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Abstract

The human olfactory system recognizes a broad spectrum of odorants using approximately 400 different olfactory receptors
(hORs). Although significant improvements of heterologous expression systems used to study interactions between ORs
and odorant molecules have been made, screening the olfactory repertoire of hORs remains a tremendous challenge. We
therefore developed a chemical systems level approach based on protein-protein association network to investigate novel
hOR-odorant relationships. Using this new approach, we proposed and validated new bioactivities for odorant molecules
and OR2W1, OR51E1 and OR5P3. As it remains largely unknown how human perception of odorants influence or prevent
diseases, we also developed an odorant-protein matrix to explore global relationships between chemicals, biological targets
and disease susceptibilities. We successfully experimentally demonstrated interactions between odorants and the
cannabinoid receptor 1 (CB1) and the peroxisome proliferator-activated receptor gamma (PPARc). Overall, these results
illustrate the potential of integrative systems chemical biology to explore the impact of odorant molecules on human
health, i.e. human odorome.
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Introduction

Commonly present in food, fragrance and cosmetic products,

odorants are volatile molecules that stimulate G-protein-coupled

olfactory receptors (ORs) located in the olfactory sensory neurons

of the nasal epithelium [1,2]. In human, it is estimated that

thousands of odorant molecules are recognized by around 400

different hORs [3]. Several studies have attempted to connect

odorant physicochemical properties to the olfactory perception;

however, odor coding remains largely unknown [4–9]. To

recognize odorant molecules, the olfactory system uses combina-

torial coding scheme to encode odor identities by different

combinations of ORs [10,11]. Indeed, it has been shown that

one odorant can interact with several different ORs and one OR

can be activated by a number of molecules. Although recent

optimizations in functional expression of ORs for the screening of

odorant compound libraries have been made [12], investigating all

combinations is still expensive, time consuming and remains

therefore a tremendous challenge. Up to now, only a small

number of experimental studies have identified odorant-OR

interactions in various organisms, mainly in mammals and insects

[13–19]. Despite some efforts to elucidate the link between

activation of ORs and odor perception, our understanding of

peripheral olfactory coding in mammals remains limited [11,20–

24].

Odorant molecules might, apart from their conventional and

primary role in olfaction, also trigger drug-target proteins relevant

in pharmacology. For instance, studies have suggested that odor

perception is involved in pathologies related to psychiatric

disorders as well as in food intake behavior [25,26]. Recently, a

direct functional link between the olfactory and hormonal systems

in humans has been reported [27]. Although promising, these

studies remain confined to a few molecules and to a limited

number of protein targets.

With the availability of large-scale chemical bioactivity data-

bases and the recent advances in chemoinformatics and bioinfor-

matics, it has become possible to include the chemical space in

systems biology, i.e. systems chemical biology [28]. In addition, the

application of global pharmacology profiles and network pharma-

cology of small molecules is emerging as a new paradigm in drug

discovery [29]. However, these concepts of multi targeting have

primarily been implemented for drugs [30] but not in the context

of environmental chemicals. This prompted us to investigate the

global network pharmacology of odorant molecules, in addition to

peculiar associations between odorant molecules and hORs. In

this study, we chose the term ‘‘odorome’’ to refer to the

interactions of odorant molecules with biological targets taken as

a whole.

We considered two fundamental challenges: the need for a

predictive method able to decipher the peripheral olfactory coding
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in humans, and the potential pharmacological implications

associated with odorants. Therefore, based on a newly established

systems biology procedure [31], a specific human protein-protein

association network (i.e. OR-OR network) linking ORs and

odorant molecules was developed, allowing for the discovery of

new odorant-OR interactions which subsequently may be tested.

New suggested interactions were confirmed experimentally for six

compounds and three human ORs. Further, we investigated

human diseases associated to ORs by integrating a high

confidence human interactome [32,33] in the protein-protein

association network developed in this context. It revealed several

new functional proteins and biological pathways influenced by

odorants. Lastly, we explored the potential pharmacological space

of odorant compounds based on a large chemogenomics database.

From the chemical structure of a large collection of odorant

molecules, annotations and predictions of the activity profile

against most known biological targets were gathered. The

previously unknown activity for two sets of three odorants was

evaluated and confirmed experimentally for the cannabinoid

receptor 1 (CB1) and for the peroxisome proliferator-activated

receptor gamma (PPARc). Thus, taking advantage of recent

progress in computational chemical biology, we are able to

propose new interactions, which are important for the under-

standing of the olfactory perception mechanism and – at the same

time – highlight targets and pathways recognized by odorant

compounds.

Materials and Methods

Odorant molecules data
We extracted 2,927 compounds, their chemical structures and

their respective flavor, odor or aroma descriptions from Flavor-

Base (FLB) version 2004 (http://www.leffingwell.com/flavbase.

htm). Flavor-Base is one of the most extensive collections of

compounds related to natural and synthetic flavoring chemicals.

