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Abstract

Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an
effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study
attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B), green (G), red
(R) and near infrared (NIR) bands from HJ-CCD (CCD sensor on Huanjing satellite) to monitor disease at a regional scale. In a
suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth
stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area.
In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were
selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance,
maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and
evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could
generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72).
However, by comparing these disease maps with ground survey data (validation samples), all of the four algorithms also
produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the
integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining
the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59). The
experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases
mapping at a regional scale.
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Introduction

Crop diseases significantly impact on the yield and quality of

crops worldwide [1,2]. For decades, threats from crop diseases and

pests are getting serious under the context of global climate

change, which pose a challenge on our food production.

Acquisition of spatial distribution information of the disease over

a large area can help to understand current disease infection status

which is critical for loss assessment [3,4]. Traditionally, manual

inspection and field survey are still a major way to collect disease

distribution information, which is not only time consuming and

labor intensive, but also impossible to monitor disease occurrence

and severity in a spatially continuous manner over a large area. As

the most effective technology in observing ground surface physical

parameters (e.g., land surface temperature) over a large area,

remote sensing provides an important alternative to traditional

method in obtaining disease information spatially. Its successes in

disease detection and monitoring were demonstrated by a great

number of studies that were conducted at leaf, canopy and field

levels [5–10].

It is clear that the crop disease pathogens can induce changes of

biophysical and biochemical parameters of plants, such as

variations of several pigments, water content and canopy structure

[3,4], as well as some leaf color changes due to pustules or lesions

[9,11]. Such changes will further result in spectral responses’

abnormality, such as the increase of reflectance in a red band, the

reduction of reflectance in a near-infrared band, and the change of

red edge optical parameters [12,13]. Despite hyperspectral data

showed good performance in detecting crop diseases [4,8,15], the

high cost and low availability makes it difficult to be widely

implemented in practice. Therefore, a great effort has been made

to utilize multispectral data for mapping diseases [16,17,18]. On

the other hand, although the high resolution imagery leads to

successes in disease detection at some specific sites (e.g.,

experimental fields) [8,17,18], the high cost and limited spatial

coverage of the airborne and spaceborne data restrict their

implementation at a regional scale. Instead, some moderate

resolution remote sensing data, such as Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER), Landsat

Thematic Mapper (TM), have a potential in detecting or mapping

diseases over vast areas given their relatively low cost and wide

coverage [19,20].

While we think that spatial/spectral resolutions of remote

sensing data are important, the temporal resolution is also a vital
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factor in monitoring plant disease/insect damage. Several attempts

have been made in extracting disease/insect signals from a time

series images by analyzing their temporal -trajectories of some

spectral features. Liu et al. (2006) successfully monitored the oak

mortality in coastal California that was caused by forest disease

through multi-temporal image analysis [21]. Goodwin et al. (2008)

detected the infestation of pine beetle in western Canada using a

temporal sequence of Landsat data, which yielded overall

classification accuracies ranging from 71% to 86% [22]. Eklundh

et al. (2009) adopted MODIS time series data for mapping insect

defoliation in Scots pine forest in southeast Norway. The seasonal

profiles of MODIS data were found to be useful to locate insect

damage patches [23]. Since the crop diseases usually develop faster

than forest diseases (the development of forest diseases is usually at

a seasonal and yearly step while the development of crop diseases

is usually at a monthly or weekly step), a higher revisit frequency of

the data (,1 week) is required for crop disease monitoring.

In practice, it is an important demand for disease control and

safeguarding food security to conduct disease detection/mapping

using remote sensing data at a regional scale. However, based on

our knowledge, a few studies have been conducted to detect/map

widely distributed crop diseases (e.g. yellow rust, powdery mildew

in winter wheat [24]) at a regional scale. One possible reason to

explain is lacking of desired remote sensing data sources given the

frequent conflict of spatial and temporal resolutions of remote

sensing data. For example, some moderate resolution data like

Landsat TM and ASTER have a relatively low revisit frequency

(half a month), whereas some daily revisit satellite data such as

MODIS have a coarse spatial resolution. Fortunately, the advent

of environment and disaster reduction small satellites (HuanJing-

1A/B) that were launched by China Center for Resources Satellite

Data and Applications (CRESDA) on September 6, 2008 changes

such a ‘‘conflict’’ because the HuanJing-1A/B would provide

important remote sensing data to us with a potential of mapping

disease at a regional scale. As a multispectral sensor, the HuanJing

CCD image (hereafter referred to as HJ-CCD) has a similar spatial

resolution (30 m) and band setting to the commonly used Landsat-

5 TM. Four channels of HJ-CCD cover visible and near infrared

regions, which have similar band wavelengths to the four bands of

TM. However, comparing with TM, a much shorter revisit period

of HJ-CCD (4 days) makes it a good trade-off at both spatial and

temporal resolutions, which thus allows a temporal analysis at key

growth stages for crop monitoring. Therefore, we assume that the

HJ-CCD should be suitable for disease monitoring at a regional

scale.

