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Abstract

This paper mainly utilizes likelihood-based tests to detect rare variants associated with a continuous phenotype under the
framework of kernel machine learning. Both the likelihood ratio test (LRT) and the restricted likelihood ratio test (ReLRT) are
investigated. The relationship between the kernel machine learning and the mixed effects model is discussed. By using the
eigenvalue representation of LRT and ReLRT, their exact finite sample distributions are obtained in a simulation manner.
Numerical studies are performed to evaluate the performance of the proposed approaches under the contexts of standard
mixed effects model and kernel machine learning. The results have shown that the LRT and ReLRT can control the type I
error correctly at the given a level. The LRT and ReLRT consistently outperform the SKAT, regardless of the sample size and
the proportion of the negative causal rare variants, and suffer from fewer power reductions compared to the SKAT when
both positive and negative effects of rare variants are present. The LRT and ReLRT performed under the context of kernel
machine learning have slightly higher powers than those performed under the context of standard mixed effects model. We
use the Genetic Analysis Workshop 17 exome sequencing SNP data as an illustrative example. Some interesting results are
observed from the analysis. Finally, we give the discussion.
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Introduction

For next-generation sequencing data identifying rare variants

associated with phenotypes of interest is both practically and

theoretically important [1–3]. Here the rare variant is typically

defined as allele with minor allele frequency (MAF) less than 1%.

The past few years have witnessed increasing evidence that the

rare variants play an important role in many complex diseases and

disorders [4–16]. There are also some other findings supporting

the contributions of rare variants to the diseases. For example,

according to the odds ratio (OR) distribution, it has been

demonstrated that most rare variants have values above 2 and

the mean OR is 3.74, while very few common variants (defined as

MAF.1%) have values above 2 and the mean OR is 1.36 [17].

See also Box 1 in Cirulli and Goldstein [2].

However, it is a very challenging task to detect the casual rare

variants due to their extremely low MAF. For rare variant

association analyses the single locus methods designed for common

variants are rather underpowered or not applicable [1,18–20],

thus developing appropriate statistical approaches especially for

rare variant has become an active research topic recently. A type

of methods has been proposed by collapsing the rare variants

within a functional region (e.g., gene and pathway) into one

variant and then testing this collapsed variant [21–23]. In this

paper, those tests are referred to as the burden test since they share

the similar reasoning of collapsing. The burden test may be limited

because it explicitly assumes that the variants within the collapsed

region have the same direction of effect. However, in practice both

protective and deleterious effects exist [1,18,19,24–26].

More recently, Wu et al. [18] proposed the sequence kernel

association test (SKAT) for rare variant detection. The SKAT is a

score based variance component test originally developed by Lin

[27] under the framework of mixed effects model [28], and has

been widely applied to pathway or gene set analyses [29–32]. Two

very attractive features of the SKAT are that: (I) it avoids the

directionality of effect and consequently can enhance the statistical

power when both protective and deleterious effects are present; (II)

it proceeds under the framework of kernel machine learning, and

thus can capture more complicated nonlinear relationship among

rare variants.

The SKAT, however, has itself shortcomings as argued by Zhan

and Xu [16]. For SKAT, a large score value (i.e., a small p value)

does not necessarily mean the effect of a group of rare variants is

also great, it may be due to a lot of variants with very weak effects.

Additionally, when examining a set of rare variants, geneticists and

epidemiologists may need some metrics to measure their

contribution together, like OR in logistic regression or estimated

coefficient in linear regression in single locus association analysis.

While the SKAT will not involve any parameter estimation, thus
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cannot show effect differences across various sets of rare variants.

Consequently, methods for rare variants with the capability to

offer such information are desirable.

Motivated by the arguments above, in this paper we adopt the

likelihood ratio test to detect the rare variants. Both the likelihood

ratio test (LRT) and the restricted likelihood ratio test (ReLRT)

are investigated and are performed under the same framework of

mixed effects model of SKAT. A great advantage of LRT and

ReLRT is that they not only examine the effect of a group of rare

variants but also offer an effect measurement; this value in turn

can be used to evaluate the relative importance of rare variants.