All chemicals are listed on the U.S. Food and Drug Administration

(FDA) and Flavor and Extracts Manufacturers Association

(FEMA) Generally Regarded As Safe (GRAS) list. The flavor

and odor descriptions provided by Dr. J. Leffingwell and

Associates are also supported by several published studies sources

such as Arctander [34].

All the selected molecules possess at least one odorant

component described as ‘‘odor’’, ‘‘flavor’’, or ‘‘aroma’’, excluding

the molecule exclusively described as ‘‘taste’’. Existing variations in

organoleptic descriptions by various authors were taken into

consideration. Note that no information about interactions

between odorant molecules and ORs is provided in Flavor-Base.

For the set of compounds extracted, we compiled odorant

molecule-OR binding interactions from the literature and the

Olfactory Receptor Database (ORDB) [35] for human, rat and

mouse (Table S1 in File S1). Only direct physical interactions were

considered (i.e. binding data) and none of the gene expression was

kept in this study.

Human odorome
To create the human olfactory network, we developed a

protein-protein association network (defined as an OR-OR

network in this study). The OR-OR network was generated by

initiating a node for each human OR, and by linking any OR-OR

pair where at least one overlapping odorant was identified. To

reduce noise and select the most significant OR-OR associations,

we assigned a weighted score to each OR-OR association. The

weighted score was calculated as the sum of weights for shared

odorant molecules, where weights are inversely proportional to the

number of associated ORs for a given odorant as previously

described and thoroughly benchmarked against two gold standard

repositories [31]. The resulting human OR-OR associations

network contains 24 ORs connected via 463 associations.

In a second step, the human olfactory network was enriched

with rat and mouse odorant molecule-OR binding interactions

gathered previously. To do so, the non-human OR names were

translated into their human orthologous genes using YOGY [36]

For ORs that have no orthologous human gene, homology

searches were performed using BLASTP [37]. Human ORs with

the highest score and E-value associated to rat or mouse ORs were

integrated in the olfactory network represented by human

odorant-OR interactions. All OR names were converted to Gene

ID using UniProt [38]. In total, 83 ORs and 323 molecules with

binding information to at least one OR were collected and

integrated in the OR-OR network resulting in 938 unique

associations. It is important to notice that the discrimination

between ORs agonist and antagonist is not included in the study

and our network cannot be used to identify odorant synergies or

opposite effect on ORs.

Panels of odor descriptions were also associated to the molecules

using the Flavor-Base database. Therefore, we were able to

retrieve 189 odor for 230 odorant molecules among 323

compounds binding to OR proteins, and to map the odor

perceptions associated to chemicals in the OR-OR network.

Integrating odor descriptions into the human odorome
To evaluate the tendency and selectivity of odors associated to

ORs, we developed an association score (AS) based on the number

of compounds associated to an odor. The AS is calculated using

the equation:

AS~
A

B

� �
|

A

C

� �� �
|

B

D

� �
,

where AS is the association score, A the number of molecules for

one OR, B the total number of compounds carrying one odor, C

the number of ORs for the same odor, and D the total number of

molecule-odor interactions. In our study D = 4193. Table 1

presents an example of the results obtained for the odor ‘‘anis’’.

With this formula, we can associate a score between each odor

and each OR. The higher the score, the more significant is the

interaction. In this example, OR1G1 and OR52D1 are the most

significant association to the odor ‘‘anis’’.

Results for the four highest odors associated to each human OR

are shown in Table S2 in File S1.

Table 1. List of ORs predicted to interact with molecules
carrying the ‘‘anis’’ note.

Odor ORs Number of compounds (A) AS

anis OR1D2 2 1.59 10-4

anis OR1D20 3 3.57 10-4

anis OR1G1 5 9.93 10-4

anis OR52D1 5 9.93 10-4

anis OR5D18 4 6.36 -10-4

anis OR6A2 2 1.59 10-4

Total C = 6 B = 21

doi:10.1371/journal.pone.0093037.t001

Global Mapping of the Human Odorome
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Predicting novel hOR target for odorant molecules
A network protein procedure was generated to predict

interaction between hOR and odorants using the developed

human odorome. This network-neighbor’s pull down approach is

a three steps procedure: (a) selection of the input hORs: extraction

of the hORs known to be associated with the selected odorant

molecules from the available literature information. (b) Identifica-

tion of network(s) surrounding the input hORs by a neighbor

protein procedure. In this procedure, our odorome was queried for

the input ORs, and associations between them were compiled. For

each neighbor, a score was calculated taking into account the

topology of the surrounding network, based on the ratio between

total interactions and interactions with input ORs. (c) Establish-

ment of a confidence score for each OR: each of the pull down

complexes was tested for enrichment on our input set by

comparing them against 1.0e4 random complexes for OR-OR

association set to establish a score for each connected OR. The

score was used to rank ORs to select potential hORs targets for

odorants. The accuracy of this procedure was demonstrated

previously for known drugs and drug targets [31].