As a severe disease of winter wheat, the epidemic of powdery

mildew (Blumeria graminis) could lead to a significant yield loss and

reduction in grain quality [25–27]. The occurrence of powdery

mildew will exhibit a distinct symptom: disease pustules appear on

leaves in light white to light yellow [28]. Such physiological and

leaf color changes can induce corresponding spectral variation as

stated by Lorenzen and Jensen (1989) [29], showing a certain

increase in reflectance in visible bands whereas a reduction in

near-infrared bands. This spectral response change of powdery

mildew is further confirmed at leaf and canopy scales, respectively

[13,30]. As pointed by Zhang et al. (2012), the broad-band

spectral features revealed a potential in estimating the disease

severity of powdery mildew [13]. Therefore, the overall goal for

this study is to evaluate the performance of HJ-CCD sensor in

monitoring and mapping winter wheat disease (Powdery mildew

(Blumeria graminis)) with HJ-CCD time series images and synchro-

nized field observations (n = 90 at each stage). The specific

objectives for this study are to: (1) identify a set of suitable spectral

features for developing models for monitoring powdery mildew at

a single stage and multi-stage; (2) compare the performance of four

methods: mahalanobis distance (MD), maximum likelihood

classifier (MLC), partial least square regression (PLSR) and

mixture tuned matched filtering (MTMF) for detecting the disease;

(3) propose and evaluate a protocol for disease monitoring at a

regional scale based on the multi-temporal HJ-CCD data. Test

results will be analyzed and applicability and implication of the

HJ-CCD data will also be discussed.

Study Site and Image Data

2.1 Study site
A study site was selected from a suburban area in Beijing, China

(39.78 N, 116.73 E), which covers two main food production

counties, Tongzhou and Shunyi, with a total area of over

2,000 km2. Across October through next June, winter wheat is a

major crop in the study area. The climate of the study area is

characterized by high humidity and heavy rainfall, and powdery

mildew disease frequently occurs in most of years. Based on

historical observations made by a governmental plant protection

department in the study area, the powdery mildew starts to show

its symptom after the booting stage. After a rapid development, the

symptom gets heavier and peaks at the grain filling stage. At the

stage of plants turning yellow due to maturity, the disease

characteristics gradually vanish as the milk-ripen stage starts.

Therefore, the available time window for monitoring the infection

of powdery mildew is approximately only one month between the

start at the booting stage and the end at the filling stage. In the

growing season of 2010, a forecast of powdery mildew outbreak

was predicted by Beijing plant protection station at the middle of

March, 2010. Thereby, a field survey experiment was arranged in

this area then.

2.2 Image data
Based on the appropriate time window discussed above for the

powdery mildew monitoring, only images acquired in May, 2010

were considered. After eliminating those cloud contaminate

scenes, a total of 6 HJ-CCD scenes, acquired at four stages, were

retained for disease monitoring. The detailed acquisition time,

scene ID and illumination conditions for each scene were given in

Table 1. The boundaries of all scenes were illustrated in Fig. 1. It

should be noted that on May 1 and May 13, 2010, the full covered

image in the study area was mosaicked by 2 simultaneously-

acquired scenes.

Methods

Ethics Statement
The study area for our field survey include several parcels of

normal wheat fields, which did not require any specific permission

for conducting field survey. The specific location of our study area

are: Longitude 116.36–117.00 and Latitude 39.56–40.44 . We

confirm that our field study did not involve any endangered or

protected species.

3.1 Image preprocessing
The preprocessing of HJ-CCD images includes a radiometric

calibration, atmospheric correction and geometric correction. The

calibration coefficients were provided by the CRESDA. The

calibrated data were then atmospherically corrected with the

algorithm provided by Liang et al. (2001), which estimated the

spatial distribution of atmospheric aerosols and retrieved surface

reflectance under general atmospheric and surface conditions [31].

Although all acquired HJ-CCD images were individually under-
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taken systematic geometric correction, a co-registration of images

was implemented since pixel-based change detection requires

extremely accurate spatial matching among multi-temporal images

[32]. One historical Landsat ETM+ image with precisely

geometric correction was used as the reference image. Each HJ-

CCD image was co-registered with this reference image using over

80 ground control points. The root mean square error for each

geometric corrected scene was less than 15 m.

3.2 Extraction of winter wheat planting area
Given the fact that the spectral divergences among different

ground objects, such as farmlands, forests, water body, and

impervious areas, are always greater than that between healthy

and diseased areas inside a crop field, it is necessary to extract the

winter wheat planting area before conducting the disease

monitoring. The HJ-CCD scene acquired on May 20, 2010 (at

the grain filling stage, Zadoks 68) was used for this extraction, since

the winter wheat was the only crop undergoing a vigorous growth

in the study area. The other crops, such as maize and soybean,

were at the very beginning of their growth stages so that winter

wheat areas were thereby easily separated from them. A decision

tree method was adopted for this classification process. The

threshold of each node was first determined by 120 field survey

points with known land cover types (data not shown), and then

Figure 1. Location of survey points in the study area in Beijing, P. R. China. Left part displays the coverage of each HJ-CCD scene; right part
illustrates the distribution of both training (green circle) and test survey points (red circle) in the study area. The imagery on the right side is displayed
using a false color combination with R/G/B = Green/NIR/Red bands.
doi:10.1371/journal.pone.0093107.g001

Table 1. Detailed information of acquired scenes and corresponding field observations.