To our best knowledge, the likelihood-based methods for rare

variants have been not published before, nor are investigated

under the framework of kernel machine learning, although the

LRT and ReLRT are particularly popular in the literature.

In the rest of the paper, the SKAT and the burden test are first

introduced, and then the LRT and ReLRT are discussed under

the mixed effects model context and the kernel machine learning

context, respectively. In this section, we will interpret how the

kernel machine learning can be addressed with the mixed effects

model and examine a group of rare variants via LRT and ReLRT.

By using the eigenvalue representation of LRT and ReLRT, their

exact finite sample distributions are obtained in a simulation

manner. We perform extensive numerical studies to evaluate the

performance of the proposed approaches and compare with the

burden test and SKAT. The exome sequencing data from Genetic

Analysis Workshop 17 (GAW17) is used as a practical application.

Methods

Notation
Let X = [x1, …, xp] denote the covariate vector of order p such as

age, sex, smoking, and environmental exposure, and G = [g1, g2,

…, gm] the genotype vector of order m for rare variants within a

functional region specified a priori. In the paper, we use the

additive genetic model, so that g = 0, 1, and 2 represent the

number of minor alleles. For example, in the GAW17 data

[33,34], there are 16 single nucleotide polymorphisms (SNPs)

included within the gene KDR, then the genotype can be expressed

as G = [g1, g2, …, g16]. Let Y denote the continuous phenotype of

interest (e.g., weight, blood pressure, and triglyceride) and yi, i = 1,

2, …, n its realization values, here n is the sample size. Suppose

further that the phenotype Y follows a normal distribution with

variance s2 conditional on the covariates X and genotypes G.

Mixed effects model
First consider the linear mixed effects model [28,35]

Y~b0zXbzGªze,

e*N 0,s2In

� �
,

ð1Þ

where b = [b1, …, bp] are the fixed effects for covariates, b0 is the

intercept, and In is an identity matrix of order n; here c = [c1, …,

cm] are the random effects for rare genotypes, each cj, j = 1, 2, …,

m is assumed to be normally distributed with mean zero and

variance twj
2, where t is a variance component and w is a

prespecified weight related to MAF. For rare variant, w = Beta(-

MAF; 1, 25) is recommended in Wu et al [18], which places more

weight on rarer variant and less weight on common variant, where

Beta is the beta density function. In the present paper we also

follow this idea, but make a slight modification. That is, a scaled

weight of wj = wj/max(w) is used, where the notation max indicates

the maximum over all the wjs. In our experience, this modification

is necessary to avoid numerical imprecisions encountered in the

statistical software, such as the R statistical environment [36].

Greven et al. [37] gave a full description regarding this issue when

performing the restricted likelihood ratio test for zero variance

component in the linear mixed effects model.

Under these conditions, we can obtain

Var Yð Þ~tGWWG’zs2In~s2Vl, ð2Þ

where l= t/s2, Vl~lGWWG’zIn, W is a diagonal matrix of

order m with elements being w. Clearly testing whether or not a

group of rare variants are collectively associated with the

phenotype is equivalent to testing the null hypothesis H0: l= 0.

Note that the classical definition of heritability is defined as t/

(t+s2), i.e., the proportion of phenotypic variance explained by a

group of rare variants [38], then the heritability can be further

expressed as l/(1+l). Therefore the quantity l is an analogue of

the heritability and can be employed for measuring the relative

impotence of different groups of rare variants.

Sequence kernel association test (SKAT)
According to Lee et al. [39] and Lee et al. [40], the original

SKAT in Wu et al. [18] and the burden test can be studied within

a unified framework if taking into account the correlation structure

of the random effects. Suppose that the correlation structure

among the m rare variants is Rr, which is determined by the

pairwise correlation coefficient corr(gj, gl) = r between any variants

j and l. The unified SKAT statistic is given as

Q ~ Y{ŶY
� �’

GWRrWG’ Y{ŶY
� �

,

Rr ~ 1{rð ÞImzr1m1’m,

ð3Þ

where ŶY is the predicted value under H0. The test in Equation (3)

is called the optimal SKAT (SKAT-O) since it can choose the

correlation coefficient r adaptively to maximize the power when

all the effects are in the same direction [39,40].

