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Abstract

Utilizing the whole genomic variation of complex traits to predict the yet-to-be observed phenotypes or unobserved
genetic values via whole genome prediction (WGP) and to infer the underlying genetic architecture via genome wide
association study (GWAS) is an interesting and fast developing area in the context of human disease studies as well as in
animal and plant breeding. Though thousands of significant loci for several species were detected via GWAS in the past
decade, they were not used directly to improve WGP due to lack of proper models. Here, we propose a generalized way of
building trait-specific genomic relationship matrices which can exploit GWAS results in WGP via a best linear unbiased
prediction (BLUP) model for which we suggest the name BLUP|GA. Results from two illustrative examples show that using
already existing GWAS results from public databases in BLUP|GA improved the accuracy of WGP for two out of the three
model traits in a dairy cattle data set, and for nine out of the 11 traits in a rice diversity data set, compared to the reference
methods GBLUP and BayesB. While BLUP|GA outperforms BayesB, its required computing time is comparable to GBLUP.
Further simulation results suggest that accounting for publicly available GWAS results is potentially more useful for WGP
utilizing smaller data sets and/or traits of low heritability, depending on the genetic architecture of the trait under
consideration. To our knowledge, this is the first study incorporating public GWAS results formally into the standard GBLUP
model and we think that the BLUP|GA approach deserves further investigations in animal breeding, plant breeding as well
as human genetics.
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Introduction

Predicting the yet-to-be observed phenotypes or unobserved

genetic values for complex traits and inferring the underlying

genetic architecture utilizing genomic data is an interesting and

fast developing area in the context of human disease studies as well

as in animal and plant breeding [1,2,3]. In this context, two

predominant approaches were proposed: (i) whole genome

prediction (WGP) [2,4] and (ii) genome wide association studies

(GWAS) [5,6] or quantitative trait locus (QTL) mapping

studies[7,8,9]. Both concepts use genomic and phenotypic data

in a combined analysis.

GWAS take the road to detect markers significantly associated

with a trait by setting a stringent P-value. Thousands of significant

loci associated with complex traits have recently been found for

model organisms [6,10,11], as well as crops [12,13,14,15,16],

livestock [17,18,19,20,21] and the human population [22,23,24].

However, these loci typically explain only a small fraction of the

total genetic variance. A prominent example is human height, for

which tens of loci explain only ,5% of the genetic variance [25], a

phenomenon also called ‘‘missing heritability’’ in the literature

[26,27].

By fitting all markers in a prediction model simultaneously,

whole genome prediction (WGP) has largely promoted the usage

of whole genome markers, also revolutionizing commercial

breeding systems and showing good results both in simulation

studies [4,28] and analyses of real data [29,30,31]. Furthermore,

WGP is promising with respect to human disease studies [2,32,33].

The genetic architecture of the underlying complex trait together

with the selected statistical prediction approach were found to

have a large effect on the prediction accuracy [34,35,36]. Different

prediction methods assume that the genetic effects of the loci

follow a normal distribution [4], alternative distributions like the t-

distribution [4], the double exponential distribution [37] or other

distributions [38]. Performance of these models depends on how
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closely the model assumptions represent the true underlying

genetic architecture [34,35].

In the context of GWAS, it is not difficult to detect QTLs with

large or moderate effects within large data sets for traits with high

heritability [39], and it is also easier to conduct an accurate WGP

in these cases [1]. However, the power to detect QTLs in a GWAS

and the accuracy of WGP are unfavorable in case of small data

sets and/or traits of low heritability [1,39].

So far, results of GWAS and WGP have mostly been considered

independently from each other, depending on whether the aim

was to decode the genetic architecture (GWAS) or to accurately

predict the unobserved phenotypes or genetic values (WGP).

However, both approaches require the same type of data: a subset

of a population for which phenotypes and genotypes are available.

Since it is well known that the genetic architecture of complex

traits affects the accuracy of genomic prediction [34,35,40,41],

some methods originally developed for WGP were recently used in

a GWAS to detect loci significantly associated with the trait under

consideration [20,42]. Conversely, results from GWAS have

already been pronounced to be useful to improve WGP [20].

However, it is yet to be investigated how to utilize significant

QTLs identified in GWAS to improve WGP and to which extent

existing knowledge of the genetic architecture of complex traits

can help improving WGP.