Integrating the human interactome and the odorome
Protein-protein interactions (PPIs) were extracted from a list of

ORs and their first interactor proteins using an in-house human

interactome network based on experimental data from human and

model organisms [32,33]. The current interactome contains

507,142 unique PPIs linking 14,441 human proteins. PPIs of the

83 ORs allowed extending the odorome to 183 genes. This

network was used for the disease and pathways enrichment

analysis. Human disease information was extracted from the

GeneCards database [39]. We also determined the enriched terms

among pathways using the KEGG and Reactome databases.

Protein-disease relationships and gene-pathway links were inde-

pendently evaluated in the odorome. P-values were calculated

using hypergeometric testing with Bonferroni adjustment for

multiple testing [40]. Results are shown in Table S3 in File S1.

Odor-target matrix
A chemogenomic database, ChemProt, was used to explore the

human pharmacological space with the FlavorBase odorant

compounds. ChemProt is a chemical genomics platform that

integrates chemical-protein interactions from various available

data sources [41]. The current version of ChemProt as of January

2013 contains 1,150,000 unique chemical structures with biolog-

ical information for more than 15,290 proteins [42]. We

considered only compounds with binding activity in this study.

Mapping odorant molecules in the pharmacological
space

Each chemical structure from FLB and ChemProt was encoded

into binary strings using the Molecular ACCess Systems keys

(MACCs) to investigate structural similarity between FLB com-

pounds and ChemProt chemicals. Using the Tanimoto coefficient

(Tc), the degree of similarity between two molecules was

quantified. Chemical-compound networks were generated to

visually display compounds from FLB having a high similarity

coefficient with ChemProt molecules using Cytoscape [43].

GloSensor cAMP assay
To validate predicted interactions between odorant compounds

and ORs or the CB1 receptor, we used the GloSensor cAMP assay

from Promega and measured the EC50 values of compounds. This

luminescent assay is a sensitive method for measuring Gs and Gi-

protein coupled receptor activation by real-time detection of

intracellular second messenger cAMP [44]. The protocol is

described in the GloSensor cAMP assays paragraph in the

Supplementary Methods (S_file).

Competitive PPARc binding assay and trans-activation
assay

To validate predictions of odorant-PPARc interactions, IC50

values for respective compounds were determined by competitive

binding using time-resolved fluorescence resonance energy trans-

fer (LanthaScreen, Invitrogen) on a Wallac EnVision (PerkinEl-

mer). Furthermore, to assess the bioactivities of the predicted

molecules, a PPARc lipid-binding trans-activation assay was used

(PPAR LBD). The protocols are described in details in Compet-

itive PPARc binding assay and PPAR-LBD Transactivation

paragraphs in the Supplementary Methods (S_file).

Results

To improve knowledge of olfactory perception and biological

roles of odors in human, odorant molecules were used to generate

a predictive model to identify odor coding, and to explore the

known pharmacological space. We integrated various data type

such high confidence protein-protein interactions and large

chemical biology database to underlie molecular mechanisms of

odorant molecules and the biological pathways they perturb.

Overall, the results show a global mapping of the human odorome.

The key steps of our approach are illustrated in Figure 1.

Modeling of the odorant human combinatorial coding
Generation of a human odorome. To explore the organi-

zation of the odor space in humans, i.e. how ORs respond to an

odorant, we compiled from the literature a list of carefully curated

chemical-OR interactions from human (Table S1 in File S1). In

total, we gathered 189 odorant molecules associated to 24 human

ORs through 463 interactions. We implemented the ‘‘target

hopping’’ concept i.e. if two proteins both bind to the same ligand,

they can be considered as interacting in the same chemical space

[45]. So, assuming that two ORs biologically activated with the

same molecule are likely to be involved in a common mechanism

of stimulation, we developed a protein-protein association network

for ORs (defined as an OR-OR network) in a similar manner as

described previously [31]. The OR-OR network, depicted in

Figure 2a, clearly shows that some ORs are highly connected such

as OR52D1 and OR1G1, whereas other ORs are sensitive to very

specific molecules only.

In addition, from the OR-OR network, we mapped the odor

perceptions associated to the chemicals (Figure 2b) integrating the

information from Flavor-Base and ORDB. Studies have reported

that chemicals having a similar odor profile may activate the same

receptors [11,23,46]. However, in our compilation the majority of

chemicals have multiple annotations with several odors e.g.

dihydrojasmone has fresh, fruity, jasmine and wood odors. Using

an association score (AS), we prioritized ORs to odors and

identified odor tendencies for a given receptor (for odor-OR

relationships see Table S2 in File S1). For example, our approach

depicts that OR1G1 is highly stimulated by fatty and waxy notes

[46]. Some general notes e.g. ‘‘fruity’’ appear to be connected to

many receptors. In opposite, quite few notes are linked to only one

OR i.e. ‘‘light’’, ‘‘ocean’’ and ‘‘clean’’ are related to OR1D2 and

‘‘medicine’’ and ‘‘phenol’’ are linked to OR1E3.