When r = 0 (i.e., independent correlation), the SKAT-O

reduces to the original SKAT in Wu et al. [18] and Lin [27],

and when r = 1 (i.e., perfect correlation), the optimal SKAT

reduces to the burden test.

Under H0, Q follows a mixture of chi-square distributions, the p

values for the burden test and SKAT are obtained by the Davies

method [41] or other methods [42,43]. The p value for the SKAT-

O is obtained by using a grid search strategy [39,40].

Likelihood ratio test (LRT) and restricted likelihood ratio
test (ReLRT)

When examining variance component in the mixed effects

model, the LRT and ReLRT are a natural alternative. Note that

the null hypothesis H0: l= 0 is non-standard since under H0 l is

on the boundary of the parameter space [44–47], and l= 0 if and

only if t = 0. The parameter space for l is V= [0, ‘).

Replacing c and s2 in model (1) with their maximum likelihood

(ML) estimators [47], we obtain the profile log-likelihood function

up to a constant independent of the parameters

L lð Þ~{
1

2
n log Y ’P’lV{1

l PlY
� �

zlog Vlj j
� �

, ð4Þ

where
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Pl~In{X X’V{1
l X

� �{1
X’V{1

l : ð5Þ

The LRT statistic is defined as

LRTn~2 supl [ VL lð Þ{L l~0ð Þ½ �,

~supl [ V {n log Y ’P’lV{1
l PlY

� �
{log Vlj jzn log Y ’P0Yð Þ

� �
,

ð6Þ

where

P0~In{X X’X
� �{1

X’: ð7Þ

Using the spectral representation [37,47–49], it can be shown that

LRTn is equal to the following quantity in distribution

fn lð Þ

~supl [ V n log 1z
Nn lð Þ
Dn lð Þ

� 	
{
Xm

j~1

log 1zljj

� �
zn log Y0P0Yð Þ

( )
,

ð8Þ

where jj’s are the eigenvalues of matrix W1/2G9GW1/2, and

Nn lð Þ~
Xm

j~1

lmj

1zlmj

u2
j ,

Dn lð Þ~
Xm

j~1

1

1zlmj

u2
j z

Xn{p

j~mz1

u2
j ,

ð9Þ

where mj’s are the eigenvalues of matrix W1/2G9P0GW1/2, and uj’s

are independently standard normal random variables.

The ML estimator of s2 is biased downward since it does not

take into account the loss in degrees of freedom due to estimation

of c. While the restricted maximum likelihood (REML) method

provides an unbiased estimator for s2 by using a set of n - p linearly

independent error contrasts [50–53]. The profile restricted log-

likelihood function up to a constant independent of the parameters

is given as

LRe lð Þ

~
1

2
{ log Vlj j{ n{pð Þlog Y0P0lV{1

l PlY
� �

{log X0V
{1
l X




 


n o
:

ð10Þ

The ReLRT statistic is defined as

ReLRTn~2 supl [ VLRe lð Þ{LRe l~0ð Þ½ �: ð11Þ

Using the similar reasoning for LRTn, it can be shown that

ReLRTn is equal to

fn lð Þ~

supl [ V n{pð Þlog 1z
Nn lð Þ
Dn lð Þ

� 	
{
Xm

j ~ 1

log 1zlmj

� �
z n{pð Þlog Y0P0Yð Þ

( )ð12Þ

in distribution.

By taking full advantage of the spectral representation used in

Equations (8) and (12), Crainiceanu and Rupper [47] described a

simulation-based algorithm for the finite sample distributions of

LRTn and ReLRTn. This algorithm has been shown to be rather

fast and accurate. The p values of the LRT and ReLRT are

obtained by comparing the observed statistics to those simulated

values.

Kernel machine learning
So far we have discussed how to detect the causal rare variants

by using the LRT and ReLRT which are developed under the

standard mixed effects model context. In this section, we turn to

the recently popular kernel machine learning, explore its

relationship with the mixed effects model, and demonstrate how

to detect the causal rare variants in the kernel machine learning

context via LRT and ReLRT. As we will see, there is a close

connection between these two statistical theories, which provides a

more flexible way for rare variant detection with kernel methods.

