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Abstract

A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of
life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification
performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this
study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning
method using 900 training data. In addition, the classification performances of the ensemble classifier with naive
partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the
stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA)
classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and
an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by
overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with
naive partitioning. This study contributes towards reducing the required amount of training data and achieving better
classification performance.
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Introduction

The P300 is a component of an event-related potential (ERP) in

a non-invasive scalp electroencephalogram (EEG) that was

discovered by Sutton et al. [1]. The P300 appears as a positive

peak approximately 300 milliseconds (ms) after a rare or surprising

stimulus. The P300 is elicited by the oddball paradigm: rare

(target) and non-rare (non-target) stimuli are presented to a

participant, and then he/she counts the occurrence of the target

stimuli silently. The P300 can be seen in the ERPs corresponding

to the target stimuli. Visual and auditory stimuli have often been

used to elicit the P300 [2,3]. Currently, the P300 is used in brain-

computer interfaces (BCIs) for controlling devices.

The P300 was first utilized for spelling out letters by Farwell and

Donchin in 1988 [4]. They proposed a BCI system that typed

letters according to the detected P300 elicited by the visual target

stimuli, referred to as a P300-based BCI or a P300 speller. The

P300-based BCI can control not only a speller but also a

wheelchair [5,6], computer-mouse [7], web browser [8], virtual

reality system [9], game [10], or smart phone [11]. Since the BCI

does not depend on muscle activity, it constitutes a new interface

that will provide a better quality of life for patients disabled by

neuromuscular diseases, such as amyotrophic lateral sclerosis

(ALS) [12]. The interface, classification methods, and their

extensions have been studied for more than 20 years (e.g., [13–

15]).

Stepwise linear discriminant analysis (SWLDA) has been widely

used as a standard classification algorithm for the P300-based BCI

[16–19]. Farwell and Donchin first proposed the SWLDA,

together with the entire classification protocol for P300 [4].

Schalk et al. proposed a general-purpose BCI system, named

BCI2000, in which the P300-based BCI was implemented

together with the SWLDA [20]. Krusienski et al. compared the

classification algorithms for BCI [21]. Specifically, they compared

the classification accuracy of Pearson’s correlation method, linear

discriminant analysis (LDA), SWLDA, linear support vector

machine (SVM), and Gaussian kernel SVM. The results showed

that LDA and SWLDA achieved a better performance than the

others. Blankertz et al. proposed an LDA with shrinkage for P300-

based BCI that yielded a better performance than SWLDA when

a small amount of training data were given [22].

Ensemble classifiers are among the most powerful classifiers for

the P300-based BCI; however, they were developed and evaluated

using a relatively large amount of training data. The ensemble of

SVMs proposed by Rakotomamonjy and Guigue won the BCI

competition III data set II that contains a huge amount of training

data (15300 ERP data) [23]. They applied the ensemble classifiers

to reduce the influence of signal variability using the classifier

output averaging technique [24]. Salvaris et al. compared the

classification accuracies of ensemble LDA and ensemble SVM

classifiers using the BCI competition III data set II and BCI

competition II data set IIb (7560 training data) [25]. They also

employed an ensemble of six linear SVM classifiers and evaluated

classification accuracies using their own data by 16-fold cross-

validation [26]. An ensemble SWLDA classifier was first proposed

by Johnson et al. and evaluated on their own P300-based BCI data
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(6480 training ERP data) [27]. Arjona et al. evaluated a variety of

ensemble LDA classifiers using 3024 training data [28].

In online (real-time) P300-based BCI experiments, a smaller

amount of training data compared to the training data used in the

BCI competition III data set II and BCI competition II data set IIb

tended to be used. Townsend et al. recorded 3230 ERP training

data for a row-column paradigm and 4560 ERP training data for a

checkerboard paradigm [15]. Guger et al. evaluated the online

performances of P300-based BCI, where LDA was trained on

1125 ERP training data [29]. The EEG data are usually high

dimensional and the target training data that contain P300 were

rare (e.g., 1/6) and have different statistical property from the non-

target data. In other words, researchers must address the class

imbalance problem [30] that is severely prone to overfitting. Thus

the thousands of training data can be considered small in this field.

To be practical, the amount of the training data should be small in

order to reduce the training time [21]. However, most of the

studies on the ensemble classifiers for the P300-based BCI did not

evaluate the classification accuracy using a practical amount of

training data, e.g., less than 1000 ERP data.

In an online experiment where less than 1000 training data are

given, the ensemble classifier may not perform well because of its

method of partitioning training data. Most ensemble classifiers

employ naive partitioning that divides training data into partitions

by sets of data associated with a target command [23]. According

to the use of the naive partitioning, training data were partitioned

without overlaps. Johnson et al. also employed the same partition-

ing method [27]. Due to the naive partitioning method, however,

each weak learner in the ensemble classifier is trained on a smaller

amount of training data than a single classifier. In addition, the

dimension of the EEG data is usually high. In such cases, classifiers

are prone to overfitting [32]. Thus, the classification performance

of the ensemble classifiers may deteriorate when the amount of

training data is small and ensemble classifiers should therefore be

evaluated when less than 1000 training data are given.

To develop a better classifier that requires less than 1000

training data, we propose a new overlapped partitioning method

to train an ensemble LDA classifier, which we evaluated when 900

training data were given. The overlapped partitioning allows a

larger amount of training data to be contained in a partition,

Figure 1. Experimental design. We analyzed two P300-based BCI data sets A and B respectively. Data set A was recorded in this online
experiment. The recorded data set A is divided into q pairs of training and test data by p=q cross-validation (see Figure 4). Then the classification is
performed for all pairs to compute the classification accuracy (see Figure 5). The overlapped partitioning is employed to train ensemble classifiers.
Data set B (BCI competition III data set II) contains separated training data and test data. The data set was also classified by the proposed classifiers.
doi:10.1371/journal.pone.0093045.g001
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although a part of the training data were reused. The proposed

classifiers were evaluated on our original P300-based BCI data set

and the BCI competition III data set II, using small (900) training

data and large (over 8000) training data. One of three conditions

for dimension reduction was applied: the stepwise method,

principal component analysis (PCA) or none. Our objective was

to clarify how the ensemble LDA classifiers with overlapped or

naive partitioning and the single LDA classifier performed when

900 training data were given.

Overlapped partitioning is a new partitioning method that is

applied in the training of an ensemble classifier, and is designed

such that it will be suitable for application in P300-based BCI.

When we evaluated the performance of the new method, we also

assessed the influences of dimension reduction methods. The

algorithms were first compared under the condition that 900

training data were used, which were the smallest amount of data

used to date for the evaluation of ensemble classifiers for P300-

based BCI. In addition, the influence of the degree of overlap used

in the ensemble classifier with overlapped partitioning was

demonstrated for the first time. We consider that the overlapped

partitioning is essential to implement the ensemble classifiers in an

online system. This study contributes towards reducing the

required amount of training data and achieving better classifica-

tion performance in an online experiment.

Figure 2. Structure of the P300-based BCI system. A target letter is presented to a participant, then letters on the stimulator are intensified by
row or by column. The participant must do a mental task: silently count when the target letter is intensified. During this, the event-related potentials
(ERPs) that contain the P300 component are recorded from the scalp. The signals are amplified, digitized, then stored in a computer. After finishing all
intensifications, the signals were processed to predict a letter, then the feedback is displayed.
doi:10.1371/journal.pone.0093045.g002

Figure 3. Stimulator for the P300-based BCI. It has 36 gray letters that form a matrix in the center. Each column of the matrix is numbered 1–6
and each row 7–12. A target letter is provided at the top center of the stimulator and the predicted letter is shown at the top right as feedback in test
sessions.
doi:10.1371/journal.pone.0093045.g003
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Methods

Ethics Statement
This research plan was approved by the Internal Ethics

Committee at Kyushu Institute of Technology. The possible risks,

mental task, and approximate measurement time were explained

to all participants. In addition, all participants gave their written

informed consent before participating in this experiment.

Experimental Design
Ensemble classifiers with the proposed overlapped partitioning

were evaluated on our original P300-based BCI data set (data set

A) and BCI competition III data set II (data set B ) as shown in

Figure 1. The primary objective is to clarify how the overlapped

partitioning for ensemble classifiers influences the classification

accuracy. The second objective is to confirm how the three

conditions for dimension reduction (stepwise method, PCA, or

none) improve classification performances.

Data Set A: Our Original P300-based BCI Data Set
To evaluate ensemble classifiers, we recorded EEG data using

an online P300-based BCI, and then computed the classification

accuracy offline. During the EEG recording, visual stimuli were

provided to the participant. At the same time, the participant

performed a mental task. The recorded signals were amplified,

digitized, and then preprocessed before a letter was predicted. Our

data contains P300-based BCI data from 10 participants that can

be used for better statistical analysis. Parameters used in the

stimulus and the recording method of data set A are summarized

in Table 1.

Participants. Eleven healthy participants (ten males and one

female aged 22–28 years old) participated in this study. They had

no prior experience of controlling P300-based BCI. During the

experiment, we checked the participants’ obtained waveform as

well as their health status. However, one male participant could

not complete the task due to sickness. Thus, we finally analyzed

data from ten participants in offline analysis.

Devices. The P300-based BCI consisted of a stimulator,

amplifier, A/D converter, and computer as shown in Figure 2.

EEG signals were recorded at Fz, Cz, P3, Pz, P4, PO7, Oz, and

PO8 scalp sites according to the international 10–20 system, which

is the alignment commonly used for P300-based BCI [9]. The

ground electrode was located at the AFz site and the reference

electrodes were located on the mastoids. The EEG signals were

filtered (0.11–30 Hz band-pass filter) and amplified 25000 times

with a BA1008 (TEAC Co. Ltd., Japan). Then, the signals were

digitized by an AIO-163202FX-USB analog I/O unit (CONTEC

Co. Ltd., Japan). The sampling rate was 128 Hz. The P300-based

BCI was implemented by MATLAB/Simulink (Mathworks Inc.,

USA). The recorded signals were analyzed offline using MA-

TLAB. Stimuli for the P300-based BCI were presented on a TFT

LCD display (HTBTF-24W, 24.6 inches wide with 1920|1080
dpi; Princeton Technology Ltd., Japan) located 60 cm in front of

the participant.

Stimuli. We employed most of the parameters of the

stimulator that were used in the BCI competition III data set II

[23]. The stimulator of the P300-based BCI consists of 36 gray

letters that form a 6|6 matrix, a target indicator, and a feedback

indicator (see Figure 3). All the columns and rows of the matrix

were numbered to manage intensifications and for the subsequent

prediction of a letter. The set of column numbers was

C~ 1,2,3,4,5,6f g, while the set of row numbers was

R~ 7,8,9,10,11,12f g. In addition, a set of all the intensifications

was I~C|R. A row or a column of gray letters in the matrix

turned white for 100 ms (intensification duration), and then

changed to gray again for 75 ms (blank duration). At least

n(I)~12 intensifications were required to identify an input letter

out of the 36 letters. This is called a sequence. One row or column

in a sequence was selected by a random permutation. The number

of intensification sequences Ns was fixed to 15 in the online

Table 1. Parameters of stimulators, data acquisition, and preprocessing methods for data sets A and B.

