

Figure 6. The results of single simulation on single CP test position, with constant variance v = 2, different sample size N, and CP
test position k, by HWKS, KS, HW, and T, respectively. (A1) The estimated CP from diagnosed sample Z1, with N = 32, k = 5. (A2) The estimated
CP from diagnosed sample Z2, with N = 64, k = 9. (A3) The estimated CP from diagnosed sample Z3, with N = 128, k = 113. (A4) The estimated CP from
diagnosed sample Z4, with N = 256, k = 225.
doi:10.1371/journal.pone.0093365.g006

Table 1. The summarized results of single simulation with single CP test position.

Z

M

Size, N

CP, k

23

2

24

3

25

5

26

9

27

113

28

225

29

449

210

897 Averaged

HWKS Err 0 0 1 23 8 21 17 210 5

Acc 1.0 1.0 .97 .95 .94 .99 .97 .99 .97

KS Err 21 22 5 0 6 1 24 29 3.5

Acc .88 .88 .84 1.0 .95 .99 .99 .99 .94

HW Err 0 1 1 17 251 251 293 2503 89

Acc 1.0 .94 .97 .73 .60 .80 .82 .51 .79

T Err 21 22 21 54 2112 2224 62 126 72

Acc .88 .88 .97 .16 .13 .13 .88 .88 .61

doi:10.1371/journal.pone.0093365.t001
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Figure 7. The results of multiple 600 simulations on single CP test position, with v = 2, different N, and k, by HWKS, KS, HW, and T,
respectively. For samples with N = 32, k = 5; N = 64, k = 9; N = 128, k = 113; and N = 256, k = 225, (A1)–(A4) the distribution of e-CP, (B1)–(B4) the PDF
of e-CP, and (C1)–(C4) the averaged e-CP, by HWKS, KS, HW, and T, respectively.
doi:10.1371/journal.pone.0093365.g007

Table 2. The summarized results of multiple 600 simulation on single CP test position.

Z

M

Size, N

CP, k

23

2

24

3

25

5

26

9

27

113

28

225

29

449

210

897 Averaged

HWKS Tim .17 .23 .27 .33 .41 .47 .60 .75 .40

Hit .39 .15 .10 .06 .03 .03 .01 .01 .10

Err 2 2 3 3 23 23 25 3 3

Acc .75 .88 .91 .95 .98 .99 .99 .99 .93

KS Tim .09 .15 .36 .68 1.6 3.4 9.05 23.8 4.9

Hit .0 0 .08 .14 .14 .13 .10 .09 .09

Err 21 22 23 21 22 21 21 1 1.5

Acc .88 .88 .91 .98 .98 .99 .99 .99 .95

HW Tim .05 .06 .26 .70 1.15 4.1 8.7 29.7 5.6

Hit 0 0 0 0 0 0 0 0 0

Err 1 4 12 25 246 295 2186 2380 93.6

Acc .88 .75 .63 .61 .64 .63 .64 .63 .67

T Tim .6 1.1 2.2 4.5 9.2 17.7 36.7 75.2 18.4

Hit .02 .017 .02 .01 .015 .01 .01 .01 .014

Err 0 1 2 4 22 216 227 246 12.3

Acc 1.0 .94 .94 .94 .98 .94 .95 .96 .95

doi:10.1371/journal.pone.0093365.t002
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A. Analysis on simulated time series
In our simulations, the artificial time series are generated

randomly in terms of normal distribution N(0,1), i.e., N(mean,

u = 0, standard deviation, sd = 1), and then the normally distrib-

uted datasets is used for abrupt change detection. Specifically,

each diagnosed time series sample of size N is composed of both a

normal segment of size k, and an abnormal segment of size N-k, in

which a designed abrupt change is contained by adding constant

variation v to the normal random numbers of size N-k.

Single simulation on single CP test position. First, CP

detection is performed on single time series sample with single CP

test position. The simulation results of CP detection are illustrated

in Fig. 6, and the summarized analysis of error, and accuracy is

shown in Table 1. For the proposed HWKS, it can detect the

designed CP from samples of different sizes and CP test positions,

with smaller error, and higher accuracy than HW, and T methods.