From the network, we can identify also hubs of ORs that are

more related to a given odor. For example, ‘‘muguet’’, a floral

odor, is exclusively reported to OR1D3, OR1D4, OR1D5 and

Global Mapping of the Human Odorome
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OR1D6, and ‘‘sour’’ odor is associated to OR51E1, OR117P and

OR51E2. Interestingly, although ‘‘pineapple’’ is associated to

OR51L1 and OR2C1, there is no connection between the two

ORs. In fact this OR-odor association comes from different

compounds that have not been tested on the same OR. Obviously,

the method is dependent of the diverse experiments performed so

far on ORs and reflects that some ORs have been tested more

than others. However, the network provides a global visualization

of the human odorome based on current knowledge.
Deciphering novel odorant molecule- hOR

interactions. An interesting aspect from the OR-OR network

is the possibility to suggest new odorant-OR interactions that were

not studied previously. Based on the assumption that if two ORs

are affected by two odorants, and one of the OR is further

deregulated by an additional odorant, it might be that both ORs

are in fact affected with the same three odorants as shown in

Figure 3. Using a neighbor protein procedure, an association score

between each OR and each odorant can be computed, as

described previously [31,32]. From, the developed network it is

then possible to evaluate the significance of the odorant-OR

association as well as to predict the association for new ligand-OR.

To assess the performance of our approach, we decided to test a

set of compounds experimentally. As we had bioassays for

OR2W1, OR5P3 and OR51E1, we focused on these 3 ORs for

the validation.

Citral and Citronellal, two compounds naturally produced in

the oil of various plants including lemongrass and orange, have

been shown to be strong agonists of OR1A1 [47]. These

compounds were reported to be also ligands of OR1A2 [47,48].

Based on the OR-OR network, these compounds show a strong

association score with these ORs but also may interact with

OR2W1 (Table 2). As the stimulation of OR2W1 by these two

compounds was not reported in the literature, we decided to test

this prediction experimentally using OR-transfected Hana3A cells

and a functional assay adapted to GPCR screening, the GloSensor

cAMP assay [44]. Citral and citronellal were found to activate

OR2W1 with EC50 values of 128.7 mM and 207.9 mM, respec-

tively (Fig. 4a). These odorants were about 4 to 6 fold less efficient

than benzylacetate, one of the best OR2W1 ligands

(EC50 = 34.7 mM) [13].

We also investigated the activation of other ORs by new

compounds (Figs. 4b, 4c). For example, from our OR-OR

network, we predicted that two new compounds, 1-octanol and

celery ketone (two OR1G1 ligands) might interact to OR5P3

(Table 2). Experimentally, we observed that both compounds

activate this receptor with EC50 values of 115 mM and 482.6 mM

respectively, which indicates that these odorants are as active as (-)-

carvone (EC50 = 387.6 mM), a known OR5P3 ligand [13].

Similarly, isovaleric acid and propionic acid (OR1G1 and

OR52D1 ligands) were identified as new putative ligands of

OR51E1 (Table 2) and tested experimentally. Isovaleric acid

activated OR51E1 in the same range as that observed for

nonanoic acid, a known ligand of this receptor (EC50 = 152.7 mM

and EC50 = 197.2 mM, respectively) [13]. Conversely, propionic

acid showed an activity 5 fold lower with an EC50 = 923.2 mM.

Finally, we should notice that the tested compounds did not induce

any response in mock-transfected cells. However, for some of the

Figure 1. Workflow of the study. Strategy to improve knowledge of olfactory perception and biological roles of odorant molecules. First an OR-
OR association network identifies novel odorant-OR interactions for odorant candidates. Second, pathways linked to proteins are integrated in the
OR-OR network allowing deciphering odor-disease connections. The last step involves scoring and ranking of odorant candidates for biological
targets within the pharmacological space.
doi:10.1371/journal.pone.0093037.g001
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compounds, e.g. celery ketone and 1-octanol, no saturation could

be observed because of cytotoxic effects at concentrations higher

than 1023 M.

Linking the human odorome to diseases and pathways
To investigate dysfunctions and diseases associated with the

olfactory system, we enriched the developed OR-OR network by

integrating data gathered from mouse and rat (Table S1 in File

S1). Although the odor perception from one species to another one

might be different, OR orthologs tend to show conserved ligand

interactions [49].