Using the same notation defined before, we describe the

relationship between the phenotype Y and genotypes G and

covariates X via a semi-parametric linear model [30,31]

yi~b0z Xi bzh Gið Þz ei, ð13Þ

where h is an unknown smooth function lying in a Hilbert space

GK generated by a positive definite kernel function K [31,54]. This

space is called reproducing kernel Hilbert space (RKHS) under

some regularity conditions [55–58]. The kernel function K

essentially quantifies the genomic similarity or distance of two

subjects and can be arbitrarily chosen as long as it satisfies the

conditions of Mercer’s theorem [55,57]. Model (13) is semi-

parametric since the covariates X are fitted parametrically while

the genotypes G are fitted non-parametrically.

To avoid over-fitting, estimation of h can be performed by

maximizing the penalized log-likelihood function [31,59]

LHK
hDfð Þ~{

1

2s2

Xn

i ~ 1

�y�i{b0{�X �ib{h G�ið Þ½ �2{ 1

2
f hk k2

HK
,

ð14Þ

where f is a penalization parameter controlling the balance

between the goodness of fit and the complexity of the model

[31,59], and the notation I?I is the norm in RKHS. The solution

of h in Equation (14) is given in terms of the well-known

representer theorem of Kimeldorf and Wahba [60] and Wahba

[61]

h Gð Þ~
Xn

l ~ 1

alK G,Glð Þ, ð15Þ

where a = [a1, a2, …, an] is an unknown vector of parameters and

K is a reproducing kernel function [31,54].

We further rewrite h in the form of matrix as

h Gð Þ~Ka, ð16Þ

where K is an n6n kernel matrix with its elements being K(Gi, Gl).

Various kernel functions have been designed in genetic statistics

[59,62], such as the linear kernel, the polynomial kernel, the

Gaussian kernel, and the identify by state (IBS) kernel. The explicit

forms for these kernels can be found in Wu et al. [18], Wu et al.

[32], Liu et al. [31], Kwee et al. [29], and Liu et al. [30]. If a

kernel is weighted, then it is called a weighted kernel. In the paper

the scaled weight described in Section 2.2 is used. Additionally,

(12)
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once the kernel function is chosen, we assume that K is known

completely. Consequently, inference about h in model (14)

immediately reduces to inference about a.

Replacing h in Equation (14) with (16) yields

LHK
hjfð Þ

~{
1

2s2
Y{b0{Xb{Kað Þ’ Y{b0{Xb{Kað Þ{ 1

2
f Kak k2

HK
:

ð17Þ

Following the results of Gianola et al. [54], Wahba [61], and

Wahba [63],

Kak k2
HK

~a’Ka, ð18Þ

Equation (17) is re-expressed as

LHK
hjfð Þ

~{
1

2s2
Y{b0{Xb{Kað Þ’ Y{b0{Xb{Kað Þ{ 1

2
fa0Ka:

ð19Þ

From a Bayesian perspective [31,59], Equation (19) is the log-

posterior distribution of b0, b and a, thus can be described as the

following hierarchical model

Y Db0,b,a*N b0zXbzKa,s2
� �

,

a*N 0,tK{1
� �

,

b0,b!1,

ð20Þ

where t = 1/f. Since h = Ka, alternatively the hierarchical model is

re-expressed as

Y Db0,b,h*N b0zXbzh,s2
� �

,

h*N 0,tKð Þ,

b0,b!1:

ð21Þ

In the paper we use the hierarchical model (21) since it avoids the

calculation of inverse matrix and therefore reduces the computa-

tional cost.

Based on the arguments described above, we can construct the

relationship between the semi-parametric linear model (13) and

the mixed effects model (1). That is, model (13) is equivalent to the

following mixed effects model

Y~b0zXbzZhze,

e*N 0,s2In

� �
:

ð22Þ

The differences between model (22) and model (1) mainly lie in

two aspects: (I) here Z is an identify matrix of order n, while G in

model (1) is of dimension n6m; (II) the unknown parameter h here

is an n-dimensional vector with its covariance-variance matrix

being tK, while in model (1) the unknown parameter c is an m-

dimensional vector with its covariance-variance matrix being

diag(twj
2), here the notation diag indicates a diagonal matrix.