Data set A Data set B

#letters 36 36

#row 6 6

#column 6 6

#intensification sequence 15 15

Intensification duration (ms) 100 100

Blank duration (ms) 75 75

Target presentation duration (s) 3 2.5

Feedback presentation duration (s) 1 2.5

#participants 10 2

#recorded letters 50 training:85, test:100

#channels 8 64

Sampling rate (Hz) 128 240

Bandpass filter (Hz) 0.11–30 0.1–60

ERP buffer length (ms) 700 700

Baseline buffer length (ms) pre-100 pre-100

Moving average (window size) 3 18

Downsampling (Hz) 43 20

doi:10.1371/journal.pone.0093045.t001
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experiment (i.e., 180 intensifications), while Ns was varied from 1

to 15 in the offline analysis.

Preprocessing. EEG data were preprocessed for both online

recording and offline analysis. The data were trimmed from the

beginning of each intensification to 700 ms (8 channels689

samples). Each 100 ms pre-stimulus baseline was subtracted from

the corresponding ERP data. Subsequently, ERP data were

smoothed (using a moving average with a window size of 3 ),

downsampled to 43 Hz (8 channels630 samples), and vectorized

(240 channels6samples).

Sessions and a mental task. EEG data of P300-based BCI

were recorded through a training session and ten test sessions,

where only the data in the test sessions were evaluated by our

proposed p=q cross-validation in the offline analysis. In each

session, a participant was required to spell out five letters using the

P300-based BCI. A target letter to be inputted was selected

randomly by the system. Thus the 900 ERPs (5 letters 61 session

6 12 intensifications 6 15 sequences) were recorded in the

training session and 9000 ERPs (5 letters 6 10 sessions 6 12

intensifications615 sequences) for test sessions. A target letter was

displayed for 3 s, and then intensifications were presented. The

participant was asked to perform the oddball task to elicit P300:

the participant had to focus on the cued target letter and count

silently when the letter was intensified. During the sessions,

observed EEG data were recorded. In the training session, the

feedback was not displayed. In the test sessions the feedback was

shown in the feedback indicator for 1 s at the end of all 15

intensification sequences for the target letter. The online feedback

was computed using the single LDA classifiers [21] and was

presented to the participants in order to confirm whether the

participant conducted the mental task appropriately in the test

sessions. The feedback of success or failure also contributes to

motivate participants [33], even though presenting feedbacks does

not improve the classification accuracy of P300-based BCI [34]. In

addition, the feedback is essential for participants to acquire the

appropriate mental task [35]. Also an experimenter confirmed the

feedback to make sure that the appropriate classification

performance were observed using LDA. All the previous data

gathered before the current session were used for learning the

classifier in the online recording.

Data Set B: BCI Competition III Data Set II
We also evaluated the proposed ensemble classifiers using BCI

competition III data set II because many novel and traditional

Figure 4. Procedure of 1=10 cross-validation used for the evaluation on data set A. In this case, p~1 and q~10. ERP data sets
corresponding to fifty letters inputted by a participant were measured. The square aligned at the top illustrates a data set that contained 180 ERP
data, 30 of which were labeled as target ERPs, while the others were labeled as non-target ERPs. These data sets were sorted according to measured
time. The data sets were divided into ten groups. Then, two successive groups were selected. The former group was assigned to training data and the
latter to test data. Then, each weak learner in the ensemble classifier was learned on the assigned training data and tested using the following test
data.
doi:10.1371/journal.pone.0093045.g004
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BCI algorithms have been evaluated using this data set. Since the

competition data set contains a large amount of training data, we

evaluated the classification performance using limited training

data (900 ERPs) in addition to the full training data (15300 ERPs).

Parameters used in the stimulus and data recording of the data set

B are also summarized in Table 1.

Overview of the data set and stimulator. The data set

contains EEG data for participants A and B. The EEG data were

recorded from 64 channels. The recorded signals were bandpass

filtered (0.1–60 Hz) and digitized at 240 Hz. The same procedure

of intensifications and mental tasks for data set A was also applied

to the data set B. The differences in the stimulators between data

sets A and B were in the size, the font and the brightness of letters,

horizontal/vertical distances of letters, and the method of

presenting the target and feedback letters. It should be noted that

the target and feedback presentation times were different between

these two data sets, though these parameters were not directly

related to the offline analysis. The data set contains EEG data

corresponding to 85 target letters for training (85 letters 6 12

intensifications 6 15 sequences = 15300 ERPs) and EEG data of

100 target letters for testing (18000 ERPs) for each participant. A

more detailed description of the data set can be found in [36].

Preprocessing. The same preprocessing method was used

for data sets A and B; however different parameters were

employed because the sampling rate and the number of channels

for data set B were larger than those for data set A. All 64 channels

data were used for the offline analysis. The data were trimmed

from the beginning of each intensification to 700 ms (64 channels

6168 samples). Each 100 ms pre-stimulus baseline was subtracted

from the ERP data. ERP data were smoothed (using moving

average with window size = 18), downsampled to 20 Hz (64

channels 6 14 samples), and vectorized (896 channels6samples).

The vectorized data are handled as feature vectors in the

classification.

Ensemble classifiers with overlapped partitioning
The ensemble classifier divides given training data into

partitions, then those partitions were used to train multiple

classifiers in the ensemble classifier. The classifier in the ensemble

classifier is called a ‘‘weak learner.’’ The number of weak learners

is denoted by Nc. The training data were divided into Nc

partitions using overlapped partitioning. A dimension reduction

method was applied to these partitioned data, and then Nc LDA

weak learners were trained. The test data corresponding to a letter

were processed to compute the scores, and then the scores were

translated into a predicted letter. To evaluate the classification

performance using thousands of training data, the proposed p=q

cross-validation was applied.

p/q cross-validation. p=q cross-validation is a special cross-

validation that can reduce the amount of training data. For a fair

Figure 5. Training and testing procedure of the ensemble classifiers for P300-based BCI. Training data flows are represented by blue lines
and test data flows are illustrated by red lines. The training data are divided into Nc overlapped partitions (see Figure 6). One of three conditions for
dimension reduction (DR) is applied to each partitioned data : the stepwise method, PCA, or none. Then, Nc LDA weak learners are trained on these
dimension-reduced data. The training data are used only for the training of weak learners as illustrated by blue lines. After the training session, the
test data are processed to compute scores for decision making.
doi:10.1371/journal.pone.0093045.g005
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comparison of the classification accuracy, the amount of training

data used in the offline analysis should be reduced to less than

1000. The traditional cross-validation method is not suitable

because it provides at least 4500 training data in this case. Instead,

we employed the proposed p=q cross-validation that performed

q-fold cross-validation, where p=q of all data were assigned to the

training data.

First, the ERP training data are divided into q groups. Second,

assuming that the groups are aligned around a circle, pz1 groups

from uth group (u[ 1,2,:::,qf g) are sequentially selected. Then, p

consecutive groups are assigned to the training data, and the last

single group was assigned to the test data. The above procedures

are repeated for all u. In total, q pairs of training and test data are

prepared. For each pair, classification is performed. The

classification accuracy can be computed as #correct letter=
#total letter, where #total letter is the total number of letters

and #correct letter is the number of correct predictions among all

pairs. It should be noted that (q{1)=q cross-validation is

equivalent to the conventional q-fold cross-validation.

In the present study, we have evaluated data set A using the

1=10 cross-validation as shown in Figure 4. In other words, five

letters out of 50 were assigned to the training data, which

contained 900 ERPs (9000 ERPs 6 1/10). It takes 180.125

seconds to spell out five letters in the conditions of this online

experiment, which does not overly tire the participant. In addition

to the 1=10 cross-validation, we also used the conventional 10-fold

cross-validation (9=10 cross-validation) in order to compare the

ensemble classifiers when a large amount of training data were

provided. Thus, ERPs for 45 letters out of 50 were used as training

data, which contained 8100 ERPs (9000 ERPs 69/10). The p=q

cross-validation was not applied to data set B because the

competition data set has separated training and test data.

Overlapped partitioning. In a BCI study on ensemble

classifiers, naive partitioning was used [23]. According to their use

of naive partitioning, the given training data were divided into

partitions by letters without overlaps. Due to the partitioning

without overlaps, the amount of training data in a partition

becomes small so that covariance matrices might not be estimated

precisely. Instead of this method, we proposed a generalized

partitioning method.

All the procedures for training and testing the proposed

ensemble classifier for P300-based BCI are shown in Figure 5.

In overlapped partitioning, sets of training data are divided into Nc

partitions, where the overlap of each partition is allowed. In the

first step of the overlapped partitioning method, training data

assigned to input commands were sorted by recorded time and

were divided into Nc blocks without overlaps. Then, assuming that

the blocks were aligned around a circle, Nb consecutive blocks

from vth block (v[ 1,2,:::,Ncf g) were selected to form a partition.

The procedure was repeated for all v. An example of overlapped

partitioning is shown in Figure 6. Each weak learner was trained

on the partitioned data (see Figure 5). The advantage of this

Figure 6. Overlapped partitioning when Nc~5 and Nb~3. Training data were first divided into five blocks. Assuming that those five blocks
were aligned around a circle, three continuous blocks were selected to form a partition. As a result, five partitions were prepared. The partitioned
training data sets were used to train weak learners in the ensemble classifier.
doi:10.1371/journal.pone.0093045.g006
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partitioning method as compared to naive partitioning is that a

larger amount of data are stored in each partition. Thus,

overlapped partitioning may be robust against shortage of training

data. In the present study, Nc was fixed; however, Nb was varied in

the offline analysis.

An ensemble classifier with the overlapped partitioning can be

considered as a special case of bagging used in pattern recognition

[37]. In the bagging, random sampling from available training

data allowing overlap is used, which is also referred to as bootstrap

sampling. In contrast, the overlapped partitioning does not have

any randomness so that no duplicated partition is made except for

a special case. Unlike a standard pattern recognition problem, a

set of EEG was recorded for every letter, where 30 ERPs

contained P300 and the other 150 ERPs did not. The random

sampling out of the full set of EEG data runs the risk that only a

few ERP data that contain P300 could be selected in a partition,

which may deteriorate classification performance. Also the

random sampling out of five blocks of EEG data is not effective

because duplicated partitions could be prepared. The proposed

overlapped partitioning does not have such risks and provides

different partitions with a constant ratio of EEG data with P300 to

those without it. Thus, the weak learners of the ensemble classifier

can efficiently be trained by the overlapped partitioning.

Dimension reduction. A dimension reduction method has

often been applied to the BCI because EEG data are usually high

dimensional. However, the influences of the dimension reduction

methods have not been evaluated for ensemble classifiers. In this

study, one of three conditions for dimension reduction was

applied: 2 dimension reduction methods (the stepwise method and

PCA) and a control condition without dimension reduction (none).

N Stepwise method The stepwise method selects suitable

spatiotemporal predictor variables for classification by forward

and backward steps. First, an empty linear regression model is

prepared, then variables are appended through the following

steps. In the forward step, a variable is appended to the model,

then the model was evaluated by an F-test. Through the F-test,

p-value was computed, which is the probability of the

occurrence of a result by chance. The variable is added if

the p-value of the F-test is higher than a threshold pin. The

forward step is repeated until no variable is appended. In the

following backward step, a variable of the temporal model is

removed and the model was also evaluated by the F-test. Then,

the variable is removed if the p-value of the F-test is lower than

a threshold pout. The backward step is continued until no

variable is removed. Then, the forward step is repeated again.