Stage Date scene ID
Path(P) &
Row(R)

Acquisition
time (GMT) Illumination FID

Sun Zenith

[6]

Sun Azimuth

[6]

Zadoks 37 (S1) May 1 293508 P456 R68 03:15:10.66 26.19 328.60 Apr 30 - May 1

293500 P456 R64 03:14:22.16 28.47 332.91

Zadoks 53 (S2) May 13 301037 P1 R64 03:21:41.97 25.43 330.15 May 10 - May 13

301041 P1 R68 03:22:30.52 23.27 325.02

Zadoks 68 (S3) May 20 305334 P457 R68 03:02:20.90 24.30 315.99 May 19 - May 21

Zadoks 72 (S4) May 25 308679 P4 R64 03:28:59.31 23.11 327.57 May 26- May 28

Acquisition time is displayed in the format of ‘‘hh:mm:ss’’; FID indicates the time periods of the corresponding field observations.
doi:10.1371/journal.pone.0093107.t001
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slightly modified by a quantitative stepwise approximation method

[33]. In the study area, the vegetated and non-vegetated areas

were first differentiated by a threshold of 0.4 of NDVI, with pixels

satisfying NDVI,0.4 classified as non-vegetation area. While in

the remaining vegetated area that was consisted of farmlands,

grasses and forests, the pixels satisfying NIR (near-infrared

band),0.44 were classified as grasslands. In the remaining forests

and farmlands, given that the forests in the study area are

distributed in mountainous area in the northwest part of Beijing,

another threshold was set on elevation (using the SRTM DEM

released by NASA) at 100 m. Those vegetated pixels with an

elevation over 100 m were classified as forests while those pixels

with elevation , 100 m as farmlands. Since the NDVI values for

other crops were lower than 0.4 in May 2010, all remaining

vegetated pixels in the farmlands were considered as winter wheat

planting area. By comparing with the field survey points, an

overall accuracy of extracting winter wheat planting area with the

decision tree method reached 95%, which satisfied the accuracy

requirement of subsequent analysis for disease monitoring.

3.3 Field inspection of powdery mildew
In the study area, a total of 90 plots were randomly selected and

surveyed for disease occurrence and severity, with 54 plots for

model calibration and remaining 36 plots for validation (Fig. 1).

To relate the plots to corresponding image pixels, we investigated

a continuously winter wheat planting region with an area of no less

than 15 m in radius for each plot. The sampling design (Fig. 2) was

referred to North America Weed Management Association

(NAWMA) mapping standard [34].

Within each plot, a 15 m radius circle was determined as the

survey region with three transects extending from the central point

to the perimeter at 30u N, 150u N and 270u N (Fig. 2). Three 1-m2

quadrats were surveyed along each transect which made a total of

9 survey quadrats in a plot. In each quadrat, 20 individual plants

were random selected for disease inspection. The disease index

(DI) was used as an indicator of disease severity, following our

predecessors [8,35]. In disease inspection, each leaf of the selected

plants were grouped into one of 10 classes of damage percentage:

0% (incidence level, x = 0), 1–10% (x = 1), 11–20% (x = 2), 21–

30% (x = 3), 31–40% (x = 4), 41–50% (x = 5), 51–60% (x = 6), 61–

70% (x = 7), 71–80% (x = 8),81–100% (x = 9) covered by powdery

mildew by experienced investigators. Of them, 0% represents no

incidence of powdery mildew whereas 100% represents the

greatest incidence. The DI was then calculated using [35]:

DI(%)~

P
x|fð Þ

n|
P

f
|100% ð1Þ

where f is the total number of leaves of each class of disease

severity; x is the incidence level, and n is the highest incidence

level. The DIs of 9 quadrats within a plot were then averaged to

represent the disease severity of the plot. To facilitate some

methods that were used for assessing disease severity using a

discrete manner, we also grouped the disease plots into two disease

classes by adopting a threshold of 30% of DI, with DI,30% as

slightly diseased class while DI.30% as heavily diseased class.

This criterion of DI = 30% is suggested by the national plant

protection department (Chinese Standard: NY/T 613-2002).

Since the disease inspection is a labor intensive and time

consuming work, we let 3 investigators conduct this survey

simultaneously (each checking one transect). The investigators

were equipped with a mobile computer with a built-in DGPS

device (Trimble GeoXT), which were already installed a

customized data entry sheet. This approach facilitated standard-

ization and consistency in field data collection and also accelerated

the survey process significantly. By adopting this survey method,

the time for completing one round of field survey (for all plots)

could be reduced from 6–8 days to 2–4 days. At key growth stages

of winter wheat, a total of four rounds of field surveys were

conducted from April 30, 2010 to May 28, 2010, with no more

than 3 days difference from the acquisition date of the

corresponding satellite images at each stage (Table 1).

3.4 Selection of spectral features
In addition to the four original bands of HJ-CCD, we also

examined nine spectral vegetation indices (VIs) for their sensitiv-

ities to powdery mildew. They were simple ratio (SR), normalized

difference vegetation index (NDVI), green normalized difference

vegetation index (GNDVI), triangular vegetation index (TVI), soil

adjusted vegetation index (SAVI), optimized soil adjusted vegeta-

tion index (OSAVI), modified simple ratio (MSR), non-linear

vegetation index (NLI) and re-normalized difference vegetation

index (RDVI) (Table 2). Some of these VIs were demonstrated to

be responsible for the plant stress status, such as NDVI and TVI

[36–39]. The other VIs, such as SR, NDVI and GNDVI were

used for detecting plant diseases [36,40]. Prior to this study, we

conducted a field spectral measurement to healthy and powdery

mildew infected plants at canopy level. All those selected VIs were

sensitive to powdery mildew at 95% confidence level according to

an independent t-test [13,41].