Therefore, all the theories for the LRT and ReLRT developed

under the context of mixed effects model can be also applicable in

the context of kernel machine learning. The test of variance

component in model (22) can proceed similarly in model (1). To

distinct these two types of approaches, in the reminder of the

paper, LRT.M and ReLRT.M are used to indicate the LRT and

ReLRT for the mixed effects model, LRT.K and ReLRT.K are

used to indicate the LRT and ReLRT for the kernel machine

learning, and LRT and ReLRT are used to indicate both the two

types.

Results

Simulation datasets
We generate genotypes based on the coalescent model for

European population by using the package COSI [64]. A total of

100 kb gene region is simulated. Randomly selected continuous

30% subregions of the simulated genotypes are used. Variants with

MAF less than 0.01 are defined as rare variants. Two covariates

are considered, x1 is a standard normal variable and x2 is a binary

variable with rate 0.5, and mutually independent. The sample size

n is 300, 400, and 500.

For type I error simulations the phenotype is generated as

y*N 1:0z0:5x1z0:5x2,1ð Þ,

and the number of runs is 2,000. In power simulations, 30% rare

variants are causal variants, the effect size |c| is 0.3|log10MAF|,

which leads to a size of 1.2 for MAF = 0.0001 and a size of 0.6 for

MAF = 0.01. Among the causal rare variants, 0%, 30% or 50%

have negative effects, i.e., in these settings their effects are

20.3|log10MAF|. For power simulations the phenotype is

generated as

y*N 1:0z0:5x1z0:5x2z
Xq

j~1
gc

j cc
j ,1

� �
,

where q is the number of chosen causal rare variants, gc’s are the

genotypes and cc’s are the effect sizes given above. The number of

runs is 1,000. The simulation characteristics under these

specifications are displayed in Table 1.

In the present paper, seven methods including burden test,

SKAT, SKAT-O, LRT.K, ReLRT.K, LRT.M, and ReLRT.M

are compared. The first three tests are performed in the package

SKAT [18], and the LRT and ReLRT are performed in the

package RLRsim[65]. In practice the weighted kernel has been

empirically shown to be more powerful compared to its

unweighted counterpart [18,29], thus here we only consider the

former. For comparison only the weighted linear kernel is used

since under this situation both the mixed effects models in (1) and

(22) are well specified, and the burden test and the SKAT-O are

only able to be performed on the linear kernel.

Type I error and power
Table 2 displays the estimated Type I errors for all the tests. It

can be seen from Table 2 that all the tests control the type I error

correctly at the given a level. Figure 1 shows the estimated

Table 1. Simulation characteristics.

n Total SNPs Selected SNPs
Used rare
variants

Causal rare
variants

300 417 125 41 12

400 434 130 47 14

500 447 134 51 15

doi:10.1371/journal.pone.0093355.t001

Rare Variants Detection with Kernel LRT
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Figure 1. Estimated power for all the tests. The top panel is for a = 0.01 and the bottom panel is for a = 0.05. M% negative means that in these
associated SNPs M% have effects 20.3|log10MAF| and the rest (100-M)% are 0.3|log10MAF|.
doi:10.1371/journal.pone.0093355.g001

Table 2. Estimated Type I error.

n Burden SKAT SKAT-O LRT.K ReLRT.K LRT.M ReLRT.M

a = 0.05

300 0.051 0.042 0.043 0.047 0.052 0.041 0.046

400 0.060 0.044 0.055 0.050 0.056 0.048 0.051

500 0.058 0.043 0.054 0.042 0.046 0.040 0.042

a = 0.01

300 0.010 0.008 0.008 0.011 0.012 0.010 0.010

400 0.012 0.008 0.012 0.010 0.012 0.010 0.010

500 0.010 0.008 0.010 0.010 0.010 0.009 0.010

doi:10.1371/journal.pone.0093355.t002

Rare Variants Detection with Kernel LRT
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powers. Tables 3 and 4 present the losses of power for the

situation that 30% or 50% causal rare variants have negative

effects compared to the situation that none of the causal rare

variants has negative effects. These values are obtained according

to Figure 1. The average values in Tables 3 and 4 are calculated

across sample sizes.