ORs from rodents were linked to human orthologs resulting in a

total of 775 additional chemical-protein interactions (Table S4 in

File S1). Consequently, the new OR-OR network contained 938

interactions between 83 proteins (Fig. S1). We then integrated

protein-protein interactions (PPIs) into the human odorome, and

constructed a PPI network for the set of 83 human ORs. The

interactome used was a high confidence set of experimental PPIs

extracted from a compilation of diverse data sources [32,33]. A

total of 183 new genes were identified and among them, 12 were

connected to at least one of the 83 ORs with high confidence

scores. In general, ORs appear to interact with three guanine

nucleotide binding proteins: GNAL, GNGT1 and GNB1. OR1G1

is linked to a fourth protein, the odorant binding protein 2B

(OBP2B). In a second step, disease enrichment data were included

with the aim of prioritizing disease candidate genes. Among them,

three disease groups are statistically significantly connected:

hypertension, schizophrenia and mood disorders (list of genes

and p-values can be found in Table S3 in File S1). A previous

study has explored the potential of olfactory dysfunction as a key

component in early diagnostic strategies of Parkinson and

Alzheimer diseases [50]. The UPSIT (University of Pennsylvania

Smell Identification Test) revealed abnormality more frequently

for patients with neurological diseases than olfactory-evoked

responses (http://emedicine.medscape.com/article/861242-

overview). For hypertension, patients with smell impairment are

reported to use larger quantities of sugar and salt to highlight

flavors and thus increase the risk of developing hypertension [51].

We analyzed also the functional properties of the olfactory

system using two pathways repositories (KEGG and Reactome)

[52,53]. From the KEGG database, we observed statistical

significance for the calcium signaling pathway, the neuroactive

ligand-receptor interaction pathway, the taste transduction path-

way, the type 2 diabetes pathway and the long term depression

pathway. From the Reactome database, three pathways were

significantly linked to the global odorome, the ‘opioid signaling’,

the ‘integration of energy metabolism’ and the ‘GPCR signaling’

pathways.

A recent study supports our findings by showing that odor-

identification deficit and memory impairment are closely associ-

ated with disease-specific metabolic changes [54]. Similarly, it is

speculated that flavor molecules are suggested to play a role in

food intake and thus potentially increase prevalence of overweight

and obesity [55]. A possible mechanism to reduce food intake

could involve a perturbation of the opioid signaling pathways.

Overall, these biological networks revealed interesting function-

al properties and biological pathways involving known drug-

Figure 2. View and mapping of the odor in the OR-OR association. (a) View of the human odorome. Nodes and edges represent the human
ORs and the connections between the ORs, respectively. The node size corresponds to the number of odorant molecules known to bind to a
particular OR. A weighted score, represented by the width of the edges, was assigned to each OR-OR association. It represents the strength of the link
between two ORs as defined by the number of shared compounds for both ORs. (b) Mapping of odor descriptions on the human odorome using the
association score (AS). Odor(s) tendency for ORs were integrated into the human odorome map. (N.D. = non-determined odor for OR7D4).
doi:10.1371/journal.pone.0093037.g002

Figure 3. Schema of the OR-odorant prediction concept. In this example, C3 is an odorant predicted to bind to OR2 because is binding to OR1
like C1 and C2.
doi:10.1371/journal.pone.0093037.g003
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targets. Such results imply that odorant molecules interact not only

with ORs but might also affect drug-targets.

Mapping the odorant pharmacological space
As a final step we investigated all biological targets potentially

recognized by odorant compounds. Chemical-protein interactions

for a complete biological system are usually unknown apart for

some drugs, and the majority of molecules have only been studied

for one or few protein targets. This is especially true in the case of

odorant compounds, which have been mostly studied on ORs.

We decided to identify potential novel and unexpected odorant-

protein interactions. Assuming that chemicals sharing highly

similar structure also share similar biological properties [56], we

used ChemProt, a large curated chemogenomic database of more

than 1 150,000 molecules with over two millions chemical-protein

interactions [41]. Using MACCs fingerprints and a strict

Tanimoto coefficient (Tc) distance threshold of 0.9, 1,091 odorants

were identified with odorant-protein interactions for 821 proteins.

Interestingly, for 329 odorants, links to 200 proteins were already

available (i.e. compounds tested for a protein), represented by 556

unique chemical-protein interactions. For example, capsaicin,

Figure 4. Concentration-response curves of odorants for human ORs. Odorants predicted as agonists ( = predicted compounds) and
odorants previously shown to be agonists by Saito et al. 2009 (positive controls) activated four human ORs: (a) OR2W1, (b) OR51E1 (c) OR5P3. Data
points and EC50 values are means 6 s.e.m. from at least three experiments.
doi:10.1371/journal.pone.0093037.g004
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described in Flavor-Base with a ‘‘slight herbaceous odor’’ (known

also for its strongly perceived ‘‘burning hot pungent taste’’) has

shown agonist activity on the human vanilloid receptor 1 (TRPV1)