3.5 Characterization of temporal change of spectral
features

For those selected spectral features, their values at single stages

only reflect the static condition of plants. While their temporal

change information associated with the impact of disease is more

important for disease detection. Therefore, in this study, apart

from the spectral features selected for each single stage, we also

Figure 2. Sampling design within each plot (Modified from
NAWMA field data collection scheme (Stohlgren et al., 2005)).
doi:10.1371/journal.pone.0093107.g002
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extracted their temporal change information between two date

images (acquired at two different times). Usually there are 3

commonly used forms to characterize the change information of

variables: image differencing, image ratioing and image normal-

ization [42,43]. Given that the image normalization is able to

suppress both additive and multiplicative noises, a normalization

calculation was applied to measure the change magnitude of

spectral features between two date images:

SpectralChangetwo{date

~
SpectralFeatureLaterStage{SpectralFeatureEarlierStage

SpectralFeatureLaterStagezSpectralFeatureEarlierStage

ð2Þ

where SpectalChangetwo-date was a temporal change magnitude of a

spectral feature between two specific stages; SpectralFeatureEarlierStage

and SpectralFeatureLatterStage represented the spectral features at

previous and later stages, respectively.

To identify spectral features that were the most sensitive to

disease severity, both single-stage version and two-stage change

version of spectral features were evaluated with an independent t-

test. Given that the disease infections were unobvious at Zadoks 37

(S1) and Zadoks 53 (S2) stages in field, both change versions of

spectral features were associated with ground surveys that were

conducted at Zadoks 68 (S3) and Zadoks 72 (S4) stages,

respectively. The statistical analysis was conducted with SPSS

19.0.

3.6 Methods used for disease monitoring
To monitor powdery mildew at a large scale, four methods were

examined and compared in this study. They are mahalanobis

distance (MD), maximum likelihood classifier (MLC), partial least

square regression (PLSR) and mixture tuned matched filtering

(MTMF). All these methods have pronouncing capabilities in

classification with, and extracting information from, remote

sensing data (see the references in Table 3 for detailed descriptions

of the four methods). Of them, MLC is a standard parametric

classifier, which assumes that the statistics for each class in each

band are normally distributed. MD is a direction-sensitive distance

classifier that uses statistics for each class. It is similar to the MLC

but assumes all class covariances are equal and therefore is a non-

parametric method [44]. The other two methods, PLSR and

MTMF, were used to measure disease severity by both severity

class (discrete way) and DI values (continuous way). Although

PLSR is a modification of principal components regression (PCR),

they are very different. PCR extracts factors or components to

explain as much predictor sample variation as possible, while

PLSR balances the two objectives of explaining as much both

response variation and predictor variation as possible [45]. This

method is particularly suitable for processing independent

variables that present a strong correlation and redundant

information among them [46,47]. Given that most of the spectral

features are constructed from reflectance of green, red and NIR

bands (Table 2) in this study, a high level of correlations among the

spectral features is expected. For this reason, the PLSR was chosen

as one disease mapping method.

Unlike the PLSR, MTMF is an advanced spectral unmixing

algorithm which has been successfully applied for plant species

identification and crop stress mapping [18,48,49]. However, the

effectiveness of this method in processing moderate resolution data

remains unknown yet. Unlike other spectral unmixing algorithms,

MTMF hypothesizes a spectral signal of a pixel as a mixture of a

target and an undefined background. MTMF can be used to

extract the target information from its complex background

without knowing spectra of the other endmembers [48,50]. This

characteristic of MTMF is appropriate for disease detection as the

disease signal is usually mixed with other possible components in

the field (e.g., different cultivars and soil types). In this study, an

automatic technique that combining the minimum noise fraction

(MNF) with pixel purity index (PPI) was used for endmember

selection (Text S1, Figure S1). Then, a spectral adjustment was

implemented to modify the spectrum of selected enedmember.

(Text S1, Figure S2). Outputs of MTMF include a matched filter

(MF) score and an infeasibility (Inf) value. The MF score indicates

the target abundance ranging from 0 to 100%, which, in our case,

equals to the DI value. The Inf value is an estimate of the

likelihood that a pixel does not contain the target signal. The

higher the Inf value is, the less likely the pixel contains the target.

The presentation of Inf value is to eliminate the false positives that

Table 2. Definitions of spectral features that were tested in this study for monitoring powdery mildew.

Spectral
features Definition Formular Literatures

RB Original reflectance of each band of HJ-CCD

RG Original reflectance of each band of HJ-CCD

RR Original reflectance of each band of HJ-CCD

RNIR Original reflectance of each band of HJ-CCD

SR Simple Ratio RNIR/RR Baret and Guyot, 1991

NDVI Normalized Difference Vegetation Index (RNIR2RR)/(RNIR+RR) Rouse et al., 1973

GNDVI Green Normalized Difference Vegetation Index (RNIR2RG)/(RNIR+RG) Gitelson et al., 1996

TVI Triangular vegetation index 0.5[120(RNIR2RG)-200(RR2RG)] Broge and Leblanc, 2001

SAVI Soil adjusted vegetation index (1+L)*(RNIR2RR)/(RNIR+RR+L); L = 0.5 Huete et al., 1988

OSAVI Optimized soil adjusted vegetation index (RNIR2RR)/(RNIR+RR+0.16) Rondeaux et al., 1996

MSR Modified Simple Ratio (RNIR/RR21)/(RNIR/RR+1)0.5 Chen, 1996; Haboudane et al., 2004

NLI Non-Linear vegetation Index (RNIR
2

2RR)/(RNIR
2+RR) Goel and Qi, 1994

RDVI Re-normalized Difference Vegetation Index (RNIR2RR)/(RNIR+RR)0.5 Roujean and Breon, 1995

doi:10.1371/journal.pone.0093107.t002
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are common to MF solutions [50]. In estimating disease severity

by MTMF, a threshold of Inf should be used for removing those

pseudo disease pixels. This Inf threshold can either be assigned by

an expert, or be determined using a training dataset [18,48,49].

For PLSR and MTMF, the disease severity was measured not only

by DI, but also by disease class, which can be referred to the same

criterion as described in subsection 3.3.