For KS, it has the smallest averaged error in all four methods, but

it has lower accuracy than HWKS, especially when sample size N

is small. On the contrary, both of HW and T are worse, due to

Figure 8. The analysis of e-CP, hit rate, error and accuracy for multiple 100 simulations on different CP test positions, with different
N, and k, by HWKS, KS, HW, and T, respectively. (A) The results of multiple samples Z1, with N = 16; (B) the results of multiple samples Z2, with
N = 32; (C) the results of multiple samples Z3, with N = 64; (D) the results of multiple samples Z4, with N = 128.
doi:10.1371/journal.pone.0093365.g008

Table 3. The summary of multiple simulations on different CP test positions.

M
Z Size, N 23 24 25 26 27 28 29 210 Averaged

HWKS Tim .18 .45 .59 .78 .86 1.18 1.71 2.6 1.04

Hit .29 .21 .25 .24 .16 .10 .05 .03 .17

Err 1.25 2.2 3.2 4.9 6.8 11.2 21.6 33.7 10.6

Acc .84 .86 .90 .92 .95 .96 .96 .97 .92

KS Tim .14 .50 .91 1.8 4.1 9.3 22.9 62.7 12.79

Hit .0 .03 .09 .13 .14 .11 .09 .07 .08

Err 3.5 7.1 8.8 8.1 9.5 16.1 31.0 63.3 18.4

Acc .56 .56 .72 .87 .92 .93 .94 .94 .81

HW Tim .03 .18 .45 .77 2.2 8.2 28.7 72.7 14.15

Hit .08 .08 .04 .02 .02 .03 .02 .03 .04

Err 1.9 3.3 6.4 13.2 27.3 61.8 123.7 251.9 61.2

Acc .76 .79 .79 .79 .78 .76 .76 .75 .77

T Tim .78 3.1 6.1 12.1 24.3 49.7 101.7 209.6 50.9

Hit .15 .16 .25 .20 .13 .08 .06 .04 .13

Err 1.38 1.8 2.1 3.1 5.7 12.4 25.3 53.3 13.1

Acc .83 .88 .93 .95 .95 .95 .95 .94 .92

doi:10.1371/journal.pone.0093365.t003
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bigger error and lower accuracy than HWKS and KS. These

simulation results indicate that HWKS has the best sensitivity and

performance in four methods, especially HWKS is better than KS,

due to smaller error and higher accuracy when abrupt change is

located near the left or right boundary of samples with smaller size.

Multiple simulations on single CP test position. Second,

we test HWKS and other three methods by multiple 600

simulations on single CP test position, with different N, and k.

The representative results of CP detection are illustrated in Fig. 7,

and the analysis of computation time, hit rate, error, and accuracy

is summarized in Table 2. For the proposed HWKS, most of e-

CPs are located near the designed CP position, with the shortest

computation time, and the highest hit rate in all four methods, as

well as smaller error, and higher accuracy than HW and T. For

Figure 10. The results of CP detection from assembled ECG time series of size N = 2k, k = 9, 10, …, 14, by HWKS, KS, HW, and T,
respectively. (A1)–(A6) the assembled ECG sample Z1–Z6; (B1)–(B6),(C1)–(C6) ,(D1)–(D6) ,(E1)–(E6) the e-CP detected from Z1–Z6, by HWKS, KS, HW,
and T, respectively; (F1)–(F6) the diagram analysis for the computation time, (G1)–(G6) the error of e-CP, and (H1)–(H6) the accuracy for Z1–Z6,
respectively. In (F)-(H), ‘1’ stands for HWKS, ‘2’ stands for KS, ‘3’ stands for HW, and ‘4’ stands for T.
doi:10.1371/journal.pone.0093365.g010