In this study, we propose a new approach of utilizing already

existing knowledge of genetic architectures in form of significant

QTL regions obtained in independent association studies to

improve the accuracy of WGP. This includes a new strategy of

building trait-specific genomic relationship matrices used in a best

linear unbiased prediction (BLUP) approach.

Besides the fact that the genetic architecture of a complex trait is

known to affect the accuracy of genomic prediction as well as

model selection [34,35], there is another motivation for incorpo-

rating prior knowledge into the WGP model: WGP has always

been performed within a specific population [4] or with the

combination of raw data sets from several populations [31,43,44].

In these cases, the power of detecting and utilizing the genetic

architecture is limited by the size of the data set used. In contrast

to this, there is a large number of publicly available QTL regions

and top SNPs detected in previous GWAS, which potentially

reveal the genetic architecture of complex traits in a comprehen-

sive way and which might therefore be used to enhance WGP in

such a situation.

We will demonstrate in this study, that the performance of

WGP can be improved by including the publicly available GWAS

results (in case the genetic architecture is important for the

complex trait under consideration) and that WGP accuracy can be

improved especially in situations where the prediction accuracy is

limited by a small sample size of the data set or a small heritability.

The remainder of the paper is organized as follows: We will first

propose a generalized way of building genomic relationship

matrices which are trait-specific. Based on this suggestion, we will

illustrate with a dairy cattle and a rice data set that using already

existing GWAS results from publicly available databases to build

trait-specific genomic relationship matrices improves the accuracy

of WGP compared to two well investigated WGP approaches:

GBLUP [45] and BayesB [4]. We will finally study the impact of

sample size and heritability on the relative performance of our

approach with simulated data and discuss the implications of the

new approach, which we term ‘‘BLUP|GA’’ (‘‘BLUP approach

given the Genetic Architecture’’) in the following.

To our knowledge, this is the first study proposing a formal way

to improve the accuracy of WGP by directly incorporating results

from publicly available GWAS results and which validates the

effectiveness of the new approach using real data sets.

Methodology: A New Approach for Building Trait-Specific
Genetic Variance-Covariance Matrices

Several approaches have already been proposed for building

genomic relationship matrices by estimating the realized genomic

relationship matrix [45,46,47,48]. And various rules were tested to

correct the genotype matrix for allele frequency at single marker

level to centered and standardized marker genotypes [45,46,48].

All of these rules aim at obtaining an unbiased estimate of the

relationship coefficient between pairs of individuals, and all of

them assume that the effects of all loci are drawn from the same

normal distribution.

Following the approach of VanRaden [45], the commonly used

genomic relationship matrix G is defined as

G~
MIMT

2
Xm

i~1
pi(1{pi)

ð1Þ

Here, I is an identity matrix and the matrix M contains the

corrected SNP genotypes, with the number of rows equal to the

number of individuals and the number of columns equal to the

number of markers. Genotypes are coded as 0, 1 and 2,

representing the number of copies of the second allele. For locus

i, the original genotype is corrected for the allele frequency of the

second allele at locus i in the base population by subtracting 2pi.

We used a uniform value of pi = 0.5 for all SNPs to build the

genomic relationship matrix in this study, since the accuracy of

WGP is known to be unaffected by the use of different allele

frequencies for correction [48,49,50]. By using the identity matrix

I in equation (1), it is implicitly assumed that all loci contribute

equally to the variance-covariance structure.

In general, the variance contribution for different loci may be

different [51], since the distribution of effect sizes is variable across

traits. Zhang et al. [51] therefore proposed to use a trait-specific

matrix TA, given by

TA~
MDMT

2
Xm

i~1
pi(1{pi)

ð2Þ

where D is a diagonal matrix with marker weights for each locus

on the diagonal to represent the relative size of variance explained

by the corresponding loci. In the present study, we propose to use

a similar approach, in which only a subset of ‘‘important’’ markers

are weighted accordingly, instead of assigning variable weights to

the full set of available markers. This approach is computationally

less demanding when building the covariance matrix. Since for

most quantitative traits only a very small proportion of loci was

found to have significant effects and a large number of other loci

was found to have very small effects (see e.g. adult height in

humans [25,52] or flowering time in maize [13]), a realistic

weighting strategy is giving individual and large weights to loci

with large effects, and relatively smaller and uniform weights to the

rest of the loci. Based on this, we can divide the m available

markers into two groups, including m1 markers with large and

m2~m{m1 with small effects. In the following, the marker

genotype matrices for these two marker groups will be denoted by

M1, and M2, including m1 and m2 markers, respectively, and M

GWAS Results Improves Whole Genome Prediction

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e93017



will be sorted such that M = [M1, M2]. In this study, classification

of the markers to M1 was based on GWAS results obtained from

public database, and this is described in the section ‘Approach to

infer marker weights from GWAS results’.