3.7 Methods of accuracy assessment
The performance of four methods for estimating disease severity

is assessed and compared by a number of accuracy indices. They

include overall accuracy, producer’s accuracy, user’s accuracy and

kappa coefficient. The accuracies of results in DI are evaluated by

two indices: the coefficient of determination (R2), and root mean

square error (RMSE). The formula of RMSE is:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i~1

yest,i{yobs,ið Þ2

n

vuuut
ð3Þ

where n is the sample size; yest is the estimate of DI; yobs is the DI

observation. The entire workflow of mapping powdery mildew at a

regional scale was presented in Fig. 3.

Results

4.1 Spectral response of powdery mildew and its
development

The spectral change induced by powdery mildew infection is a

basis for its remotely sensed monitoring. As shown in Fig. 4, a

difference of spectral response between healthy and infected plots

was compared at all growing stages by means and standard

deviations of each HJ-CCD channel. Generally, all three visible

channels showed higher reflectance in diseased samples than in

healthy samples, whereas the NIR channel exhibited an opposite

pattern. Besides, from a temporal perspective, the spectral

difference between healthy and diseased samples became clearer

over time. Among the 4 channels, both green and red channels

showed significant spectral response difference (p-value,0.05

according to the independent t-test) between healthy and diseased

samples since S2, whereas the blue and NIR bands failed to exhibit

such a significant difference at most stages except for S4. Such

temporal pattern of spectral response could reflect a disease

development process, which was also evident from our field survey

records (Fig. 5). All the plots without powdery mildew at S1 might

only have some latent infections at this stage. The disease

appeared with some visible symptoms at S2, by a few (5 out of

90) plots identified as being infected. Then, a sharp increase of

both the number of disease plots and their disease severities

occurred from S3 to S4, with the number of infected plots

increasing from 14 to 31, and the averaged DI increasing from 7%

to 40%.

4.2 Sensitivity of spectral features to powdery mildew
infection

The results of independent t-tests provided a quantitative way to

measure the sensitivity of each spectral feature to powdery mildew

(denoted by p-value) at both single stage and their temporal change

(Table 4). All tested spectral features showed no or weak responses

to powdery mildew until S3, and thus most of spectral features

were sensitive to the disease at S4. For spectral features at a single

stage, some of them showed response to powdery mildew from S2,

and then the response became stronger. For temporal change of

spectral features, all spectral features showed some extent of

response to powdery mildew within the 4 growing stages except

RNIR and TVI. We noted that most spectral features (11 out of 13)

achieved the highest significant level such as their temporal change

between Zadoks 53 and Zadoks 72 stages (S4S2) (p-value,0.001).

Given the problem of the powdery mildew being easy to spectrally

confound with other forms of stressors in the field (e.g., nutrient

Table 3. Characteristics of methods used in this study for disease monitoring.

Methods Full name Description Type of estimation Literature

by class by DI

MD Mahalanobis distance A direction-sensitive distance
classifier that uses statistics for
each class, which assumes all
class covariances are equal.

yes Richards, 1999

MLC Maximum likelihood classifier A standard parametric classifier,
which assumes that the statistics
for each class in each band are
normally distributed and calculates
the probability that a given pixel
belongs to a specific class.

yes Richards, 1999

PLSR Patial least square regression A statistical method that finds a
linear regression model by
projecting the predicted variables
and the observable variables to a
new space.

yes yes Herman, 1985

MTMF Mixture tuned matched filtering A method that unmixes pixels
and matches pixels in the image
to the endmember spectra by
maximizing the target response
and mini-mizing background
spectral signatures.

yes yes Boardman et al., 1995

doi:10.1371/journal.pone.0093107.t003
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stresses, drought, etc.), a strict criterion with spectral features

satisfying p-value,0.001 was retained to identify the most sensitive

spectral features/stages for modeling. As a result, a total of 12

spectral features at single stages and 3 two-stage spectral features,

underlined in Table 4, were selected.

In order to examine whether those identified two-stage spectral

features carried additional information comparing with the single-

stage spectral features, a correlation analysis was implemented for

each pair of single-stage spectral features and two-stage spectral

features [51]. The results showed that the coefficients of

determination (R2) between all pairs of single-stage spectral

features and two-stage spectral features were lower than 0.7

(Fig. 6), which implied that the two-stage spectral features

contained a certain degree of additional information. Further,

we also examined whether an inclusion of those multi-stage

spectral features could actually improve the mapping accuracies of

powdery mildew. To do so, we compared overall accuracies of

mapping powdery mildew between using models constructed with

single-stage spectral features only and using both spectral features

(i.e., combination of single-stage spectral features with two-stage

spectral features) for all four mapping methods. The tested results

demonstrated that the inclusion of the multi-stage features did

improve the overall accuracies of models for all types of mapping

methods, with an average overall accuracy increasing from 49% to

62%.

4.3 Performance of the four methods for disease
monitoring

In this study, all forms of models (corresponding to the four

methods) for disease monitoring were calibrated against the

training data as described in subsection 3.3.

With all selected single-stage spectral features and two-stage

spectral features, the disease maps were produced using MD,

MLC, PLSR and MTMF, respectively (Fig. 7). In general, all four

methods yielded similar disease distribution patterns over the study

area. More infected areas and relatively higher intensity of

powdery mildew were found in the southern part (Tongzhou

district) than in the northern part (Shunyi district), which was in a

good agreement with our field observations. Apart from the global

vision of disease maps, Fig. 8 also provided a closer and more

detailed vision of disease infection in a sub-region in Tongzhou

county where the powdery mildew intensively occurred. Among

the four methods, MD, MLC and PLSR created similar

distribution patterns of disease infection areas that showed a

continuous stretched pattern and occupied most of the parcels in

the sub-region. However, such an infection pattern of powdery

mildew was inconsistent with the pattern observed in the field.