Figure 9. The analysis of computation time, hit rate, error and accuracy on different sample size, for HWKS, KS, HW, and T,
respectively. (A) The trend analysis for different sample size from N = 23 to 210, and (B) the histogram analysis for the averaged computation time,
hit rate, error and accuracy. In (B), ‘1’ stands for HWKS, ‘2’ stands for KS, ‘3’ stands for HW, and ‘4’ stands for T.
doi:10.1371/journal.pone.0093365.g009
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KS, to some extent, it is better than HWKS and HW for higher

accuracy and smaller error; however, it needs much more

computation time, and has lower hit rate than HWKS when

abrupt change occurs near the left or right boundaries of samples

with smaller size N. As for HW, it needs more computation time

than HWKS and KS, and has the lowest hit rate and the biggest

error in four methods. T is a method with the longest computation

time in all four methods, and lower hit rate than HWKS and KS,

although it has relatively higher accuracy than HWKS. These

simulations show that, the proposed HWKS is a fast and efficient

method, due to the shortest computation time and the highest hit

rate in all four methods, as well as smaller error and higher

accuracy than HW and T. In addition, HWKS has better

sensitivity to less significant data fluctuation in sample with small

size N, than KS, HW, and T, especially when CP is located near

the left or right boundary.

Multiple simulations on different CP test

positions. Third, for each diagnosed sample group, multiple

100 simulations on different CP test positions are performed by the

proposed HWKS and other three methods. In our simulations, for

each N, we select different 16 CP test positions from the different

parts of diagnosed samples, i.e., the CP test position is designed by

k~i � 2(log2 N){3, N§8, i~1, 2, 3,:::, 16. The selected results

Table 4. The summary of CP detection from the assembled ECG samples.

Z

M

Size, N

CP, k

29

50

29

500

210

300

210

900

211

600

211

1400

212

1600

212

4000

213

3000

213

8100

214

5000

214

16000 Averaged

Time HWKS .032 .036 .032 .033 .035 .034 .034 .034 .041 .036 .060 .049 .038

KS .014 .017 .037 .038 .116 .118 .395 .397 1.59 1.46 5.23 5.58 1.25

HW .092 .089 .093 .095 .094 .080 .081 .091 .091 .087 .085 .092 .089

T .074 .079 .149 .141 .296 .293 .718 .696 1.65 1.66 4.39 4.38 1.21

Error HWKS 7 0 0 7 7 21 0 8 8 2 12 0 6

KS 15 227 18 15 30 28 18 28 70 6 3 15 39.4

HW 2 296 96 696 396 1196 1396 1744 744 3762 662 5092 1340.1

T 49 11 299 63 599 647 2495 95 5191 91 11383 83 1750.5

Accuracy HWKS .98 1.0 1.0 .99 .99 .99 1.0 .99 .99 .99 .99 1.0 .99

KS .97 .55 .98 .98 .98 .98 .99 .99 .99 .99 .99 .99 .95

HW .99 .42 .90 .32 .80 .41 .66 .57 .90 .54 .95 .68 .68

T .90 .97 .70 .93 .70 .68 .39 .97 .36 .98 .30 .99 .74

doi:10.1371/journal.pone.0093365.t004

Figure 11. The results of CP detection from abnormal ECG time series of size N = 2k, k = 10, 11, …, 15, by HWKS, KS, HW, and T,
respectively. (A1)–(A6) the abnormal ECG sample Z1–Z6; (B1)–(B6), (C1)–(C6), (D1)–(D6), (E1)–(E6) the e.c.d.f derived from two segments of Z1–Z6, by
HWKS, KS, HW, and T, respectively; (F1)–(F6) the diagram analysis of the distance of e.c.d.f, and (G1)–(G6) the computation time of HWKS, KS, HW, and
T in Z1–Z6, respectively. In (F)–(G), ‘1’ stands for HWKS, ‘2’ stands for KS, ‘3’ stands for HW, and ‘4’ stands for T.
doi:10.1371/journal.pone.0093365.g011
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of simulations on single CP with different test positions are shown

in Fig. 8, including e-CP, hit rate, error, and accuracy. In addition,

the simulation results for different samples of size from 23 to 210

are summarized in Table 3. In terms of computation time, hit rate,

error, and accuracy, the trend analysis for different sample size N,

as well as the histogram of the averaged analysis for different

methods are plotted in Fig. 9.