We will further use an overall weight v for large effect markers

in M1 and we define c~
Xm

i~1
2pi(1{pi) as well as

c1~
Xm1

i~1
2pi(1{pi).

We finally propose to use the matrix

D~

1

c
diag

c

c1

vh1z(1{v),:::,
c

c1

vhm1
z(1{v)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m1entries

, (1{v),:::,(1{v)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
m2entries

0
BBB@

1
CCCA

in equation (2), where h1, h2, …,hm1 are certain marker weights

which have to be obtained beforehand. This approach is

equivalent to using

T~vSz(1{v)G ð3Þ

with S~
M1diag(h1,:::,hm1

)MT
1

c1
and G~

MIMT

c
as new trait-

specific variance-covariance matrix. Hereby, S is based on the set

of markers being ‘‘important’’ for the considered trait, whereas G
corresponds to the standard genomic relationship matrix proposed

by VanRaden [45]. Note that when we use equal allele frequencies

(pi = 0.5) in c and c1, then
c1

c
is the proportion of all markers which

are contained in M1, that is
m1

m
. The matrix S is supposed to

capture the genetic architecture part for the trait under

consideration. Further note that T equals G for v~0, and that

it equals TA [51] with D = diag(h1,:::,hm1
)in case v~1and

M~M1.

To build the T matrix given in equation (3), three additional

parameters are needed: the subset of m1 markers to build S, the

overall weight v for S, and a vector of marker weights

h~(h1,:::,hm1
)T corresponding to each marker used in S. Note

that in the present study the vector of weights h was always

rescaled after choosing its components by multiplying each entry

by
m1Pm1

i~1 hi

to keep the S and G being in the same scale.

In the following, we will consider these three parameters as

variables which have to be specified within a study. The subset of

m1 markers and their corresponding weights can thereby be chosen

very flexible, for example as (i) estimated marker effects or

variances for a proportion of top markers from genomic

prediction; (ii) estimated effects or variances for markers in the

QTL regions detected by GWAS; or (iii) counts of how often a

marker was reported to belong to a (significant) QTL region in the

literature, thus allowing to incorporate prior knowledge of the

underlying genetic architecture of the complex trait under

consideration.

We finally propose to use T (instead of G or TA) as variance-

covariance matrix in a genomic best linear unbiased prediction

(BLUP) model. We will call this approach BLUP|GA (‘‘BLUP

approach conditional on the Genetic Architecture’’).

Results

In the following, we will present WGP results for a real dairy

cattle and a rice data set using the methodology introduced above.

Predictive ability of the WGP was measured via different cross-

validation procedures, applying the BLUP|GA approach with

genetic covariance structure given by the trait-specific variance-

covariance matrix T as proposed in equation (3). The weights h in

T were chosen based on counts of how often a marker was

reported to be within a significant QTL region during association

studies previously carried out in the literature, a knowledge we will

retrieve from publicly available QTL databases. We will compare

the performance of BLUP|GA with the standard GBLUP

approach [45] and with BayesB [4]. Further details can be found

in the ‘Material and Methods’ section.

Dairy Cattle Data
We considered 2,000 bulls of the German Holstein population

which were genotyped with the Illumina Bovine SNP50 Beadchip.

After quality control 45,221 autosomal SNPs were used in the

study. We analyzed the traits milk fat percentage (FP), milk yield

(MY) and somatic cell score (SCS) and used accurately estimated

breeding values (EBVs) from the conventional breeding value

estimation as quasi-phenotypes in the whole genome prediction

models (Table 1).

Marker weights for the BLUP|GA approach were obtained by

using publicly available GWAS results stored in the database

animalQTLdb [17] and based on the number of publications

reporting a significant QTL region including the corresponding

marker. Details on this are given in the ‘Material and Methods’

section. We performed 20 replicates of a five-fold cross-validation

to obtain an average predictive ability for BLUP|GA, GBLUP,

TABLUP and BayesB for three different population sizes.