Both our field surveys and interviews with local farmers suggested

that the powdery mildew exhibited a scattered pattern around the

grain filling stage (S4) within the sub-region. However, such a

scattered pattern was close to the infection pattern produced by

using MTMF.

In discriminating between discrete disease levels, Table 5

summarizes the classification results in four confusion matrices

created with the four mapping methods. From the table, it is

apparent that the accuracy indices of classification varied

significantly for different methods, with overall accuracy from

56% to 72% and kappa coefficient from 0.31 to 0.49. Among the

four methods, the MTMF produced the highest overall accuracy

and kappa coefficient. In Table 5, the user’s accuracy and

producer’s accuracy of slightly, heavily infected and healthy

classes reflected the commission error and omission error of each

class. Moreover, to facilitate the visual comparison between the

infection estimation and ground truth, we labeled them with cross

and circle signs for each surveyed plots in Fig. 8, respectively. The

infection levels were distinguished by adopting a coloring system,

with healthy, slightly infected and heavily infected plots displaying

in green, yellow and red colors, respectively. Referring to these

symbols, for a specific plot, a correct estimation can be ensured if

the colors of cross sign and circle sign were the same. For healthy

class, the four methods consistently produced high user’s accuracy

(83–100%) and varying low producer’s accuracy (36–86%), which

indicated that the healthy samples tended to be misclassified as

disease samples. For slightly infected class, all methods but PLSR

were unable to identify the class accurately, with both user’s

accuracy and producer’s accuracy lower than 60%. The PLSR

created a producer’s accuracy of 100%. Different from identifying

the slightly infected samples with low accuracies, the heavily

Figure 3. General workflow of mapping powdery mildew at a
regional scale.
doi:10.1371/journal.pone.0093107.g003
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infected samples were relatively accurately identified with the four

methods, with user’s accuracy ranging from 43% to 100%, and

producer’s accuracy from 44% to 89%. In addition, the four

methods exhibited different traits in discriminating normal

(healthy) and infection classes. Of them, the MLC performed

poorly in classifying both the healthy and diseased samples. MD

yielded moderate accuracy for the healthy samples, yet low

accuracies for two levels of diseased classes. The PLSR produced

Figure 4. Means and standard deviations (small bars) of reflectance of each HJ-CCD band from both healthy and disease plots at
different stages. A–D indicates figures of blue, green, red and near infrared channels.
doi:10.1371/journal.pone.0093107.g004

Figure 5. The number of infected plots and their average DIs at different stages (n = 90).
doi:10.1371/journal.pone.0093107.g005
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Table 4. Responses of spectral features to powdery mildew at single and multiple stages based on the independent t-test.

Stage RB RG RR RNIR SR NDVI GNDVI TVI SAVI OSAVI MSR NLI RDVI

Based on survey points at S3

S1

S2

S3 * * * * * * * *

S2/S1

S3/S1

Based on survey points at S4

S1

S2 * * ** ** ** * * ** **

S3 ** *** *** ** *** ** * ** ** ** *** **

S4 *** *** *** * *** *** *** ** ** *** *** ** **

S2S1 * *

S3S1 * ** ** * **

S4S1 ** ** ** ** ** * * * ** *

S3S2 ** * * *

S4S2 *** ** ** ** *** *** ** ** ** ** **

S4S3 ** ** * * * ** * * * *

*indicates difference is significant at p-value = 0.05; ** indicates difference is significant at p-value = 0.01; *** indicates difference is significant at p-value = 0.001. ‘‘S’’ is
short form for ‘‘stage’’. The multi-stage form of spectral features were calculated using a normalization process, e.g., S2S1 represents (SpectralFeatureS2-
SpectralFeatureS1)/(SpectralFeatureS2+SpectralFeatureS1).
doi:10.1371/journal.pone.0093107.t004

Figure 6. Scatter plots of all pairs of single-stage spectral features versus multi-stage spectral features. The scatter points in each plot
represented all pixels within the winter wheat planting area.
doi:10.1371/journal.pone.0093107.g006
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the highest producer’s accuracy for the slightly and heavily

infected classes, yet the lowest producer’s accuracy for healthy

class (see those yellow and red cross in green circle in Fig. 8c). Such

results suggested that the PLSR had superior discriminating

capability in differentiating the two infected levels, whereas

performed poorly in identifying the infected samples from healthy

ones. On the contrary, the MTMF produced the highest

producer’s accuracy for the healthy samples among the four

methods, whereas performed poorly in differentiating the slightly

infected and heavily infected samples.

For PLSR and MTMF, apart from discrimination between

discrete disease levels, both methods can provide continuous DI

estimates (Fig. 9). Compared with the reference DIs, PLSR

outperformed MTMF in estimating DIs for those disease samples

(scatter plots closely distributed alone the 1:1 line), yet also

produced more errors in estimating those non-infected samples

(scatter plots distributed alone the Y-axis) than MTMF. In general,

both PLSR and MTMF failed to produce accurate DI estimates,

with R2 of 0.30 and 0.34, and RMSE of 25% and 15%,

respectively.

Discussion

5.1 Spectral response and temporal characteristics for
powdery mildew monitoring

The pustules on leaves created by powdery mildew fungus are

the most dominant symptom of powdery mildew [29]. Zhang et al.