For the proposed HWKS, it has the best performance for CP

detection from samples Z of size N from 23 to 27, because of the

shortest computation time, the highest hit rate, the smallest error,

and the highest accuracy in all four methods. Meanwhile, HWKS

is better than KS, HW, and T methods for samples Z of size N

from 28 to 210, due to the shortest computation time, the smallest

error, and the highest accuracy in all four methods, except that hit

rate is slightly lower than KS and T. For KS, in general, it has

shorter computation time, bigger hit rate, smaller error and higher

accuracy than HW. However, KS has the lowest hit rate, the

biggest error, and the lowest accuracy as N is below 25 in all four

methods, which means that KS has worse sensitivity and

performance for less significant data fluctuation, especially when

N is smaller. For HW, it generally takes shorter computation time

than T, whereas, it has the smallest hit rate, the biggest error and

lowest accuracy in all four methods. For T, it takes the longest

computation time, although bigger hit rate, smaller error and

higher accuracy than KS and T. These results show that HWKS

has better performance and sensitivity to less significant data

fluctuation near the left and right boundary of samples with

smaller size N and HWKS is an encouraging method for CP

detection on simulated time series, due to shorter computation

time, higher hit rate, smaller error, and higher accuracy than KS,

HW, and T methods.

B. Analysis on ECG time series
To verify the performance of the proposed method further, we

apply HWKS, and KS, HW, and T methods, to detect abrupt

change from ECG time series provided by PhysioBank. In ECG

experiments, we design the diagnosed ECG samples from different

ECG datasets, including the MIT-BIH Normal Sinus Rhythm

Database (NSRDB) [37], MIT-BIH Noise Stress Test Database

(NSTDB) [38], and MIT-BIH Malignant Ventricular Arrhythmia

Database (MVADB) [39,40].

CP detection from assembled ECG samples. First, we

select a normal ECG dataset, 16265m from the NSRDB, and an

abnormal ECG dataset, 118e00m from the NSTDB, and then

assemble the diagnosed ECG samples from different segments in

the 16265m and 118e00m. Specifically, we take the normal ECG

segment of size m as Xm, and the abnormal segment of size n as Yn,

respectively, and then assemble the diagnosed ECG sample

Z = {Xm , Yn} = {x1,…, xm, y1,…, yn}. Meanwhile, we design

another normal ECG segment from 16265m, i.e., X = {x1,…,

xm+n}, as normal time series input.

In this ECG experiment, a single CP test position is arranged

near the left and right boundary of the assembled ECG sample.

For the assembled ECG sample of size from N = 29 to 214 with

different CP position k, the results of CP detection from Z1–Z6 are

illustrated in Fig. 10, and then the analysis of computation time,

error, and accuracy are summarized in Table 4. Comparing with

KS, HW, and T methods, the results show that the proposed

HWKS can estimate CP position more quickly, and distinguish the

normal and abnormal segments from the assembled ECG samples

more efficiently, with smaller error and higher accuracy. For KS, it

has smaller error and higher accuracy than HW and T, whereas, it

takes much more computation time than HWKS, HW, and T,

especially when sample size N gets bigger, meanwhile, KS is less

sensitive for less significant statistic fluctuation, with bigger error

near the right boundary. For HW, it is inefficient, because of the

biggest error and lowest accuracy in all four methods. For T, it is

also discouraging for longer computation time, bigger error and

lower accuracy than HWKS and KS. Therefore, the proposed

HWKS has the best performance in this ECG experiment out of

all four methods.

CP detection from abnormal ECG samples. To verify the

performance of CP detection further, we apply the proposed

HWKS, and KS, HW and T to analyze the abnormal ECG time

series directly. In this part, we select the abnormal ECG segment

from 118e00m in the NSTDB, i.e., Z = {y1,…, yn}, as a diagnosed

ECG sample. Then, we take another normal ECG segment from

16265m in the NSRDB, i.e., Z = {Xn } = {x1,…, xn }, as normal

input signal. To some extent, the distance of e.c.d.f can partly

Table 5. The summary of CP detection from abnormal ECG samples.