and inhibition of PTGS1, a well-known protein inhibited by non-

steroidal anti-inflammatory drugs such as aspirin. Another

example, thymol is activating a human transient receptor (TRPA1)

which has a central role in the pain response to endogenous

inflammatory mediators [57]. In order to reveal common

structural features between odorants and other molecules, we

visualized their distribution inside the chemogenomic database by

developing a chemical similarity network, excluding annotations

(Fig. S2). The generated network can be interpreted in two ways:

some odors (green) form large clusters, which appear to share

similar features with few chemicals from ChemProt (blue). For

instance, 2-heptyl-butyrate (wax, fruit, green, tropical, floral) is

structurally similar (Tc of 0.952) to the fatty acid isopropyl

palmitate, a solvent for fragrance agents and known to have

binding affinity to the human cannabinoid receptor 2 (CB2) [58].

Other odorants show structural similarity with molecules possess-

ing large set of bioactivities in ChemProt. This is the case with

theobromine, a cosmetic additive, similar to caffeine and

theophylline, two compounds intensively studied in healthcare

[59].

Based on Uniprot identifiers, the 821 proteins potentially

targeted by odorants were categorized into 285 families, and 26 of

them have more than 100 interactions with odorant molecules

(Fig. S3). Not surprisingly, the G-protein coupled receptor family

(GPCR), which contains ORs, is the most common type predicted.

A majority of odorant-GPCR associations are with cannabinoid

receptors (69%). Few other predictions are for metabotropic

glutamate receptors (2%) and opioid receptors (1%). Ligand-gated

ionic channel, amidase enzyme family, nuclear receptors and

cytochrome P450s are also families largely targeted by odorants

which is consistent with previous discovery linking the olfactory

system with ligand-gated ion channels and amidase [60,61].

We decided to investigate the interactions of odorants with the

human cannabinoid receptor CB1 using CB1-transfected

HEK293 cells and the GloSensor cAMP assay, because of its

large representation in predicted proteins as target, its role of

endocannabinoid system in metabolic diseases [62], and its

probable link with olfaction [63]. We first checked that our

experimental system worked efficiently by testing cannabinoids

acting as agonists (AEA, HU210) or inverse agonist (AM251) (Fig.

S4). Then, amongst the molecules predicted as CB1, we selected

two of them (i.e. tributyl-acetylcitrate and 2-phenylethyl hexano-

ate) due to their structural similarity with hexadecyl propanoate, a

known inhibitor of CB1 [58]. In addition, we looked on the

flexibility of the molecules able to map to the structure of

anandamide, a known natural CB1 ligand [58,61] and select the

compound 2-nonanone for testing. The three compounds,

tributyl-acetylcitrate, 2-nonanone and 2-phenylethyl hexanoate

were found to interact with the CB1 receptor although with a

weak EC50 (Figure 5). They elicited an increase in cAMP

production in control cells, this effect being blocked in pertussis

toxin-treated cells. These results indicate that the predicted

compounds acted as weak inverse agonists, with EC50 values

varying from 122 mM to 509 mM. All tested compounds did not

induce any response in mock-transfected cells.

We looked also into nuclear receptors and more specifically

PPARc, a target also associated to metabolic syndrome, inflam-

mation and type-2 diabetes. PPARc has shown an interesting

response to the application of nutrition-based interventions [64].

Indeed, it has been reported that naringenin, from grapefruit or

elderflower, stimulated PPARc transactivation making cells more

sensitive to insulin [64]. PPARc is also involved in the regulation

of fatty acid storage and glucose metabolism, and it has been

recognized that nutritional supplementation such as omega-3 fatty

acids and polyunsaturated fatty acids influence the inflammatory

response of some diseases such as inflammatory bowel disease

(IBD) [65]. Moreover, PPARc have been identified to interact

with endocannabinoid system [66]. We decided therefore to

investigate the interaction of odorants on the PPARc protein.

Among them, we considered naringenin, methyl c linolenate

and 2-phenylethyl salycilate that show structural similarity with

PPARc ligands (kaempferol, lauric acid methyls ester and

benzenepropanoic acid, 4-([1,19-biphenyl]-2-ylmethoxy) respec-

tively). Using a competitive PPAR binding assay, inhibition of

binding (IC50) values for three predicted compounds were

determined. Interestingly, all compounds showed binding activities

on PPARc at the mM scale, validating the multi-activities of

odorants in cellular processes other than olfaction (Figure 6a).

Compared to the reference molecule, rosiglitazone (IC50<50 nM

in this assay), naringenin shows good affinity to PPARc
(IC50 = 7.4 mM). The food additive phenylethyl salicylate present-

ed activities with the same range (IC50 = 9.2 mM) whereas methyl

c linolenate a fatty acid compound naturally present in banana,

grapefruit juice, grape, melon, strawberry, tomato and chicory

Table 2. Prediction of novel OR-odorant interactions.