Some important observations from Figure 1, Tables 3 and 4

are listed as follows.

(I) When all the causal rare variants have the same direction

of effect, the burden test and the SKAT-O are the most

powerful, following by the LRT, ReLRT, and SKAT.

These results are expected since both the burden test and

the SKAT-O are designed especially for this situation.

(II) When both positive and negative effects are present, all

the tests suffer from power decrease. Under this situation,

the LRT and ReLRT have the highest powers, and the

burden test suffers from the most reduction of power. For

example, when a = 0.05, n = 500 and all causal rare

variants are in the same direction, for the burden test its

power is 0.817, while its power decreases to 0.224 when

30% causal rare variants have negative effects and 0.125

when 50% causal rare variants have negative effects. The

SKAT-O is no longer optimal and has a smaller power

compared to the SKAT, suggesting that in practice using

the SKAT rather than the SKAT-O may be safer since

the situation that positive and negative effects occur

simultaneously is more frequent than the situation that all

the effects are in the same direction. Compared with the

SKAT, the LRT and ReLRT reduce fewer powers,

implying these two tests are relatively more robust to the

mixture effects of rare variants.

Table 3. Losses of the power for a = 0.05&.

n burden SKAT SKAT-O LRT.K ReLRT.K LRT.M ReLRT.M

30% Negative#

300 0.456 0.100 0.280 0.098 0.087 0.099 0.096

400 0.574 0.089 0.279 0.086 0.079 0.081 0.084

500 0.593 0.059 0.233 0.058 0.065 0.052 0.063

Average
$ 0.541 0.083 0.264 0.081 0.077 0.077 0.081

50% Negative#

300 0.537 0.151 0.356 0.128 0.132 0.124 0.127

400 0.667 0.096 0.313 0.073 0.066 0.073 0.071

500 0.692 0.068 0.247 0.050 0.052 0.043 0.053

Average
$ 0.632 0.105 0.305 0.084 0.083 0.080 0.084

&: The values are differences of power between the situation with none of the causal variants (i.e., 0%) being negative and the situation with 30% or 50% causal variants
being negative.
#: It means that 30% or 50% causal variants are negatively related to phenotype with effects 20.3|log10MAF| and the rest 70% or 50% are positively related to
phenotype with effects 0.3|log10MAF|.
$
: The average is calculated across sample sizes.

doi:10.1371/journal.pone.0093355.t003

Table 4. Losses of the power for a = 0.01&.

n burden SKAT SKAT-O LRT.K ReLRT.K LRT.M ReLRT.M

30% Negative#

300 0.355 0.080 0.233 0.072 0.078 0.068 0.074

400 0.490 0.092 0.330 0.081 0.086 0.083 0.083

500 0.530 0.052 0.279 0.039 0.038 0.038 0.036

Average
$ 0.458 0.075 0.281 0.064 0.067 0.063 0.064

50% Negative#

300 0.393 0.124 0.301 0.094 0.094 0.090 0.091

400 0.545 0.105 0.373 0.089 0.092 0.090 0.087

500 0.592 0.074 0.310 0.054 0.065 0.054 0.056

Average
$ 0.510 0.101 0.328 0.079 0.084 0.078 0.078

&: The values are differences of power between the situation with none of the causal variants (i.e., 0%) being negative and the situation with 30% or 50% causal variants
being negative.
#: It means that 30% or 50% causal variants are negatively related to phenotype with effects 20.3|log10MAF| and the rest 70% or 50% are positively related to
phenotype with effects 0.3|log10MAF|.
$
: The average is calculated across sample sizes.

doi:10.1371/journal.pone.0093355.t004
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(III) It can be seen that the LRT and ReLRT consistently

outperform the SKAT regardless of the sample size and

the proportion of the negative causal rare variants.

(IV) The ReLRT always has a higher power than the LRT,

which may stem from the fact that the ReLRT gives the

unbiased estimator of variance component.

(V) The LRT.K versus LRT.M and the ReLRT.K versus

ReLRT.M behave comparably, but it is interesting that

the ReLRT.K has a slightly larger power than the

ReLRT.M, and the LRT.K also has a slightly larger

power than the LRT.M.