The final model is determined when no variable is appended

to or removed from the model. The remaining variables in the

Figure 7. Classification performances of ensemble classifiers on data set A using 1=10 cross-validation. OSWLDA, OPCALDA and OLDA
were trained on 900 ERPs. The influence of overlapped partitioning were evaluated by changing the degree of overlaps (Nb) and the number of
intensifications (Ns). The classification performances of all participants were presented.
doi:10.1371/journal.pone.0093045.g007
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final model are used for classification. More details are given in

[21,38]. We set pin~0:1 and pout~0:15, which were

commonly used for P300-based BCI [21,22].

N Principal component analysis The principal component

analysis (PCA) is a typical dimension reduction method which

is based on the eigenvalue decomposition [39], and has also

been applied to P300-based BCI [10,40]. In summary, the

covariance matrix of training data is computed and then the

eigenvalue decomposition is performed. The projected data

using a normalized eigenvector corresponding to the largest

eigenvalue is called the first principal component (PC). The

other PCs can be calculated as well. We applied PCA to data

in each partition, and then used 1–140 PCs for classification on

data set A, 1–400 PCs for classification on data set B.

Linear discriminant analysis. Linear discriminant analysis

(LDA) is a frequently used classifier for P300-based BCI. In the

ensemble classifier, Nc LDA weak learners are implemented. One

of three conditions for dimension reduction is applied to the kth

partitioned data, and then the weight vector of the kth LDA weak

learner is trained as follows:

wk~
X{1

k
mk,2{mk,1

� �
,k[ 1,2,:::,Ncf g, ð1Þ

where
X

k
is a total covariance matrix over the target and non-

target training data, and mk,2 and mk,1 are the mean vectors of the

target and non-target training data in the kth partition. The

trained weight vectors of each LDA weak learner are used to

compute the score for the decision making. See [22] for more

details of a single LDA classifier.

Decision making. To predict a letter, its corresponding test

data were processed to compute scores for decision making. A test

feature vector that belonged to the ith intensification in the jth

sequence in the kth partition after applying dimension reduction

was denoted by xi,j,k,i[I ,j[ 1,2,:::,Nsf g. The score si corresponding

to an intensification was computed as.

si~
XNs

j~1

XNc

k~1

wk
:xi,j,k, i[I : ð2Þ

In the offline analysis, the number of intensification sequences

Ns was varied from 1 to 15. The inputted letters were then

predicted by finding maximum scores from row and column

intensifications, respectively:

d~ arg max
g[C

sg

� �
, arg max

h[R

shf g
 !

: ð3Þ

The first element of d represents the column number of a

predicted letter, while the second represents the row number. For

example, d~(2,9) denotes ‘‘N’’ in Figure 3.

Special cases of overlapped partitioning. The ensemble

classifiers with the proposed overlapped partitioning are equivalent

to ensemble classifiers with naive partitioning or a single classifier

in a special case. That is, the ensemble classifier with overlapped

partitioning becomes the ensemble classifier with naive partition-

ing when Nb~1 and Ncw1. In this case, partitions do not overlap

each other, which can be easily seen in Figure 6. Moreover, the

Figure 8. Mean classification performances of ensemble classifiers on data set A using 1=10 cross-validation. OSWLDA, OPCALDA and
OLDA were trained on 900 ERPs. The classification accuracies were averaged over ten participants.
doi:10.1371/journal.pone.0093045.g008
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ensemble classifier also behaves as a single classifier when Nb~Nc.

The scores in Equation 3 can be multiplied by an arbitrary

Kw0:

d~ arg max
g[C

sg

� �
, arg max

h[R

shf g
 !

~ arg max
g[C

Ksg

� �
, arg max

h[R

Kshf g
 !

: ð4Þ

When Nb~Nc, all the partitioned data sets are just duplications

of all the given training data. After a dimension reduction method

has been applied, the same data are stored in all partitions. As a

result, all the weight vectors of the classifiers become the same:

w~w1~w2~:::~wNc : ð5Þ

Since the final model of the stepwise method or the projection of

the PCA is adjusted by the same training data, the test data after

the dimension reduction should be the same:

xi,j~xi,j,1~xi,j,2~:::~xi,j,Nc , ð6Þ

Considering Equation 5 and 6, the score for decision making

instead of Equation 2 is computed by

s0i~Nc

XNs

j~1

w:xi,j , i[I : ð7Þ

On the other hand, the score for a single classifier is formed as

s00i ~
XNs

j~1

w:xi,j : ð8Þ

Thus, the relationship between the single classifier and the

overlapped ensemble classifiers that have Nb~Nc is

s0i~Ncs00i : ð9Þ

From Equation 4, s0i and s00i work in the same way for decision

making. Therefore, the ensemble classifier with overlapped

partitioning that satisfies Nb~Nc corresponds to a single classifier.

Comparison Protocol
We evaluated varieties of ensemble classifiers with overlapped

partitioning in order to ensure the influence of the degree of

overlap together with dimension reduction methods. One of three

different conditions for dimension reduction was applied: stepwise,

PCA, or none. They are denoted by overlapped ensemble

SWLDA (OSWLDA), overlapped ensemble PCA LDA (OP-

CALDA), and overlapped ensemble LDA (OLDA) classifiers,

respectively.

Those 3 classifiers were evaluated on data sets A and B. Data set

A, recorded by us, was analyzed in the small training data case

using 1=10 cross-validation and in the large training data case

using 9=10 cross-validation (conventional 10-fold cross-validation).

Thus, the same amount of the training data was provided for each

Table 2. Evaluation parameters of ensemble classifiers with overlapped partitioning on data set A.

Evaluation
method #training letters #test letters Nc Nb

#training data for a
weak learner (ERPs)

1=10 cross-valdiation 5 letters
(900 ERPs)

50 letters 5
5
5
5
5

1
2
3
4
5

180
360
540
720
900

9=10 cross-valdiation
(conventional
10-fold cross-validation)

45 letters
(8100 ERPs)

50 letters 45
45
45
45
45
45
45
45
45
45

1
5
10
15
20
25
30
35
40
45

180
900
1800
2700
3600
4500
5400
6300
7200
8100

The data set A was evaluated by 1=10 cross-validation (900 training data ) and 9=10 cross-validation (8100 training data). The number of weak learners Nc and the
number of blocks Nb were the parameters of the overlapped partitioning. These evaluation methods and parameters determine the amount of training data for a weak
learner in an ensemble classifier. The number of training letters (#training letters) is decided by 50 entire letters 6p=q. The number of training data for a weak learner
(#training data for a weak learner) can be computed by 9000 entire ERPs 6 p=q 6Nb/Nc .
doi:10.1371/journal.pone.0093045.t002
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ensemble classifier 900 training data for the former and 8100

training data for the latter. Additionally, in the cross-validation,

the training and test data were clearly separated so that none of

the training data were used as the test data. Data set B (BCI

competition III data set II) was also analyzed using limited training

data (ERPs corresponding to the first 5 letters) and using full

training data (ERPs corresponding to 85 letters). The former

contained 900 ERPs while the latter contained 15300 ERPs for

training.

To confirm the influence of overlapped partitioning, the degree

of overlaps Nb was varied, while the number of weak learners Nc

was fixed in the offline analysis. Evaluated combinations of Nc and

Nb for data sets A and B were summarized in Tables 2 and 3,

respectively. In particular, in the case Nb~Nc, the ensemble

classifier with overlapped partitioning is equivalent to the single

classifier. In addition, in the case where Nb~1 and Ncw1, it

behaves as a conventional ensemble classifier with naive

partitioning. It should be noted that the algorithms were learned

on 900 training data of both data sets, which was much smaller

than the training data used in previous studies, for example, the

15300 training data used in the BCI competition III data set II

[23], and 7560 data used in the BCI competition II data set IIb

[41]. In our comparison, the single SWLDA which is commonly

used in this field and the ensemble SWLDA proposed by Johnson

et al. were compared.

For the statistical analysis of data set A, the effects of the

intensification sequence (Ns~1,:::,15), dimension reduction con-

dition (stepwise, PCA or none), and degree of overlaps

(Nb~1,:::,5) were evaluated by three-way repeated-measures

ANOVA followed by post hoc pairwise t-tests with Bonferroni’s

method. No statistical analysis was applied to data set B because of

the limited number of participants.

Results

The classification performances of OSWLDA, OPCALDA, and

OLDA were evaluated on data set A using 1=10 or 9=10 cross-

validation and data set B with limited or full training data. The

degree of overlap used in the overlapped partitioning (Nb) was

varied while the number of weak learners in the ensemble classifier

(Nc) was fixed. As mentioned above, an overlapped ensemble

classifier behaves as an ensemble classifier with naive partitioning

when Ncw1 and Nb~1, and becomes a single classifier when

Nc~Nb.

Data Set A Using 1=10 Cross-validation
EEG data in data set A were classified by OSWLDA,

OPCALDA, and OLDA using 1=10 cross-validation using

parameters in Table 2. The classification performances of these

classifiers for each participant are shown in Figure 7. The mean

accuracies of these algorithms are shown in Figure 8 and in

Table 4.

The key finding was that OSWLDA showed higher classifica-

tion performance than the single SWLDA classifier (Nb~5) and

ensemble SWLDA classifier with naive partitioning (Nb~1) when

900 training data were provided. As can be seen in Table 4, most

algorithms achieved the best performance when Nb~4, while the

worst accuracy was observed when Nb~1. Regarding OLDA,

when Nb~1, the classification accuracy was close to the chance

level (1/36). As can be seen in Figure 8, OSWLDA (Nb~4)

achieved a higher classification accuracy than the single SWLDA

classifier (Nb~5), especially in 3ƒNsƒ7. At Ns~5, OSWLDA

(Nb~4) obtained an 11:2% higher accuracy than the ensemble

SWLDA classifier with naive partitioning and a 4:8% higher

accuracy than the single SWLDA classifier. Moreover, OP-

CALDA (Nb~4) achieved a better classification accuracies than

OPCALDA (Nb~5) when 6ƒNsƒ9, although the differences

Table 3. Evaluation parameters of ensemble classifiers with overlapped partitioning on data set B (BCI competition III data set II).

Evaluation
method #training letters #test letters Nc Nb

#training data for a
weak learner (ERPs)

Limited training data
(first 5 letters)

5 letters (900 ERPs) 100 letters 5
5
5
5
5

1
2
3
4
5

180
360
540
720
900

Full training data 85 letters 100 letters 17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

900
1800
2700
3600
4500
5400
6300
7200
8100
9000
9900
10800
11700
12600
13500
14400
15300

The ensemble classifiers were trained on limited training data (900 training data ) or full training data (15300 training data). The number of weak learners Nc and the
number of blocks Nb were parameters used in the overlapped partitioning. These evaluation methods and the parameters determine the amount of training data for a
weak learner in an ensemble classifier. The number of training data for a weak learner (#training data for a weak learner) can be computed by given training ERPs6Nb/
Nc .
doi:10.1371/journal.pone.0093045.t003
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were small. In contrast, the accuracy of OLDA (Nb~4) was close

to that of the single LDA classifier (Nb~5), although OLDA

(Nb~4) achieved slightly higher accuracies in some sequences.