Odorant Known OR Score* Predicted OR Score*

Citral OR1G1 0.171 OR2W1 0.889

OR52D1 0.171

OR1A1 0.358

OR1A2 0.748

Citronellal OR1G1 0.171 OR2W1 0.889

OR52D1 0.171

OR1A1 0.358

OR1A2 0.748

1-octanol OR1G1 0.512 OR5P3 3.458

OR52D1 0.512

OR2W1 0.826

OR1A1 1.013

OR1A2 2.051

OR51E1 2.425

OR2J2 3.458

Celeryketone OR1G1 0.171 OR5P3 1.225

OR2W1 0.287

OR1A1 0.358

OR1A2 0.748

Isovaleric acid OR1G1 0.171 OR51E1 0.883

OR52D1 0.171

OR117P 2.704

Propionic acid OR1G1 0.093 OR51E1 0.511

OR52D1 0.093

OR51E2 1.501

* To find ORs interacting to odorants, a neighbor protein procedure was used
which score the association between ORs and odorants. The lower is the score,
the stronger is the association.
doi:10.1371/journal.pone.0093037.t002
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Figure 5. Concentration-response curves of odorants for the human cannabinoid receptor CB1. Predicted compounds, tributyl acetyl
citrate, 2-nonanone and 2-phenylethyl hexanoate acted as inverse agonists. GloSensor assays were carried out in the absence (N) or in the presence
(#) of pertussis toxin-treated cells. Data points and EC50 values are means 6 s.e.m. from three experiments.
doi:10.1371/journal.pone.0093037.g005

Figure 6. Results of bio-activation of three odorants on the PPARc receptor. (a) Concentration dependent ligand displacement of three
odorants predicted as ligands for the PPARc receptor. (b) Transcriptional activation of PPARc by three odorants. Results are shown as the average 6

standard deviation of 2 individual experiments with each of the experiments performed with 8 replicas. Activation is given as fold activation relative
to the DMSO vehicle. Rosiglitazone (not shown) was used as positive control.
doi:10.1371/journal.pone.0093037.g006
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have an activity on PPARc seven fold better than naringenin

(IC50 = 1.2 mM). To assess the biological activities of these

compounds, activation of the PPARc ligand binding domain

(LBD) was investigated using trans-activation assays (see Methods

and SI). As a result, all three compounds were able to activate the

PPARc-LBD although with low efficiency (Figure 6b). The

apparent partial agonist properties of the compounds were

reflected by the ability to partly antagonize rosiglitazone-induced

transactivation in the same assay (data not shown). Overall, our

findings suggest that these compounds might have interesting anti-

diabetic and anti-inflammatory properties.

Discussion

Two approaches were developed in this study in order to

generate a human odorome: first, we identified some new odorant-

OR interactions as well as putative pathologies and pathways

associated to olfaction, and secondly, we proposed potential

therapeutic properties of a number of odorant molecules.

To start, we have developed an innovative approach for

predicting molecule candidates to hORs. Previous studies have

extensively used molecular structures of odorants and molecular

modeling to suggest such interactions [67–70]. The ability to make

new findings is illustrated by the development of a protein-protein

association network on ORs, which led to identification of new

ligand-OR interactions. As all models based on experimental data,

our proposed strategy is in a great dependence to the nature of

available data. We collected odorant that bind to ORs from public

available resources and negative control was not considered in our

model, which is unidirectional. One of the limitations is, only 24

human ORs showed bioactivity, which represent only 6% of the

human olfactome. Moreover we should take into consideration the

so-called ‘Matthew effect’ [71] resulting in maintained research

interest regarding already well-investigated odorants and ORs,

and then a larger amount of available data for these odorants and

ORs (OR1G1, OR52D1…). This skews the findings towards

interactions involving ORs already intensely investigated

(OR2W1). But this also highlights the ORs, which need further

attention. Hence the lack of predicted interaction between

odorants and OR5P3 for instance might be the result of less

available data to create the model rather than lack of biological

effect. The successful experimental validation on well-known OR

(OR2W1) and less-known OR (OR5P3) show the innovative level

of such computational approach.

The previous identification of targets repertoire is a crucial

importance, and could be very difficult to establish, especially in

the case of OR targets. Indeed, there is probably a gigantic

number of odorant molecules; some authors mention about

‘‘myriad of flavors’’, and Mori estimated ‘‘that more than 400 000

different compounds are odorous to the human nose’’ [23,72]. In

as much as a maximum of one hundred of molecules have been

tested on each expressed OR, it is difficult to ensure that the best

ligands of each studied OR have been identified [23]. Neverthe-

less, these data are now available and can be used for the

development of computational approaches able to decipher the

olfactory repertoire. For example, we could imagine that the

integration of negative data and degree of affinity of ligands to

ORs could be of great value in such OR-OR network.