Application
We apply these methods to the unrelated samples of the

GAW17 [33,34]. The GAW17 data contains 24,487 SNPs across

3,205 autosomal genes on 697 individuals, three covariates (age,

sex and smoke), three quantitative traits (Q1, Q2 and Q4), and a

binary trait. Most of the SNPs are rare with MAF ranging from

0.07% to 25.8%, 74% have MAF less than 0.01 and 12.8% have

MAF more than 0.05. This data was widely used on Genetic

Analysis Workshop 17 to evaluate the newly developed methods

for rare variant detection and compare to the existing ones.

Here we choose the quantitative trait Q1, and select the SNPs

within genes HIF3A, FLT1 and KDR. These selected genes are

rather typical for our comparison of the methods. For HIF3A, 20%

SNPs are causal rare variants with weak effects. For FLT1, 44%

SNPs are causal rare variants with moderate effects. For KDR,

71.4% SNPs are causal rare variants with relatively strong effects.

The characteristics of the selected data are depicted in Table 5.

More detailed information regarding GAW17 data can be found

in Almasy et al. [34].

We use the weighted linear kernel and define the rare variant as

those with MAF less than 0.01, so the SNPs with MAF greater

than such cut point are not included in the analysis. The results are

listed in Table 6. The two types of LRT and ReLRT lead to the

same results; to save space only one type is reported.

Some interesting results are observed form Table 6.

(I) Since all the causal rare SNPs within each gene are

positively related to the phenotype Q1 [34], the burden test

and SKAT-O have the smallest p values compared to other

methods. The LRT and ReLRT obtain smaller p values

than SKAT, and the ReLRT always has smaller p values

compared to LRT.

(II) Due to the weak effects and small proportion of rare

variants, the HIF3A cannot be discovered by all the

methods; while the FLT1 and KDR are successfully

detected. But here it is noted that the p value of SKAT

(1.2961023) for KDR is much larger than those of LRT

and ReLRT (with scale of 1025).

(III) The burden test, SKAT, and SKAT-O cannot give any

evidence regarding the effect of the gene. For instance,

FLT1 and KDR can be viewed as moderate and strong

signals, respectively, but instead the former has a much

smaller p value than the latter. This may show a mistaken

impression that the FLT1 is more associated with the

phenotype. Fortunately, the estimates of l provided by

LRT and ReLRT display the distinction, that is, the value

of l for KDR is larger than that for FLT1. From Table 6, it

can be seen that the estimates of l correctly reveal the

effect strength of different genes. Here the result empiri-

cally documents that the LRT and ReLRT are preferred to

the SKAT when comparing the contributions of various

genes based on a set of rare variants.

Discussion

In this paper we have proposed the LRT and ReLRT to detect

the rare variants associated with complex phenotypes from both

the standard mixed effects model framework and the kernel

Table 5. Characteristics of the used GAW17 data#.

Gene Chr Total Rare Causal MAF Causal Effects

HIF3A 19 21 15 3 7.1761023,0.385 0.174668, 0.51468, 0.265181

FLT1 13 35 25 11 7.1761023,0.291 0.18047, 0.457361, 0.732566, 0.839669,
0.38582, 0.549816, 0.623466, 0.653351,
0.59670, 0.549214, 0.090586

KDR 4 16 14 10 7.1761023,0.165 0.598271, 0.715613, 0.503025, 1.17194,
0.149975, 0.610938, 0.318125, 0.312058,
1.171940, 0.417977

#: Chr indicates the chromosome, Total indicates the total number of SNPs contained in the gene, and Rare indicates the number of rare SNPs within the gene.
doi:10.1371/journal.pone.0093355.t005

Table 6. Results of the used GAW17 data.

p value l

Gene Burden SKAT SKAT-O LRT ReLRT LRT ReLRT

HIF3A 0.262 0.483 0.420 0.388 0.387 ,0.001 ,0.001

FLT1 6.1261028 9.0161027 1.0361029 6.2861027 5.4461027 0.750 0.748

KDR 9.2761027 1.2961023 2.7861026 4.9961025 4.8361025 1.778 1.767

doi:10.1371/journal.pone.0093355.t006
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machine learning context. In the latter, the original space of

genotypes is mapped to another higher dimensional space by the

kernel function. Such a space may be potentially infinite

dimensional and is referred to as a feature space in the machine

learning literature where the model can proceed linearly

[55,57,66]. An important advantage of kernel methods is that

we do not have to construct the feature space explicitly since all the

analyses can be finished directly over the kernel [66]. In fact the

kernel function itself is frequently more efficient to compute than

the map function or the inner product induced in GK [55,57].