A three-way repeated-measures ANOVA with the intensifica-

tion sequence, dimension reduction conditions, and degree of

overlap was applied. The main effects of the intensification

sequence (F(14,126)~166:6, pv0:01), dimension reduction

conditions (F (2,18)~614:6, pv0:01), degree of overlap

(F (4,36)~1356, pv0:01) and all their interactions (pv0:01 for

all) were significant. In addition, significant differences between

the dimension reduction conditions (pv0:01 for all), and between

pairs of Nb, except for the pair Nb~3 and 5 (pv0:01 for all), were

revealed by the post hoc pairwise t-test with Bonferroni’s method.

Data Set A Using 9/10 Cross-validation
EEG data in data set A were also classified by the three

algorithms using 9=10 cross-validation using parameters in

Table 2. Classification performances of the three algorithms for

each individual participant are shown in Figure 9. The mean

classification performances are shown in Figure 10 and Table 5.

The classification performance of ensemble classifiers with the

overlapped partitioning were as well as, or slightly better than that

of the single classifier when 8100 training data were provided. As

shown in Figure 10, the worst classification performance was

achieved by the ensemble classifiers (Nc~45,Nb~1) for all

algorithms, which was the same as the analysis of data set A

using 1=10 cross-validation. However, only a little performance

improvement of the overlapped ensemble classifiers can be found

when compared to the single classifier (Nc~45,Nb~45).

A three-way repeated-measures ANOVA with the intensifica-

tion sequence, dimension reduction conditions, and degree of

overlap was applied. The main effects of the intensification

sequence (F (14,126)~135, pv0:01), dimension reduction

conditions (F (2,18)~510:9, pv0:01), degree of overlap

(F (9,81)~197:9, pv0:01) and all their interactions (pv0:01 for

all) were significant. In addition the post hoc pairwise t-test was

applied. Significant differences between the dimension reduction

conditions (pv0:05 for all) were revealed. Also, significant

differences between the pairs containing Nb~1, Nb~5,

Nb~10, and Nb~15 (pv0:01 for all) were revealed.

Data Set B with Limited Training Data
EEG data in data set B were classified by OSWLDA,

OPCALDA and OLDA using 900 training data using parameters

in Table 3. Classification performances of OSWLDA, OP-

CALDA, and OLDA evaluated on data set B using a limited

amount of training data (900 ERPs) are shown in Tables 6, 7, and

8, respectively.

The OSWLDA and OPCALDA (Nc~5 and Nb~3,4) achieved

better classification accuracies than those with naive partitioning

Figure 9. Classification performances of ensemble classifiers on data set A using 9=10 cross-validation. OSWLDA, OPCALDA and OLDA
were trained on 8100 ERPs. Then the data set A was classified by those classifiers, changing Ns and Nb . The classification performances of all
participants were displayed.
doi:10.1371/journal.pone.0093045.g009
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(Nc~5 and Nb~1) and the single classifiers (Nc~5 and Nb~5)

when 900 training data were available. As for OSWLDA, the best

classification accuracies can be seen when Nb~4. Further, most of

the best mean classification performances of OPCALDA can be

seen when Nb~3 or Nb~4. These tendencies are similar to the

analysis of data set A using 1=10 cross-validation. OSWLDA

achieved about 10% (15% at best when Ns~6) higher mean

classification accuracy than the single SWLDA classifier

(Nc~5,Nb~5). OPCALDA also achieved a 5.5% higher mean

classification accuracy than the single PCALDA classifier

(Nc~5,Nb~5) when Ns~12. However, all of the classification

performances of OLDA were close to chance level.

Data Set B with Full Training Data
EEG data of data set B were classified by OSWLDA,

OPCALDA and OLDA using 15300 training data using

parameters in Table 3. Classification performances of the three

algorithms evaluated on data set B using full training data (15300

ERPs) are presented in Tables 9, 10, and 11, respectively.

The classification performances of ensemble classifiers with the

overlapped partitioning (OSWLDA, OPCALDA and OLDA,

Nc~17, 1vNbv15) were as well as, or slightly better than those

with naive partitioning (Nc~15 and Nb~1) and those single

classifier (Nc~15 and Nb~15) when 15300 training data were

available in most sequences. The best classification performance

was achieved by OSWLDA; 98% when Ns~15, Nc~17,

Nb~7,9,11. In other words, OSWLDA achieved a 1:5% higher

classification performance than the ensemble of SVMs achieved by

the winner of BCI competition III data set II [23]. OSWLDA

achieved about 3% improvement over single SWLDA (Nc~17,

Nb~17). However little improvement by the ensemble classifier

with the overlapped partitioning can be seen compared to the

single classifier, just as the analysis of data set A using 9=10 cross-

validation.

Discussion

In order to ensure the influence of the overlapped partitioning

compared to traditional naive partitioning and a single classifier,

classification accuracies of ensemble classifiers with those parti-

tioning methods were compared when 900 training data were

given. Two different P300-based BCI data sets were evaluated;

data set A with 1=10 cross-validation and data set B using limited

training data. The single classifier (Nc~Nb ) and the traditional

ensemble classifier with naive partitioning (Ncw1 and Nb~1)

were also compared at the same time. One of three conditions for

dimension reduction methods (stepwise, PCA, and none ) was also

applied. The results show that OSWLDA trained on 900 ERPs

achieved higher classification accuracy than the single SWLDA

classifier (Nc~5, Nb~5) and the ensemble SWLDA classifier with

naive partitioning (Nc~5, Nb~1) for both data sets (see Tables 4

and 6). More specifically, the proposed OSWLDA learned on 900

ERPs achieved a 4:8% higher accuracy than the single SWLDA

for data set A (Nc~5, Nb~4, Ns~5) and 15% higher than the

single SWLDA for data set B (Nc~5, Nb~4, Ns~6), where the

single SWLDA is an established and commonly used classification

algorithm for P300-based BCI.

The performance improvement of proposed classifiers trained

on 900 ERPs was due to the mutual effect of the overlapped

partitioning and the dimension reduction. In the statistical analysis

of data set A using 1=10 cross-validation, the main effects of the

intensification sequence, degree of overlap (Nb), dimension

reduction conditions, and their interactions were significant.

According to the results shown in Figure 8 (c), indeed, the

overlapped ensemble LDA classifier without dimension reduction

(OLDA) did not achieve higher classification accuracies than a

single LDA classifier (Nb~5) in many cases. Applying a dimension

reduction method in itself is a solution to improve the classification

performance of the ensemble classifier with naive partitioning.

Figure 10. Mean classification performances of ensemble classifiers on data set A using 9=10 cross-validation. OSWLDA, OPCALDA and
OLDA were trained on 8100 ERPs. The mean classification accuracies over ten participants were presented.
doi:10.1371/journal.pone.0093045.g010

Overlapped Partitioning for P300-Based BCIs

PLOS ONE | www.plosone.org 14 April 2014 | Volume 9 | Issue 4 | e93045



T
a

b
le

5
.

M
e

an
cl

as
si

fi
ca

ti
o

n
ac

cu
ra

ci
e

s
(%

)
o

f
O

SW
LD

A
,

O
P

C
A

LD
A

,
an

d
O

LD
A

e
va

lu
at

e
d

o
n

d
at

a
se

t
A

u
si

n
g

9
=
1

0
cr

o
ss

-v
al

id
at

io
n

.