M
Z Size, N 210 211 212 213 214 215 Averaged

e-CP HWKS 376 1405 2722 4945 12150 19711 NA

KS 264 1399 3268 2646 12296 19930 NA

HW 514 1374 3244 4810 9416 24066 NA

T 1023 1 4095 132 16383 1 NA

Computation
time

HWKS .032 .034 .034 .037 .049 .075 .043

KS .036 .114 .376 1.41 5.19 20.82 4.66

HW .090 .093 .092 .095 .096 .115 .097

T .138 .286 .657 1.65 4.38 13.79 3.49

Variance of
e.c.d.f

HWKS .183 .287 .183 .168 .359 .223 .234

KS .362 .454 .345 .326 .442 .229 .358

HW .029 .025 .254 .008 .030 .096 .073

T 0 0 0 .347 0 0 .057

doi:10.1371/journal.pone.0093365.t005
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reflect the statistical fluctuation. Therefore, we take this variable as

an indicator of the data fluctuation between two ECG segments

divided by e-CP position. The results of CP detection, including

the e-CP position, distance of e.c.d.f, and computation time, are

plotted in Fig. 11, and summarized in Table 5.

For abnormal ECG samples Z1–Z6 with different size N from

210 to 215, HWKS can detect abrupt change position, and then

divide the original ECG sample into two parts, with the shortest

computation time out of four methods, and bigger distance of

e.c.d.f than HW and T methods. For KS, it can detect CP with the

maximal distance of e.c.d.f; however, it needs longer computation

time than HWKS, HW and T, especially for ECG sample with big

size N. On the other hand, for HW, it is inefficient, due to smaller

distance of e.c.d.f than HWKS and KS. T is also inefficient,

because of longer computation time than HWKS, HW, the

smallest distance of e.c.d.f, and the invalid e-CP position for most

of the abnormal ECG samples.

Especially, the results of CP detection from Z1–Z3 plausibly

indicate that, a patient seems recovering from abnormal state of

health, after overtaking the critical e-CP position detected by

HWKS. On the contrary, the results from Z4–Z6 suggest that, a

patient is encountering a risky situation from the former state of

health, after going through the vital e-CP position. These results

indicate that HWKS can capture abrupt change position from a

diagnosed ECG sample quickly and efficiently, and the detected

CP is very useful to find a critical time from ECG time series,

where a patient might encounter an important conversion between

two different states of health. Therefore, HWKS is an efficient and

encouraging method for detecting abrupt change from abnormal

ECG time series, and it is very meaningful in inspecting and

diagnosing different states of health from diagnosed ECG time

series more quickly and efficiently.

Conclusion

In this paper, based on HW and a modified KS statistic, a novel

HWKS method is proposed for CP detection from large-scale time

series. First, two BSTs are constructed from a diagnosed time

series by means of multi-level HW method, the framework of

HWKS method is implemented by introducing a revised KS

statistic and two search criteria based on TcA and TcD; and then

two HWKS-based algorithms are designed to detect an optimal

path from TcA in terms of two search criteria. Second, the

performance of HWKS is analyzed on simulated time series; the

simulations show that HWKS is more sensitive and efficient than

KS, HW, and T methods, especially when CP occurs near the left

or right boundary with less significant data fluctuation in time

series of small size. Last, HWKS is applied to analyze abrupt

change on both assembled and abnormal ECG datasets. The

results indicate that HWKS can successfully detect abrupt change,

and distinguish normal and abnormal ECG segments from

assembled ECG samples. In addition, HWKS can estimate an

abrupt CP from abnormal ECG segments with different time-

scale, and then divide it into two adjacent parts with maximal data

fluctuation; therefore, it is very useful to diagnose a patient’s

different states of health from an abnormal ECG segment more

quickly and efficiently. In conclusion, HWKS is a novel and

efficient method for fast CP detection; it is a very powerful and

promising tool to find useful information from large-scale time

series databases.
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