(2012) conducted a thorough spectral analysis to examine the

spectral responses of powdery mildew at a leaf level [13]. Their

results suggested that the powdery mildew infection could induce a

significant increase of reflectance in the visible spectral region but

a slight decrease of reflectance in the near infrared region. Such

spectral characteristics of powdery mildew were also observed in

the present study (Fig. 5). For this case, a likely explanation is the

breakdown of chlorophyll pigments and cell structure, and the

complication of the color of pustules due to powdery mildew [13].

Figure 7. Infection map of powdery mildew produced by MD (A), MLC (B), PLSR (C) and MTMF (D).
doi:10.1371/journal.pone.0093107.g007
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In practice, there is a high possibility that the disease is

spectrally confused with other types of disturbances (e.g., nitrogen

shortage or drought) at individual stages. However, the temporal

characteristics of disease are always unique given the different

developing processes of various stressors. Therefore, theoretically

the inclusion of multi-stage features may improve the mapping

accuracy of the disease. A significant improvement of a multi-

temporal modeling in monitoring of the disease spread compared

with the single-date image classification was reported by Liu et al.

(2006) [21]. Moreover, the advantages of multi-stage spectral

features in disease monitoring have also been demonstrated in

Goodwin et al. (2008) and Eklundh et al. (2009)’s studies [22,52].

In this study, it was observed that the infection of powdery mildew

started from a lower layer and gradually developed into an upper

layer within the canopy [53], which thereby induced light visible

symptoms appearing at the booting stage (S2) and the most

obvious manifestation at the grain filling stage (S4). Such

pronouncing temporal trait of powdery mildew development

allows extracting some multi-stage spectral features outlining the

process. The three multi-stage spectral features identified at S4S2:

RB, NDVI and GNDVI, successfully captured the temporal

change signals of powdery mildew, which were also demonstrated

to be independent to those single-stage spectral features, thus

demonstrating the usefulness of multi-stage features in disease

monitoring.

5.2 Advantages and limitations of the four mapping
methods

As shown in subsection 4.2, the four methods: MD, MLC,

PLSR and MTMF exhibited different traits in mapping the

intensity of powdery mildew. The MD and MLC are commonly

used methods for classification of multi-spectral data. However,

they performed relatively moderate in disease detection in this

study. A possible reason is that the spectral difference between

normal and diseased pixels is relatively smaller than that between

different crops, which may not be easy to be differentiated in a low

dimension feature space. An important advantage of MD and

MLC is that the two methods can be driven by discrete infection

classes instead of continuous DI estimations, which thus reduces

the possible cost of conducting ground surveys.

For PLSR and MTMF, either method exhibited distinct

characteristics in disease monitoring. On the one hand, the

Figure 8. Infection map of powdery mildew in a subarea produced by MD (A), MLC (B), PLSR (C) and MTMF (D).
doi:10.1371/journal.pone.0093107.g008
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MTMF performed the best in discriminating infected and non-

infected regions, with both user’s accuracy and producer’s

accuracy of healthy class over 80% among the four methods,

whereas the other three methods were characterized by high user’s

accuracy and low producer’s accuracy of healthy class. The latter

indicated a certain degree of overestimation of disease infection

(Fig. 8). On the other hand, the MTMF performed poorly in

differentiating slightly and heavily infected classes. The introduc-

Table 5. Confusion matrices and classification accuracies produced by the four methods with test samples (n = 36).

Reference

Normal Slight Heavy Sum User’s accuracy (%) Overall accuracy (%) Average accuracy (%) Kappa

Classified (MD)

Normal 16 1 3 20 80.00 61.11 52.39 0.31

Slight 0 2 2 4 50.00

Heavy 6 2 4 12 33.33

Sum 22 5 9 36

Producer’s accuracy (%) 72.73 40.00 44.44

Classified (MLC)

Normal 13 3 3 19 68.42 52.78 47.85 0.20

Slight 6 2 2 10 20.00

Heavy 3 0 4 7 57.14

Sum 22 5 9 36

Producer’s accuracy (%) 59.09 40.00 44.44

Classified (PLSR)

Normal 8 0 0 8 100.00 58.33 75.08 0.42

Slight 11 5 1 17 29.41

Heavy 3 0 8 11 72.73

Sum 22 5 9 36

Producer’s accuracy (%) 36.36 100.00 88.89

Classified (MTMF)

Normal 19 2 2 23 82.61 72.22 63.60 0.49

Slight 3 3 3 9 33.33

Heavy 0 0 4 4 100.00

Sum 22 5 9 36

Producer’s accuracy (%) 86.36 60.00 44.44

Note: the fullnames of MD, MLC, PLSR and MTMF were referred in Table 4.
doi:10.1371/journal.pone.0093107.t005

Figure 9. Scatter plots between surveyed DIs (reference) and DI estimates produced by PLSR (A) and MTMF (B). The circle indicates
diseased samples whereas the triangle indicates normal samples. The R2 and RMSE are calculated based on diseased samples.
doi:10.1371/journal.pone.0093107.g009
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tion of an infeasibility value for MTMF provides a means to

quantify the possibility of infeasibility of the disease severity

estimates given by MF results, which thus greatly prevented the

influence from those pseudo infected pixels. This advantage of

MTMF has also been mentioned by Franke and Menz (2007) in

disease monitoring with high resolution satellite images [18]. The

MTMF only took several typical infected samples into account,

which did not include much spectral divergence between different

Figure 10. Workflow of an integration of MTMF and PLSR in mapping powdery mildew.
doi:10.1371/journal.pone.0093107.g010

Table 6. Confusion matrix and classification accuracies created by the integrated approach of MTMF and PLSR.