A
lg

o
ri

th
m

s
N

c
N

b
In

te
n

si
fi

ca
ti

o
n

se
q

u
e

n
ce

s
N

s

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5

O
SW

LD
A

4
5

1
4

0
.8

6
2

.6
7

5
.8

8
1

.6
8

5
.0

8
8

.0
9

0
.6

9
2

.6
9

2
.2

9
3

.6
9

4
.0

9
3

.6
9

3
.4

9
4

.0
9

4
.6

5
4

7
.4

6
7

.0
7

9
.0

8
3

.8
8

8
.0

8
9

.4
9

1
.6

9
4

.0
9

4
.6

9
4

.2
9

4
.6

9
4

.8
9

5
.4

9
5

.6
9

6
.0

1
0

4
7

.2
6

8
.2

8
0

.4
8

6
.2

9
0

.4
9

0
.4

9
3

.2
9

4
.8

9
5

.4
9

5
.4

9
6

.2
9

6
.0

9
7

.0
9

6
.4

9
6

.8

1
5

4
7

.8
6

8
.6

8
0

.6
8

5
.4

9
1

.4
9

1
.6

9
4

.0
9

5
.4

9
6

.2
9

6
.4

9
7

.0
9

6
.6

9
7

.2
9

7
.8

9
7

.8

2
0

4
8

.4
6

8
.0

8
1

.2
8

6
.4

9
1

.8
9

2
.8

9
4

.2
9

6
.2

9
6

.0
9

6
.6

9
7

.2
9

7
.2

9
7

.8
9

7
.6

9
8

.2

2
5

4
7

.8
6

9
.0

8
1

.0
8

6
.2

9
1

.6
9

2
.8

9
4

.6
9

6
.6

9
6

.2
9

7
.0

9
7

.8
9

7
.4

9
8

.4
9

8
.6

9
8

.2

3
0

4
7

.8
6

9
.2

8
0

.8
8

5
.6

9
1

.0
9

3
.0

9
4

.8
9

6
.4

9
7

.0
9

6
.8

9
8

.2
9

7
.6

9
8

.4
9

8
.6

9
8

.8

3
5

4
7

.4
6

8
.8

8
0

.0
8

5
.8

9
1

.2
9

2
.8

9
4

.4
9

6
.4

9
7

.2
9

7
.4

9
8

.6
9

8
.0

9
8

.4
9

8
.6

9
8

.8

4
0

4
6

.2
6

8
.0

7
9

.6
8

5
.0

9
1

.2
9

2
.2

9
4

.8
9

7
.0

9
7

.4
9

7
.2

9
8

.4
9

8
.4

9
8

.4
9

8
.6

9
8

.8

4
5

4
3

.4
6

8
.2

8
0

.2
8

6
.0

9
0

.2
9

3
.4

9
5

.4
9

6
.4

9
7

.4
9

7
.2

9
8

.2
9

8
.2

9
8

.4
9

8
.6

9
9

.0

O
P

C
A

LD
A

4
5

1
4

6
.0

6
3

.8
7

6
.6

8
3

.2
8

7
.8

8
8

.8
9

1
.2

9
2

.8
9

2
.6

9
2

.8
9

3
.6

9
4

.2
9

3
.8

9
4

.0
9

4
.2

5
4

6
.0

6
8

.8
7

8
.8

8
3

.8
8

9
.2

9
0

.0
9

1
.2

9
3

.2
9

4
.2

9
4

.2
9

5
.4

9
5

.0
9

4
.6

9
4

.4
9

5
.4

1
0

4
6

.4
6

7
.6

7
9

.2
8

4
.6

9
0

.0
9

0
.0

9
2

.2
9

3
.4

9
5

.6
9

5
.6

9
6

.0
9

6
.0

9
5

.8
9

6
.4

9
6

.8

1
5

4
7

.4
6

8
.2

8
0

.0
8

6
.0

9
0

.6
9

2
.0

9
3

.8
9

5
.2

9
6

.2
9

6
.4

9
6

.8
9

6
.8

9
6

.8
9

7
.2

9
8

.0

2
0

4
7

.0
6

8
.2

8
0

.2
8

5
.4

9
0

.4
9

3
.2

9
4

.2
9

5
.6

9
6

.4
9

6
.6

9
7

.0
9

7
.0

9
7

.4
9

7
.8

9
8

.0

2
5

4
7

.0
6

6
.6

8
0

.2
8

5
.4

9
1

.0
9

2
.4

9
3

.8
9

5
.6

9
6

.6
9

7
.0

9
7

.4
9

7
.2

9
7

.8
9

8
.2

9
8

.2

3
0

4
7

.4
6

7
.0

8
0

.6
8

5
.4

9
1

.0
9

2
.2

9
4

.4
9

5
.4

9
7

.0
9

6
.8

9
7

.6
9

7
.4

9
8

.0
9

8
.2

9
8

.6

3
5

4
7

.0
6

7
.4

8
0

.2
8

5
.4

9
1

.2
9

2
.0

9
4

.0
9

5
.6

9
7

.2
9

7
.2

9
8

.0
9

7
.8

9
8

.0
9

8
.2

9
8

.6

4
0

4
6

.6
6

7
.0

8
0

.6
8

5
.4

9
1

.4
9

2
.2

9
4

.2
9

6
.0

9
7

.6
9

7
.4

9
8

.4
9

8
.0

9
8

.0
9

8
.2

9
8

.6

4
5

4
6

.8
6

7
.2

8
0

.4
8

6
.0

9
1

.4
9

1
.8

9
4

.2
9

6
.2

9
7

.4
9

7
.2

9
8

.4
9

8
.0

9
8

.0
9

8
.2

9
8

.6

O
LD

A
4

5
1

3
.8

3
.4

4
.4

3
.8

2
.6

2
.8

3
.4

2
.8

2
.6

2
.6

2
.8

3
.6

4
.0

4
.2

4
.2

5
4

6
.6

6
7

.2
7

9
.0

8
4

.4
8

9
.4

9
0

.4
9

2
.2

9
3

.6
9

4
.6

9
4

.6
9

5
.4

9
5

.6
9

5
.2

9
5

.6
9

6
.2

1
0

4
7

.8
6

8
.4

8
0

.0
8

4
.2

8
9

.8
9

0
.6

9
3

.2
9

4
.6

9
5

.2
9

5
.6

9
6

.8
9

6
.8

9
6

.6
9

7
.0

9
7

.4

1
5

4
7

.6
6

8
.6

8
1

.8
8

5
.4

9
0

.6
9

1
.8

9
4

.2
9

5
.2

9
6

.0
9

6
.2

9
6

.8
9

6
.8

9
7

.8
9

7
.8

9
8

.6

2
0

4
7

.2
6

8
.6

8
1

.8
8

5
.6

9
0

.8
9

2
.0

9
4

.4
9

6
.0

9
6

.4
9

6
.8

9
7

.8
9

7
.8

9
8

.4
9

8
.8

9
9

.2

2
5

4
6

.8
6

8
.2

8
2

.0
8

6
.2

9
1

.2
9

2
.2

9
4

.8
9

6
.4

9
6

.6
9

7
.0

9
8

.0
9

7
.8

9
8

.6
9

8
.8

9
9

.6

3
0

4
6

.4
6

7
.4

8
1

.8
8

6
.4

9
1

.0
9

3
.0

9
4

.6
9

6
.6

9
6

.8
9

7
.2

9
8

.2
9

8
.2

9
8

.6
9

8
.8

9
9

.4

3
5

4
6

.4
6

8
.0

8
1

.6
8

6
.8

9
1

.0
9

3
.0

9
4

.6
9

6
.2

9
7

.0
9

7
.6

9
8

.8
9

8
.4

9
8

.6
9

8
.8

9
9

.4

4
0

4
6

.0
6

8
.0

8
1

.4
8

6
.8

9
0

.8
9

3
.0

9
4

.6
9

6
.4

9
7

.2
9

7
.6

9
8

.8
9

8
.4

9
8

.6
9

8
.6

9
9

.4

4
5

4
6

.0
6

8
.0

8
1

.0
8

6
.8

9
0

.6
9

3
.0

9
4

.6
9

6
.4

9
7

.2
9

7
.6

9
8

.8
9

8
.6

9
8

.6
9

8
.6

9
9

.4

T
h

e
b

e
st

ac
cu

ra
cy

am
o

n
g

al
l

N
b

fo
r

e
ac

h
al

g
o

ri
th

m
an

d
e

ac
h

re
p

e
ti

ti
o

n
is

w
ri

tt
e

n
in

b
o

ld
an

d
th

e
w

o
rs

t
is

u
n

d
e

rl
in

e
d

.
A

n
o

ve
rl

ap
p

e
d

e
n

se
m

b
le

cl
as

si
fi

e
r

b
e

co
m

e
s

an
e

n
se

m
b

le
cl

as
si

fi
e

r
w

it
h

n
ai

ve
p

ar
ti

ti
o

n
in

g
w

h
e

n
N

c
~

4
5

an
d

N
b
~

1
.

T
h

e
cl

as
si

fi
e

r
is

e
q

u
iv

al
e

n
t

to
a

si
n

g
le

cl
as

si
fi

e
r

w
h

e
n

N
c
~

4
5

an
d

N
b
~

4
5

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

9
3

0
4

5
.t

0
0

5

Overlapped Partitioning for P300-Based BCIs

PLOS ONE | www.plosone.org 15 April 2014 | Volume 9 | Issue 4 | e93045



T
a

b
le

6
.

C
la

ss
if

ic
at

io
n

ac
cu

ra
ci

e
s

(%
)

o
f

O
SW

LD
A

o
n

d
at

a
se

t
B

w
it

h
lim

it
e

d
tr

ai
n

in
g

d
at

a.

N
c

N
b

P
a

rt
ic

ip
a

n
ts

In
te

n
si

fi
ca

ti
o

n
se

q
u

e
n

ce
s

N
s

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5

5
1

A
5

3
7

8
9

1
1

6
7

7
1

0
8

1
0

1
0

7
1

1

B
5

4
8

9
9

8
7

8
5

9
9

9
1

1
1

5
1

3

M
e

an
5

.0
3

.5
7

.5
8

.5
9

.0
9

.5
6

.5
7

.5
6

.0
9

.5
8

.5
9

.5
1

0
.5

1
1

.0
1

2
.0

5
2

A
6

2
6

9
7

4
6

1
0

7
9

1
0

1
0

1
0

1
3

1
0

B
3

3
3

7
5

5
1

2
1

3
3

1
0

1
0

M
e

an
4

.5
2

.5
4

.5
8

.0
6

.0
4

.5
3

.5
6

.0
4

.0
6

.0
6

.5
5

.5
5

.0
7

.0
5

.0

5
3

A
1

4
1

7
2

4
3

0
2

4
3

3
3

6
3

7
4

0
4

7
5

4
5

6
6

1
6

5
6

7

B
2

0
2

3
3

4
4

0
4

9
5

1
5

3
4

9
5

9
6

1
6

5
6

7
6

7
7

2
7

4

M
e

an
1

7
.0

2
0

.0
2

9
.0

3
5

.0
3

6
.5

4
2

.0
4

4
.5

4
3

.0
4

9
.5

5
4

.0
5

9
.5

6
1

.5
6

4
.0

6
8

.5
7

0
.5

5
4

A
1

0
2

4
2

1
3

2
2

8
3

6
3

9
4

3
5

1
5

3
5

7
5

9
6

4
6

3
6

7

B
1

8
2

8
4

1
4

4
6

0
6

7
6

2
6

3
6

6
6

8
7

4
7

9
8

1
8

0
8

2

M
e

an
1

4
.0

2
6

.0
3

1
.0

3
8

.0
4

4
.0

5
1

.5
5

0
.5

5
3

.0
5

8
.5

6
0

.5
6

5
.5

6
9

.0
7

2
.5

7
1

.5
7

4
.5

5
5

A
3

1
4

2
0

2
6

2
3

2
4

3
1

3
8

4
1

5
3

5
0

5
7

5
3

6
2

6
8

B
1

5
2

4
3

6
3

7
5

0
4

9
5

0
4

8
4

9
5

6
5

8
6

1
6

6
7

0
7

1

M
e

an
9

.0
1

9
.0

2
8

.0
3

1
.5

3
6

.5
3

6
.5

4
0

.5
4

3
.0

4
5

.0
5

4
.5

5
4

.0
5

9
.0

5
9

.5
6

6
.0

6
9

.5

T
h

e
b

e
st

m
e

an
ac

cu
ra

cy
am

o
n

g
al

l
N

b
fo

r
e

ac
h

re
p

e
ti

ti
o

n
is

w
ri

tt
e

n
in

b
o

ld
an

d
th

e
w

o
rs

t
is

u
n

d
e

rl
in

e
d

.
A

n
o

ve
rl

ap
p

e
d

e
n

se
m

b
le

cl
as

si
fi

e
r

b
e

co
m

e
s

an
e

n
se

m
b

le
cl

as
si

fi
e

r
w

it
h

n
ai

ve
p

ar
ti

ti
o

n
in

g
w

h
e

n
N

c
~

5
an

d
N

b
~

1
.

T
h

e
cl

as
si

fi
e

r
is

e
q

u
iv

al
e

n
t

to
a

si
n

g
le

cl
as

si
fi

e
r

w
h

e
n

N
c
~

5
an

d
N

b
~

5
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

3
0

4
5

.t
0

0
6

Overlapped Partitioning for P300-Based BCIs

PLOS ONE | www.plosone.org 16 April 2014 | Volume 9 | Issue 4 | e93045



T
a

b
le

7
.

C
la

ss
if

ic
at

io
n

ac
cu

ra
ci

e
s

(%
)

o
f

O
P

C
A

LD
A

o
n

d
at

a
se

t
B

w
it

h
lim

it
e

d
tr

ai
n

in
g

d
at

a.