From the OR-OR network, we proposed several associations

between odor and ORs. It is well admitted that an odor results

from the perception of a mixture of molecules. In other words,

odors described for example as ‘‘strawberry’’, ‘‘green’’ or ‘‘woody’’

have probably no real intrinsic existence, but report to some

environmental contexts. Consequently, humans need a lot of

words related to their contextual memories, to give full account of

their own perception, [73–75]. That may explain why the odor of

a molecule is rarely described by a sole odorant note but rather by

several notes. Each odor described by humans could be more

adequately defined as an ensemble of several ‘‘components’’.

Moreover, as the perception of odors results from a combinatorial

coding, this implies the unlikelihood to associate strictly an odor to

a sole receptor. Conversely, an OR might be associated to a

component of an odor.

In addition to the OR-OR network, integration of the

interactome and phenotypic data in the network allowed for a

second level of prediction capability. Disease gene candidates can

be prioritized, highlighting the potential role of the olfactory

system as a biomarker for diseases.

The second aspect of our work was to obtain an overview of drug-

targets (i.e. proteins) interacting with odorant molecules by

systematic structural similarity searches using a large chemoge-

nomic repository. Such exploration of the pharmacological space

was previously reported for drug compounds [76], characterized by

drug-protein associations. Up to now, no investigation has been

reported in the literature regarding large set of odorants. The in vitro

validation of predicted odorant binding to CB1 and PPARc
supports the possible pharmacological relevance of the newly

identified odorant-target relationships, although further studies are

necessary to gain more insight into the diffusion and the

biotransformation routes of such compounds to reach these targets.

Expanding the knowledge of our sense of smell by integrating

systems chemical biology of odorant molecules in drug discovery is

an attractive way to move forward in the quest to identify effective

drug-food combination therapies [77]. Recently, the development

of an electronic nose to detect signals associated with odorant

binding to GPCRs has shown promising results. Such artificial

nose technology detects and discriminates between odorants they

previously ‘‘learned’’ [78]. The combination of such technology

with computational biology represents an attractive strategy for

improving our knowledge of the molecular mechanisms of these

volatile molecules. Information on the olfactory system, the

pharmacology profile of individual odorants, the network regula-

tion as well as the pharmacodynamic, toxicological and pharma-

cokinetic effects is sparse and further investigations must be

performed. The pharmacological space of odorant molecules is not

exclusively limited to GPCRs (although they are in majority).

Direct pathway via the ORs, becoming activated by odorants after

nasal inhalation in the nose epithelium is well established [79].

Transcellular penetration into the central nervous system by

passive diffusion has also been described [80]. Therefore, we could

assume that such volatile compounds are not only stimulators of

olfactory perception but may be involved in other essential

physiological functions related to human health.

Supporting Information

Figure S1 Global mapping of the human odorome.
Nodes represent olfactory receptors (ORs) with known binding

ligands. Green nodes are human ORs, and blue nodes represent

human homologous and orthologous ORs derived from mouse

and rat information. The width of the edges correspond to the to

the weighted score.

(TIFF)

Figure S2 Mapping of odorants on the pharmacological
space. Chemical pair-wise similarity network based on the

chemical structure and using a Tanimoto coefficient threshold to

0.9. The blue nodes represent compounds with known bioactivity

from ChemProt and the green nodes are the odorants from

Global Mapping of the Human Odorome
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FlavorBase. Edges represent a high structural similarity between

two molecules. The edge color indicates the Tanimoto values:

orange for Tc between 0.9 and 0.95 and purple for Tc between

0.95 and 1. From such graph, we can assume that an odorant (in

green) similar to a compound from ChemProt (in blue) potentially

shared the same bioactivity.

(TIFF)

Figure S3 Protein family distribution. The values indicate

the number of predicted interactions between odorant molecules

and proteins. Only families with more than 100 interactions are

shown separately, ‘other families’ represent the rest in the graph.

This other category contains for example the tyrosinase family, the

adenylate kinase family and glycogen phosphorylase family.

(TIFF)

Figure S4 Concentration-response curves of know li-
gands of human cannabinoid receptor CB1. As expected,

AEA and HU210 act as agonists whereas AM251 acts as inverse

agonist. GloSensor assays were carried out in the absence (N) or in

the presence (#) of pertussis toxin-treated cells. Data points and

EC50 values are means 6 s.e.m. from three experiments.

(TIFF)

File S1 Combined supporting information file contain-
ing Tables S1–S4 and Methods S1. Table S1: List of sources

used to gather odorant molecule-OR interactions. Table S2: List

of odor tendencies for the human olfactory receptors used in the

OR-OR network. Table S3: Diseases and biological pathways

linked to the olfactory system. Table S4: Odorant-OR interactions

in Human, Rat and Mouse.

(DOC)
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