Reference

Normal Slight Heavy Sum User’s accuracy (%) Overall accuracy (%) Average accuracy (%) Kappa

Classified Normal 19 2 2 23 82.61 77.78 71.01 0.59

Slight 3 3 1 7 42.86

Heavy 0 0 6 6 100.00

Sum 22 5 9 36

Producer’s accuracy (%) 86.36 60.00 66.67

doi:10.1371/journal.pone.0093107.t006
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infection levels. Such a defect might explain its poor performance

in differentiating disease severity levels. On the contrary, the

PLSR outperformed the other three methods in discriminating the

slightly and heavily infected samples, but led to a significant

overestimation of disease infection regions (Table 5, Fig. 8, Fig. 9).

One likely reason is that the training samples used by PLSR

included varied infection levels, which thus brought abundant

spectral information in the model. Moreover, the PLSR used a

number of principal components (instead of original spectral

features) for establishing the relationship between raw data and the

disease severity, which thereby eliminated the colinearity among

variables, and thus enabled the accurate discrimination of different

infection levels [54,55]. Further, due to the lacking of a mechanism

to eliminate the pseudo results, the PLSR model was prone to

response to other unhealthy pixels rather than disease infection

(e.g., nutrient stresses, drought, etc.), which thus led to a serious

overestimation problem in disease monitoring.

As reported in this paper, both MTMF and PLSR methods

performed better in identifying the disease occurrence and

estimating the severity degree of infection respectively than the

other two methods. However, given the relatively weak spectral

response of disease and high level of uncertainty (e.g. planting

density, confusion of several types of stresses), with multi-temporal

satellite images and present methods, it is able to locate the

infected areas of powdery mildew yet is still challenging to provide

accurate determination of their infection levels. Considering a

practical use in disease control and a requirement of monitoring

the infected area at a region scale, we suggest to use MTMF

method to achieve this goal.

5.3 An integration of MTMF and PLSR
Based on the discussion above, since the four algorithms have

had some imperfections in disease identification or severity

determination, it seems that none of them alone can produce

satisfactory results in this study. While we discussed the

performance of the four algorithms in disease mapping (subsection

5.2), the mutually complementary traits of MTMF and PLSR in

disease identification and severity determination attracted our

attention and evoked us to synergize their traits for disease

monitoring tasks. The processing workflow was illustrated in

Fig. 10 by showing the result of each processing step for the subset

region in our study area. (1) The MTMF was used to identify those

infected patches by powdery mildew from healthy areas. (2) For

those pixels in the infected regions, the PLSR was applied to

differentiate their severity levels. The performance of the

integrated model was encouraging based on its validation result

of overall accuracy improved from 72% (the highest accuracy for

individual algorithms as shown in Table 5) to 78% and the kappa

coefficient improved from 0.49 to 0.59 (Table 6). In addition,

when quantifying disease severity in a continuous manner, the R2

was improved from 0.39 to 0.54 and the RMSE decreased from

18.02 to 14.80. All the aforementioned accuracy improvements in

disease identification and severity determination indicated that the

combination of MTMF and PLSR demonstrated the synergy of

both algorithms. Therefore, it is recommended to use this

integrated algorithm for disease monitoring.

5.4 Potential applications to crop diseases monitoring at
a regional scale

In this study, taking PM as an example, a framework of crop

disease monitoring was proposed that is able to incorporate

routinely operated multi-temporal satellite images at a regional

scale. It should be realized that proposed mapping strategy is

actually an open system, which allows adaptations or modifications

according to the spectral response and temporal characteristics of

a specific disease. Different from the disease mapping at a parcel

scale that aims at facilitating the precision farming management,

the distribution information of disease across a certain region is

vital to macro-decision making process, such as strategic planning,

identifying areas requiring intensive field survey, adjusting the

budget for prevention practices, allocating limited fungicides and

yield forecasts [56,57]. Besides, the information about an extent

and intensity of a disease occurrence is also useful in loss

assessment for agricultural insurance.

Conclusions

With a set of time series HJ-CCD images and a corresponding

intensive ground survey of disease incidence, the multi-temporal

moderate resolution images could be used to map powdery mildew

in a winter wheat area with an overall accuracy of 78%. In this

study, both MTMF and PLSR performed better in mapping the

diseased area and estimating infection severity. However, given the

MTMF unique ability of identifying the infected area of powdery

mildew, the MTMF method was recommended for practical use.

Such mapped and estimated powdery mildew information derived

from the time series satellite observations can greatly assist the

assignment of further field investigations for reality check and

decision making.

However, it should be noted that some limitations and

challenges still remain in monitoring crop diseases with the

multi-temporal moderate resolution images at a regional scale.

Firstly, the technical flow for disease mapping as analyzed in this

study is only suitable for some types of diseases that result in a

continuous stretching landscape pattern, which thus may not be

suitable for some sparsely occurred diseases (e.g., yellow rust in

winter wheat). Secondly, some environmental variations, such as

phonological difference, cultivation procedures and soil types, may

also cause some confusions and uncertainties in disease monitoring

given their similar spectral and temporal properties with disease.

In our study, even using the optimal model, the total variance of

over 20% was not accounted for yet. To overcome these

challenges, remote sensing data combined with some ancillary

data, such as meteorological data, geographic data, etc., may help

reduce the uncertainty level in disease mapping process. More-

over, incorporation of physically processing models (e.g., SIR

model) that describe the disease dispersal behavior and mechanism

will be expected to facilitate the disease monitoring process.

Therefore more studies in this field are necessary.
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