N
c

N
b

P
a

rt
ic

ip
a

n
ts

In
te

n
si

fi
ca

ti
o

n
se

q
u

e
n

ce
s

N
s

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5

5
1

A
4

7
6

5
6

6
1

0
8

6
7

4
6

6
4

4

B
4

7
2

4
4

5
3

3
4

6
5

5
4

4
3

M
e

an
4

.0
7

.0
4

.0
4

.5
5

.0
5

.5
6

.5
5

.5
5

.0
6

.5
4

.5
5

.5
5

.0
4

.0
3

.5

5
2

A
0

2
1

1
3

3
3

1
4

4
4

3
3

4
4

B
7

4
1

2
4

3
4

4
6

5
4

4
2

2
2

M
e

an
3

.5
3

.0
1

.0
1

.5
3

.5
3

.0
3

.5
2

.5
5

.0
4

.5
4

.0
3

.5
2

.5
3

.0
3

.0

5
3

A
1

2
1

7
2

2
2

2
3

1
3

6
3

7
4

1
4

7
5

7
5

5
6

0
5

9
6

0
6

5

B
1

0
2

4
2

9
3

4
3

9
3

4
4

1
3

9
4

6
4

8
5

3
5

4
5

9
6

1
6

1

M
e

an
1

1
.0

2
0

.5
2

5
.5

2
8

.0
3

5
.0

3
5

.0
3

9
.0

4
0

.0
4

6
.5

5
2

.5
5

4
.0

5
7

.0
5

9
.0

6
0

.5
6

3
.0

5
4

A
7

1
7

1
7

1
9

3
0

3
1

4
2

4
1

4
8

5
3

5
6

5
7

5
7

6
2

6
5

B
1

1
2

6
2

7
3

3
4

0
3

9
4

6
4

9
4

9
4

9
5

1
5

9
6

3
6

4
6

2

M
e

an
9

.0
2

1
.5

2
2

.0
2

6
.0

3
5

.0
3

5
.0

4
4

.0
4

5
.0

4
8

.5
5

1
.0

5
3

.5
5

8
.0

6
0

.0
6

3
.0

6
3

.5

5
5

A
7

1
6

1
7

1
8

2
6

2
7

3
6

3
8

4
3

4
8

4
9

5
3

5
3

5
6

6
0

B
7

2
3

2
5

3
2

4
2

4
0

4
5

4
4

5
0

4
7

4
8

5
2

6
0

6
3

6
0

M
e

an
7

.0
1

9
.5

2
1

.0
2

5
.0

3
4

.0
3

3
.5

4
0

.5
4

1
.0

4
6

.5
4

7
.5

4
8

.5
5

2
.5

5
6

.5
5

9
.5

6
0

.0

T
h

e
b

e
st

m
e

an
ac

cu
ra

cy
am

o
n

g
al

l
N

b
fo

r
e

ac
h

re
p

e
ti

ti
o

n
is

w
ri

tt
e

n
in

b
o

ld
an

d
th

e
w

o
rs

t
is

u
n

d
e

rl
in

e
d

.
A

n
o

ve
rl

ap
p

e
d

e
n

se
m

b
le

cl
as

si
fi

e
r

b
e

co
m

e
s

an
e

n
se

m
b

le
cl

as
si

fi
e

r
w

it
h

n
ai

ve
p

ar
ti

ti
o

n
in

g
w

h
e

n
N

c
~

5
an

d
N

b
~

1
.

T
h

e
cl

as
si

fi
e

r
is

e
q

u
iv

al
e

n
t

to
a

si
n

g
le

cl
as

si
fi

e
r

w
h

e
n

N
c
~

5
an

d
N

b
~

5
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

3
0

4
5

.t
0

0
7

Overlapped Partitioning for P300-Based BCIs

PLOS ONE | www.plosone.org 17 April 2014 | Volume 9 | Issue 4 | e93045



T
a

b
le

8
.

C
la

ss
if

ic
at

io
n

ac
cu

ra
ci

e
s

(%
)

o
f

O
LD

A
o

n
d

at
a

se
t

B
w

it
h

lim
it

e
d

tr
ai

n
in

g
d

at
a.

N
c

N
b

P
a

rt
ic

ip
a

n
ts

In
te

n
si

fi
ca

ti
o

n
se

q
u

e
n

ce
s

N
s

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5

5
1

A
1

3
5

4
2

2
4

5
3

3
2

3
3

5
3

B
6

3
2

3
4

6
6

4
6

4
4

4
8

7
8

M
e

an
3

.5
3

.0
3

.5
3

.5
3

.0
4

.0
5

.0
4

.5
4

.5
3

.5
3

.0
3

.5
5

.5
6

.0
5

.5

5
2

A
3

4
7

4
6

3
2

3
2

2
1

1
2

2
2

B
2

7
6

6
4

6
1

0
1

1
7

8
8

1
0

1
1

9
1

1

M
e

an
2

.5
5

.5
6

.5
5

.0
5

.0
4

.5
6

.0
7

.0
4

.5
5

.0
4

.5
5

.5
6

.5
5

.5
6

.5

5
3

A
2

1
0

0
1

2
1

1
1

1
1

1
1

1
1

B
2

3
5

5
4

2
1

4
3

5
3

3
1

1
2

M
e

an
2

.0
2

.0
2

.5
2

.5
2

.5
2

.0
1

.0
2

.5
2

.0
3

.0
2

.0
2

.0
1

.0
1

.0
1

.5

5
4

A
0

1
2

2
3

3
1

1
2

2
2

2
1

4
2

B
2

1
2

2
3

2
3

4
4

4
4

3
3

5
4

M
e

an
1

.0
1

.0
2

.0
2

.0
3

.0
2

.5
2

.0
2

.5
3

.0
3

.0
3

.0
2

.5
2

.0
4

.5
3

.0

5
5

A
7

8
5

8
5

5
6

1
0

8
6

8
8

7
8

8

B
4

3
4

7
7

6
8

9
1

1
9

8
8

5
8

6

M
e

an
5

.5
5

.5
4

.5
7

.5
6

.0
5

.5
7

.0
9

.5
9

.5
7

.5
8

.0
8

.0
6

.0
8

.0
7

.0

T
h

e
b

e
st

m
e

an
ac

cu
ra

cy
am

o
n

g
al

l
N

b
fo

r
e

ac
h

re
p

e
ti

ti
o

n
is

w
ri

tt
e

n
in

b
o

ld
an

d
th

e
w

o
rs

t
is

u
n

d
e

rl
in

e
d

.
A

n
o

ve
rl

ap
p

e
d

e
n

se
m

b
le

cl
as

si
fi

e
r

b
e

co
m

e
s

an
e

n
se

m
b

le
cl

as
si

fi
e

r
w

it
h

n
ai

ve
p

ar
ti

ti
o

n
in

g
w

h
e

n
N

c
~

5
an

d
N

b
~

1
.

T
h

e
cl

as
si

fi
e

r
is

e
q

u
iv

al
e

n
t

to
a

si
n

g
le

cl
as

si
fi

e
r

w
h

e
n

N
c
~

5
an

d
N

b
~

5
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

3
0

4
5

.t
0

0
8

Overlapped Partitioning for P300-Based BCIs

PLOS ONE | www.plosone.org 18 April 2014 | Volume 9 | Issue 4 | e93045



Table 9. Classification accuracies (%) of OSWLDA on data set B with full training data.

Nc Nb Participants Intensification sequences Ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

17 1 A 17 28 49 53 60 62 65 72 79 82 83 85 86 91 90

B 45 62 66 70 77 84 87 89 91 93 94 97 96 97 96

Mean 31.0 45.0 57.5 61.5 68.5 73.0 76.0 80.5 85.0 87.5 88.5 91.0 91.0 94.0 93.0

17 2 A 19 30 48 59 64 68 75 76 82 86 85 88 91 94 96

B 46 63 67 70 79 87 90 92 91 94 94 97 97 98 98

Mean 32.5 46.5 57.5 64.5 71.5 77.5 82.5 84 86.5 90 89.5 92.5 94 96 97.0

17 3 A 21 38 59 62 69 76 81 82 85 85 85 92 93 97 96

B 49 64 69 73 81 86 87 91 93 95 94 95 96 97 97

Mean 35.0 51.0 64.0 67.5 75.0 81.0 84.0 86.5 89.0 90.0 89.5 93.5 94.5 97.0 96.5

17 4 A 19 36 54 65 67 71 79 80 81 85 85 90 89 94 96

B 51 64 71 70 80 85 86 91 93 95 94 95 96 94 97

Mean 35.0 50.0 62.5 67.5 73.5 78.0 82.5 85.5 87.0 90.0 89.5 92.5 92.5 94.0 96.5

17 5 A 21 37 59 63 64 72 80 79 82 85 87 91 92 94 97

B 49 64 69 71 78 86 87 92 93 95 94 96 96 96 97

Mean 35.0 50.5 64.0 67.0 71.0 79.0 83.5 85.5 87.5 90.0 90.5 93.5 94.0 95.0 97.0

17 6 A 20 37 54 60 61 73 77 78 85 87 87 89 91 94 96

B 46 63 69 70 82 86 88 92 94 95 95 95 96 95 97

Mean 33.0 50.0 61.5 65.0 71.5 79.5 82.5 85.0 89.5 91.0 91.0 92.0 93.5 94.5 96.5

17 7 A 22 39 55 63 63 74 79 78 84 87 86 91 93 95 99

B 48 63 70 70 81 87 88 92 94 95 94 95 96 96 97

Mean 35.0 51.0 62.5 66.5 72.0 80.5 83.5 85.0 89.0 91.0 90.0 93.0 94.5 95.5 98.0

17 8 A 22 36 52 59 64 72 76 79 81 87 87 90 94 94 98

B 46 68 69 70 81 88 89 92 94 95 95 95 95 95 97

Mean 34.0 52.0 60.5 64.5 72.5 80.0 82.5 85.5 87.5 91.0 91.0 92.5 94.5 94.5 97.5

17 9 A 27 37 51 60 65 73 77 80 83 89 89 93 95 95 99

B 45 64 69 69 79 87 89 92 94 95 95 95 95 95 97

Mean 36.0 50.5 60.0 64.5 72.0 80.0 83.0 86.0 88.5 92.0 92.0 94.0 95.0 95.0 98.0

17 10 A 22 35 54 62 63 72 74 77 83 88 87 93 95 94 98

B 48 66 70 69 80 85 91 92 93 95 94 95 96 96 97

Mean 35.0 50.5 62.0 65.5 71.5 78.5 82.5 84.5 88.0 91.5 90.5 94.0 95.5 95.0 97.5

17 11 A 22 36 56 59 65 75 76 79 83 88 86 91 94 95 99

B 44 66 71 70 80 87 91 92 94 94 94 95 96 95 97

Mean 33.0 51.0 63.5 64.5 72.5 81.0 83.5 85.5 88.5 91.0 90.0 93.0 95.0 95.0 98.0

17 12 A 22 34 55 62 66 75 74 77 82 88 87 93 95 96 98

B 43 67 71 72 83 86 91 92 94 95 95 96 95 96 97

Mean 32.5 50.5 63.0 67.0 74.5 80.5 82.5 84.5 88.0 91.5 91.0 94.5 95.0 96.0 97.5

17 13 A 23 34 53 59 65 74 75 77 83 87 87 93 95 97 97

B 42 63 69 70 81 86 92 92 94 94 94 95 95 96 97

Mean 32.5 48.5 61.0 64.5 73.0 80.0 83.5 84.5 88.5 90.5 90.5 94.0 95.0 96.5 97.0

17 14 A 24 37 53 60 67 73 74 79 82 87 89 93 95 95 97

B 43 65 69 71 82 86 91 92 93 95 94 95 95 95 97

Mean 33.5 51.0 61.0 65.5 74.5 79.5 82.5 85.5 87.5 91.0 91.5 94.0 95.0 95.0 97.0

17 15 A 23 34 52 61 66 71 74 78 81 87 87 91 92 95 96

B 44 62 69 72 81 86 92 92 94 95 94 95 95 95 97

Mean 33.5 48.0 60.5 66.5 73.5 78.5 83.0 85.0 87.5 91.0 90.5 93.0 93.5 95.0 96.5

17 16 A 22 34 49 60 67 70 73 79 81 88 87 90 94 95 96

B 45 65 69 72 83 87 93 92 94 95 94 95 95 95 97

Mean 33.5 49.5 59.0 66.0 75.0 78.5 83.0 85.5 87.5 91.5 90.5 92.5 94.5 95.0 96.5
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However, as shown in Figures 8 (a) and (b), when Nb~1, the

dimension reduction method alone did not improve the classifi-

cation accuracy as compared to their single classifiers. On the

other hand, as also shown in Figures 8 (a) and (b), the overlapped

ensemble LDA classifier together with the stepwise method

(OSWLDA, Nb~4) or PCA (OPCALDA, Nb~4) achieved higher

classification accuracy than their single classifiers (Nb~5). This

tendency was obvious, especially for OSWLDA. Thus, the

improvement in the classification accuracy was due not only to

the dimension reduction or partitioning method by themselves but

also to their mutual effects. Taking this into consideration, the

overlapped partitioning method, together with the dimension

reduction method, effectively improved the classification perfor-

mance of P300-based BCI.