By using the representer theorem, the connection between the

kernel machine learning and the mixed effects model is well

established from the Bayesian point of view. This connection

provides a convenient way to examine the rare variants under the

context of kernel methods using the LRT and ReLRT. We can

find that the kernel is actually the covariance structure for the

random effects h, so it can be thought to be the prior correlation

among subjects.

Our simulations have demonstrated that the performance of the

LRT and ReLRT in the two contexts is comparable. However, it

can be expected that the methods of LRT.K and ReLRT.K

should be more flexible and attractive although only the linear

kernel function is employed in the paper; but even then the

LRT.K and ReLRT.K have displayed slightly larger powers than

the LRT.M and ReLRT.M. Extending the proposed LRT and

ReLRT to other kernel functions needs no any additional efforts,

but more applications in practice are required to further

understand the behaviors of various kernels. The choice of a

kernel function is dependent on which feature space is used to

approximate h [30,31]. Liu et al. [31] showed that in a simulation

example the Gaussian kernel performed the best compared to

other competing kernels.

In the paper, the exact finite sample distributions of LRT and

ReLRT obtained by simulation are employed. One may attempt

to use the 50:50 mixture distribution of x2
0 and x2

1 [44–46], where

x2
0 is a point probability mass at zero and x2

1 is a chi-square

distribution with 1 degree of freedom. However, it has been

displayed that this mixture distribution is conservative [37,47]. It is

obvious that the application of the exact finite sample distribution

improves the powers of LRT and ReLRT. In addition, the LRT

and ReLRT are required to estimate both the null and alternative

models. By doing this more information especially from the rare

variants is incorporated into the tests, accordingly the powers

increase.

Our simulations have also demonstrated that the LRT and

ReLRT (including LRT.K and ReLRT.K, and LRT.M and

ReLRT.M) outperform the SKAT regardless the sample size and

the proportion of negative effects of rare variants. Consequently

our results here offer some empirical evidence that the LRT and

ReLRT may be preferable to the score test (i.e., the SKAT) in the

case of finite sample where the parameter of interest is constrained

on the boundary. See also Kuo [48] and Verbeke and

Molenberghs [67].

In this paper there are some other aspects concerning the kernel

machine learning in rare variant detection that is warranted to be

explored. For example, how to choose an optimal kernel function

for real life sequencing data [31,68], how to select substantially

important random effects (i.e., the true subset of rare variants

associated with the phenotype) in a kernel function [69], and what

are the exact finite sample distributions of the LRT and ReLRT if

incorporating tuning parameters into the kernel function as done

in Mallick et al. [58] and Liu et al. [31]. These problems are

certainly interesting topics for further investigations.
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65. Scheipl F, Greven S, Küchenhoff H (2008) Size and power of tests for a zero
random effect variance or polynomial regression in additive and linear mixed

models. Comput Stat Data Anal 52: 3283–3299.
66. Hofmann T, Schölkopf B, Smola AJ (2008) Kernel methods in machine

learning. Ann Statist 36: 1171–1220.

67. Verbeke G, Molenberghs G (2003) The Use of Score Tests for Inference on
Variance Components. Biometrics 59: 254–262.

68. Wu MC, Maity A, Lee S, Simmons EM, Harmon QE, et al. (2013) Kernel
Machine SNP-Set Testing Under Multiple Candidate Kernels. Genet Epidemiol

37: 267–275.

69. Chen Z, Dunson DB (2003) Random effects selection in linear mixed models.
Biometrics 59: 762–769.

Rare Variants Detection with Kernel LRT

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e93355

http://www.R-project.org/
http://www.R-project.org/