The performance improvement of the proposed classifiers

compared to the single classifier was small when a large amount

of training data were provided. However, the classification

performances of proposed classifiers trained on a large amount

of data were high enough to achieve 99.6% for data set A (see

Table 5) and 98% for data set B (see Table 9). In those cases,

however, a major performance improvement caused by over-

lapped partitioning was not confirmed. This was because the given

training data were large enough so that the overfitting problem

should not occur in most cases. Thus the advantage of overlapped

partitioning can be seen when a small amount of high-dimensional

training data were provided such as for the analysis of data set A

using 1=10 cross-validation and the data set B with limited training

data.

We suggest to use the conventional cross-validation to find the

optimal overlapping ratio Nb=Nc before an online experiment.

However the method prolongs the training time for the classifier.

Instead of that, we also suggest to use Nb=Nc&0:8 (e.g., Nb~4
and Nc~5) because it showed suboptimal results for both data

sets. In the small training data case (900 ERP data), OSWLDA

and OPCALDA with Nb=Nc~0:8 (Nb~4 and Nc~5) was

suboptimal for both data sets A and B, but OLDA with

Nb=Nc~0:8 performed as well only for data set A. In the large

training data case, OSWLDA, OPCALDA and OLDA with

Nb=Nc~0:78 (Nb~35 and Nc~45) evaluated on data set A and

with Nb=Nc~0:82 (Nb~14 and Nc~17) evaluated on data set B

achieved reasonable classification accuracies. In this way, the

overlapping ratio Nb=Nc&0:8 was suboptimal and it can be

employed to avoid using the cross-validation.

This study first showed that the ensemble LDA classifiers with

conventional naive partitioning were not effective compared to

the single LDA classifier and the ensemble classifier with

overlapped partitioning when 900 training data were given. This

result implies that the ensemble LDA classifier with naive

partitioning requires a longer training session to obtain more

than 900 training data before an online experiment. It should be

noted that 900 training data were the smallest used for the

evaluation of the ensemble classifier to date. In contrast, the

ensemble classifiers with the proposed overlapped partitioning

method showed a significant improvement in the classification

accuracy, which was even better than a single classifier when the

stepwise method or PCA was applied for dimension reduction.

Thus, overlapped partitioning was shown to be more practical

than naive partitioning when the given training data were small

(e.g., 900 training data).

The performance deterioration of the ensemble LDA classifiers

with naive partitioning may be due to the poor estimation of the

covariance matrices of LDA weak learners. Such performance

deterioration can be seen in the results of OLDA on data set A

using 1=10 cross-validation (Nc~5, Nb~1), OLDA on data set A

using 9=10 cross-validation, OSWLDA and OPCALDA on data

set B with limited training data (Nc~5, Nb~1,2), OLDA on data

set B with limited training data, and OLDA on data set B with full

training data (Nc~17, Nb~1). The problem can be seen when

Nb~1,2 because a small amount of training data were provided to

the weak learners (see Tables 2 and 3). Regarding data set B, 900

training data were not sufficient to train weak learners of OLDA

(Nc~5,Nbƒ5 with limited training data and Nc~17,Nb~1 with

full training data). Compared to data set A, data set B seems to

require larger training data because the EEG data of data set B

were higher dimensional (896 dimension). Estimated covariance

matrices are imprecise when a small amount of high dimension

training data are given [22]. Johnson and Krusienski first

evaluated the classification performance of the ensemble SWLDA

classifier with naive partitioning [27]. They evaluated the

algorithm by changing the number of classifiers (Nc was changed

while Nb was fixed to 1). In addition, three weighting methods for

the ensemble classifier were evaluated. As a result, they found

that the ensemble SWLDA classifier showed better performance

than the single SWLDA classifier, depending on participants,

though the statistical difference was not revealed. They also

discussed that the classification performance was decreased when

Ncw6 and Nb~1 because the amount of training data for a weak

learner becomes small. We consider that a similar problem arose

in the application of the ensemble classifier with overlapped

partitioning when Nc~5 and Nb~1, which is similar to their

conditions. Such a problem can be avoided by applying the

overlapped partitioning together with a dimension reduction

method.

The ensemble classifiers with overlapped partitioning trained on

900 ERPs showed better classification performances than a single

classifier in the middle intensification sequence condition in the

offline analysis. According to Figure 8 (a), OSWLDA (Nb~4)

achieved higher classification accuracy than the single SWLDA

classifier (Nb~5 ) among 3ƒNsƒ5. In contrast, the OPCALDA

(Nb~4) showed higher classification accuracy than the single

Table 9. Cont.

Nc Nb Participants Intensification sequences Ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

17 17 A 21 32 51 51 60 65 68 76 79 86 85 89 94 93 94

B 42 62 69 70 82 84 88 91 92 95 94 94 94 94 97

Mean 31.5 47.0 60.0 60.5 71.0 74.5 78.0 83.5 85.5 90.5 89.5 91.5 94.0 93.5 95.5

The best mean accuracy among all Nb for each repetition is written in bold and the worst is underlined. An overlapped ensemble classifier becomes an ensemble
classifier with naive partitioning when Nc~17 and Nb~1. The classifier is equivalent to a single classifier when Nc~17 and Nb~17.
doi:10.1371/journal.pone.0093045.t009
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Table 10. Classification accuracies (%) of OPCALDA on data set B with full training data.

Nc Nb Participants Intensification sequences Ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

17 1 A 16 34 50 54 62 66 72 76 79 84 86 91 90 95 95

B 39 57 64 73 80 86 89 91 91 94 93 94 93 94 94

Mean 27.5 45.5 57.0 63.5 71.0 76.0 80.5 83.5 85.0 89.0 89.5 92.5 91.5 94.5 94.5

17 2 A 21 32 49 57 64 69 73 76 78 86 84 91 92 95 97

B 43 63 69 75 81 85 89 91 90 93 95 96 94 95 96

Mean 32.0 47.5 59.0 66.0 72.5 77.0 81.0 83.5 84.0 89.5 89.5 93.5 93.0 95.0 96.5

17 3 A 18 37 50 60 65 72 74 76 79 87 88 91 94 95 96

B 44 62 63 75 79 86 89 92 90 94 94 98 96 96 97

Mean 31.0 49.5 56.5 67.5 72.0 79.0 81.5 84.0 84.5 90.5 91.0 94.5 95.0 95.5 96.5

17 4 A 19 37 50 61 64 72 76 78 79 86 88 92 94 95 96

B 42 62 62 77 78 85 88 90 90 94 94 96 95 97 97

Mean 30.5 49.5 56.0 69.0 71.0 78.5 82.0 84.0 84.5 90.0 91.0 94.0 94.5 96.0 96.5

17 5 A 19 36 52 62 65 72 76 78 80 85 88 92 94 95 96

B 42 62 63 75 78 85 88 90 90 94 94 97 95 96 97

Mean 30.5 49.0 57.5 68.5 71.5 78.5 82.0 84.0 85.0 89.5 91.0 94.5 94.5 95.5 96.5

17 6 A 19 34 51 63 64 73 75 81 80 86 87 92 94 95 97

B 43 60 62 75 78 85 88 90 90 94 94 96 95 97 97

Mean 31.0 47.0 56.5 69.0 71.0 79.0 81.5 85.5 85.0 90.0 90.5 94.0 94.5 96.0 97.0

17 7 A 19 35 50 63 65 73 75 81 80 87 87 92 94 95 97

B 43 61 62 75 79 86 89 91 89 94 94 95 95 96 96

Mean 31.0 48.0 56.0 69.0 72.0 79.5 82.0 86.0 84.5 90.5 90.5 93.5 94.5 95.5 96.5

17 8 A 18 34 50 62 62 70 76 81 80 86 87 92 94 95 97

B 44 61 61 75 79 86 89 90 89 94 93 95 94 96 96

Mean 31.0 47.5 55.5 68.5 70.5 78.0 82.5 85.5 84.5 90.0 90.0 93.5 94.0 95.5 96.5

17 9 A 19 34 50 62 60 68 76 82 80 86 87 92 94 94 97

B 44 61 61 74 79 86 89 90 89 94 93 95 94 95 96

Mean 31.5 47.5 55.5 68.0 69.5 77.0 82.5 86.0 84.5 90.0 90.0 93.5 94.0 94.5 96.5

17 10 A 19 34 50 61 60 67 76 82 80 86 87 92 94 94 97

B 44 62 61 74 80 87 89 91 89 93 93 95 93 94 96

Mean 31.5 48.0 55.5 67.5 70.0 77.0 82.5 86.5 84.5 89.5 90.0 93.5 93.5 94.0 96.5

17 11 A 20 33 51 59 58 66 76 82 80 86 87 92 94 94 97

B 44 61 61 73 81 87 89 91 89 93 93 95 93 95 96

Mean 32.0 47.0 56.0 66.0 69.5 76.5 82.5 86.5 84.5 89.5 90.0 93.5 93.5 94.5 96.5

17 12 A 19 33 51 60 57 65 76 81 80 86 88 92 94 94 97

B 44 61 61 73 81 87 90 91 89 93 93 95 93 95 96

Mean 31.5 47.0 56.0 66.5 69.0 76.0 83.0 86.0 84.5 89.5 90.5 93.5 93.5 94.5 96.5

17 13 A 18 33 51 59 56 65 75 81 80 86 88 92 92 94 96

B 44 62 61 73 81 88 90 90 89 93 93 95 93 95 97

Mean 31.0 47.5 56.0 66.0 68.5 76.5 82.5 85.5 84.5 89.5 90.5 93.5 92.5 94.5 96.5

17 14 A 18 33 50 58 56 65 76 80 81 86 87 92 92 94 96

B 44 62 61 73 81 88 91 90 89 93 93 94 93 95 97

Mean 31.0 47.5 55.5 65.5 68.5 76.5 83.5 85.0 85.0 89.5 90.0 93.0 92.5 94.5 96.5

17 15 A 18 35 49 57 56 64 76 80 81 86 84 92 92 93 95

B 44 63 61 73 81 90 91 90 89 93 93 95 93 95 97

Mean 31.0 49.0 55.0 65.0 68.5 77.0 83.5 85.0 85.0 89.5 88.5 93.5 92.5 94.0 96.0

17 16 A 18 35 49 56 56 64 76 79 80 86 84 91 92 93 95

B 44 63 62 73 81 90 91 90 90 93 93 94 93 95 97

Mean 31.0 49.0 55.5 64.5 68.5 77.0 83.5 84.5 85.0 89.5 88.5 92.5 92.5 94.0 96.0
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PCA LDA classifier (Nb~5 ) when 6ƒNsƒ9. This result implies

that the ensemble classifier with overlapped partitioning was

beneficial in the middle number of the intensification sequence. Ns

decides the terms to compute the score for decision making

according to Equation 2. The performance saturation can be seen

as the Ns become larger while the classification performance was

not precise when Ns was smaller. In both cases, differences of

those classification performances were hard to confirm. This might

explain why the classification performance difference was obvious

in the middle number of sequences.

The selection of the number of the intensification sequence in

an online P300-based BCI experiment depends on the applications

of the BCI system. One criterion is the information transfer rate

(ITR), which takes the accuracy, number of outputs, and output

time (the number of sequences) into consideration [35]. OSWLDA

on data set A using 1=10 cross-validation (Nb~4) achieved the

highest ITR (15.7 bits per minute) at Ns~3, although only a

71.4% accuracy was expected in an online experiment. On the

other hand, accuracy must be prioritized, for example, when the

BCI is used to provide precise control of a robotic manipulator

that could be dangerous. To decide parameters such as the

number of intensification sequences, we should consider what kind

of criterion (accuracy, speed, or ITR) should be optimized in terms

of BCI applications.

Determining the amount of training data also decides an

expected online classification accuracy. If the system needs over

70% mean classification accuracy, only 900 training data are

required. In case that over 95% mean accuracy is required, a large

amount of training data should be prepared. Most BCI

applications do not usually require over 95% classification

accuracy because they are free from danger. Thus 900 training

data are sufficient to achieve over 70% mean accuracy for most

applications of BCI.

We would like to emphasize that the ensemble classifiers with

overlapped partitioning required less training data than that with

naive partitioning. OSWLDA and OPCALDA performs better

than the ensemble classifier with naive partitioning enough to

achieve over 90% classification accuracy using only 900 training

data. Especially the mean classification accuracy of OSWLDA

(Nc~5,Nb~4) with the small training data achieved as well as

that of ensemble SWLDA with naive partitioning (Nc~5,Nb~1)

for data set A. In this way the ensemble classifier with overlapped

partitioning require less training samples than that with naive

partitioning so that it might be useful to do away with expensive

experiments.

In this research, the PCA and stepwise method were applied as

a dimension reduction. The PCA and the stepwise method have

different statistical properties; PCA finds the projection that

maximizes the data variance while the stepwise method selects

spatiotemporal variables. Although no great difference was found

in the classification accuracy for data set A using 1=10 and 9=10
cross-validation and data set B with full training data, OSWLDA

showed better performance than OPCALDA for data set B with

limited training data. In this way, the stepwise method was robust

for both P300-based BCI data sets. The difference between the

two also appears in the online/offline test computational cost; the

stepwise method requires a smaller processing burden than PCA

because the stepwise method in the test case does not use data

projection. The difference will be more obvious when Nc

becomes large. Considering the computational cost, the stepwise

method is preferable in case a large number of classifiers are

required.

In future research, LDA with shrinkage [22] or Bayesian LDA

[32] will be applied to the ensemble classifier with overlapped

partitioning. These two methods estimate covariance matrices in

different ways so that LDA in itself becomes robust against a lack

of training data. Thus, it may be possible to achieve better

classification accuracy with a smaller amount of training data by

applying the two methods. The proposed ensemble classifiers with

overlapped partitioning may be applicable to other types of BCIs

such as an event-related desynchronization/synchronization

(ERD/ERS)-based BCI [42]. In fact, some ensemble classifiers

for ERD/ERS-based BCIs were evaluated [43] and our proposed

overlapped ensemble classifiers might also be applicable. More-

over, the ensemble classifier with the overlapped partitioning can

be used in other pattern recognition problems, e.g., a cancer

classification [44] or fMRI data analysis [45]. Furthermore,

clustering algorithms such as k-means clustering [46] could be

used for a new overlapped partitioning of the ensemble classifiers.

By clustering the data with overlaps, classifiers that perform well

for specific features can be trained. Thus, the clustered

partitioning with overlaps may show an even better classification

performance.

Conclusion

In this study, ensemble LDA classifiers with the newly

proposed overlapped partitioning method were evaluated on

our original P300-based BCI data set and the BCI competition

III data set II. In the comparison, the classifiers were trained on

limited training data (900) and large training data. The ensemble

LDA classifier with traditional naive partitioning and the single

classifier were also evaluated. One of three conditions for

dimension reduction (stepwise, PCA, or none ) was applied. As

a result, the ensemble LDA classifier with overlapped partitioning

and the stepwise method (OSWLDA) showed higher accuracy

than the commonly used single SWLDA classifier and the

ensemble SWLDA classifier when 900 training data were

available. In addition, the ensemble LDA classifiers with naive

partitioning showed the worst performance for most conditions.

Table 10. Cont.

Nc Nb Participants Intensification sequences Ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

17 17 A 18 34 49 56 56 63 76 78 79 84 84 91 92 92 95

B 46 64 62 73 81 90 91 90 90 93 93 93 93 95 97

Mean 32.0 49.0 55.5 64.5 68.5 76.5 83.5 84.0 84.5 88.5 88.5 92.0 92.5 93.5 96.0

The best mean accuracy among all Nb for each repetition is written in bold and the worst is underlined. An overlapped ensemble classifier becomes an ensemble
classifier with naive partitioning when Nc~17 and Nb~1. The classifier is equivalent to a single classifier when Nc~17 and Nb~17.
doi:10.1371/journal.pone.0093045.t010
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Table 11. Classification accuracies (%) of OLDA on data set B with full training data.

Nc Nb Participants Intensification sequences Ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

17 1 A 3 4 2 4 4 5 8 9 11 9 8 14 11 12 15

B 0 4 4 1 0 1 0 1 4 0 2 2 3 3 3

Mean 1.5 4.0 3.0 2.5 2.0 3.0 4.0 5.0 7.5 4.5 5.0 8.0 7.0 7.5 9.0

17 2 A 20 36 48 55 59 64 73 78 78 90 87 92 92 93 95

B 35 52 63 63 69 78 82 81 83 88 91 93 89 91 95

Mean 27.5 44.0 55.5 59.0 64.0 71.0 77.5 79.5 80.5 89.0 89.0 92.5 90.5 92.0 95.0

17 3 A 24 39 53 54 62 67 75 77 81 87 88 92 95 95 97

B 43 65 67 74 78 85 87 87 88 94 94 94 93 93 94

Mean 33.5 52.0 60.0 64.0 70.0 76.0 81.0 82.0 84.5 90.5 91.0 93.0 94.0 94.0 95.5

17 4 A 25 35 52 56 62 68 76 78 82 87 89 95 97 95 97

B 43 67 67 75 79 85 87 89 89 94 94 94 93 93 94

Mean 34.0 51.0 59.5 65.5 70.5 76.5 81.5 83.5 85.5 90.5 91.5 94.5 95.0 94.0 95.5

17 5 A 25 33 51 55 62 69 76 77 81 87 89 96 96 95 97

B 43 68 70 75 79 84 87 89 89 94 95 94 94 95 93

Mean 34.0 50.5 60.5 65.0 70.5 76.5 81.5 83.0 85.0 90.5 92.0 95.0 95.0 95.0 95.0

17 6 A 25 31 52 58 64 69 75 78 82 86 91 96 96 96 97

B 43 67 69 75 79 84 88 89 89 94 95 94 94 94 93

Mean 34.0 49.0 60.5 66.5 71.5 76.5 81.5 83.5 85.5 90.0 93.0 95.0 95.0 95.0 95.0

17 7 A 25 31 51 58 62 69 75 78 82 86 91 96 97 96 97

B 41 67 70 73 79 85 88 90 89 94 95 94 94 94 93

Mean 33.0 49.0 60.5 65.5 70.5 77.0 81.5 84.0 85.5 90.0 93.0 95.0 95.5 95.0 95.0

17 8 A 24 32 49 59 63 68 76 79 82 86 91 96 95 96 97

B 40 67 71 73 79 84 88 90 88 94 95 94 94 94 93

Mean 32.0 49.5 60.0 66.0 71.0 76.0 82.0 84.5 85.0 90.0 93.0 95.0 94.5 95.0 95.0

17 9 A 26 34 49 60 63 67 76 79 81 85 91 96 95 96 97

B 41 66 71 73 79 85 87 90 88 93 95 94 94 93 93

Mean 33.5 50.0 60.0 66.5 71.0 76.0 81.5 84.5 84.5 89.0 93.0 95.0 94.5 94.5 95.0

17 10 A 25 34 48 60 62 67 76 80 81 85 92 96 95 97 97

B 40 65 70 71 79 86 87 90 88 93 95 94 94 93 94

Mean 32.5 49.5 59.0 65.5 70.5 76.5 81.5 85.0 84.5 89.0 93.5 95.0 94.5 95.0 95.5

17 11 A 24 33 48 60 61 65 77 80 81 86 92 96 96 96 96

B 40 65 69 71 79 86 87 90 88 93 94 94 94 93 95

Mean 32.0 49.0 58.5 65.5 70.0 75.5 82.0 85.0 84.5 89.5 93.0 95.0 95.0 94.5 95.5

17 12 A 24 31 48 59 59 64 77 81 80 86 92 96 96 95 95

B 39 65 69 70 80 85 87 90 89 93 92 94 94 92 95

Mean 31.5 48.0 58.5 64.5 69.5 74.5 82.0 85.5 84.5 89.5 92.0 95.0 95.0 93.5 95.0

17 13 A 25 31 48 58 58 64 77 80 80 86 91 96 96 95 95

B 39 65 69 69 80 85 87 89 88 93 92 94 94 93 95

Mean 32.0 48.0 58.5 63.5 69.0 74.5 82.0 84.5 84.0 89.5 91.5 95.0 95.0 94.0 95.0

17 14 A 25 31 48 59 58 65 76 80 80 84 90 95 96 95 95

B 40 65 69 70 80 85 87 89 88 93 92 94 93 93 95

Mean 32.5 48.0 58.5 64.5 69.0 75.0 81.5 84.5 84.0 88.5 91.0 94.5 94.5 94.0 95.0

17 15 A 22 31 47 59 59 65 76 80 80 84 89 94 96 95 95

B 40 65 70 69 80 85 87 89 88 93 92 94 93 92 95

Mean 31.0 48.0 58.5 64.0 69.5 75.0 81.5 84.5 84.0 88.5 90.5 94.0 94.5 93.5 95.0

17 16 A 22 30 47 59 59 65 76 80 80 84 88 94 95 95 95

B 40 65 70 69 80 85 87 89 88 93 92 94 93 92 95

Mean 31.0 47.5 58.5 64.0 69.5 75.0 81.5 84.5 84.0 88.5 90.0 94.0 94.0 93.5 95.0
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We suggest to use the stepwise method as a dimension reduction

for the online implementation. In future research, the LDA with

shrinkage or Bayesian LDA will be applied to the ensemble

classifier with overlapped partitioning.
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