Results in terms of accuracies are reported in Table 2 and

Figure 1. The BLUP|GA method outperformed the standard

GBLUP approach for all three model traits in terms of accuracy

Table 1. Summary statistics of data sets and corresponding
traits.

Data set Trait N Meana S.D. a r2/h2 b

Cattle Fat percentage 2000 20.027 0.294 0.973

Milk yield 2000 231.7 649.8 0.973

Somatic cell score 2000 103.1 11.6 0.942

Rice Days to flower (Arkansas) 374 87.94 12.63 0.785

Flag leaf length 377 30.63 5.74 0.763

Flag leaf width 377 1.22 0.25 0.717

Panicle number per plant 372 3.25 0.41 0.646

Plant height 383 116.60 21.09 0.832

Panicle length 375 24.37 3.54 0.781

Primary panicle branch
number

375 9.94 1.78 0.621

Seed number per panicle 376 4.85 0.33 0.678

Seed Width 377 3.12 0.39 0.924

Blast resistance 385 5.04 2.94 0.762

Amylose content 401 19.88 5.46 0.900

amean and standard deviation (S.D.) of conventional estimated breeding values
for cattle traits or phenotypes for rice traits;
breliability (r2) for cattle trait EBV, or heritability (h2) for rice trait phenotypes.
doi:10.1371/journal.pone.0093017.t001
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(Table 2). This could be observed for all three population sizes.

The superiority of BLUP|GA increased with the extremity of the

underlying genetic architecture of the complex trait. This

characteristic is similar to that of BayesB, which is also favorable

for traits affected by large-effect QTLs [34,35]. Since the T matrix

used in the BLUP|GA model is a mixture of the G matrix and the

S matrix, we had to choose an overall weight v for the S matrix.

The accuracies of BLUP|GA increased for FP and MY when

increasing v from 0 to 1, with a drop in accuracy for v
approaching 1 (Figure 1). For SCS, the accuracy decreased

continuously with increasing v. Note that accuracies reported for

BLUP|GA in Table 2 correspond to the overall weight v which

led to the highest average accuracy. The BLUP|GA approach

requires far less computing time as BayesB although it enables a

differentiated treatment of the SNPs (Figure S1).

To investigate the performance of WGP in more challenging

situations, we simulated traits with lower heritability based on the

original MY breeding values. For each of the three population

sizes, a random error was added to the original phenotypes (EBV

of MY) to generate a ‘‘new’’ trait with lower heritability. The

average accuracies of BLUP|GA and BayesB for 20 replicates of

five-fold cross-validation for the original phenotypes as well as the

artificial low heritability traits are shown in Figure 2. The accuracy

decreased with the population size and trait heritability (as

expected) for all three approaches. Additionally, it could be

observed that the accuracy of BLUP|GA was higher than that of

GBLUP in all considered scenarios (Figure 2). BLUP|GA showed

no advantage over BayesB for the original phenotype with high

heritability, but outperformed BayesB when the population size

was small or when the trait heritability was low (Figure 2). The

corresponding average values of accuracy and unbiasedness for

GBLUP, BayesB and the best scenario (‘‘best’’ with respect to the

optimal value of v, and the optimal subset of SNP listed in Table 3)

for BLUP|GA are presented in Table S1.

The Rice Diversity Panel
We used 413 inbred accessions of Oryza sativa from the Rice

Diversity Panel data set (cf. Zhao et al. [53]), which were genotyped

for approximately 37,000 SNPs; 11 different traits were considered

in our analyses (Table 1). Marker weights for the BLUP|GA

approach were obtained using GWAS results stored in the

Gramene database [16]. More information is given in the

‘Material and Methods’ section.

We found that BLUP|GA yielded the highest average accuracy

across all the 11 traits (Table 4). It outperformed GBLUP for nine

out of the 11 traits, either in terms of accuracy or in terms of

unbiasedness. On average, BLUP|GA showed an advantage over

GBLUP and BayesB by 0.01 in accuracy, while GBLUP and

TABLUP performed equally well (Table 4). BayesB performed

slightly better than BLUP|GA for two out of the 11 traits, and

worse than GBLUP on five traits. Compared to GBLUP,

BLUP|GA had the highest increase in accuracy for the traits

‘‘days to flower’’ (0.036, 5.4%), ‘‘amylase content’’ (0.020, 2.5%),

and ‘‘blast resistance’’ (0.014, 2.0%), which indicates that the

existing knowledge on the genetic architectures underlying these

traits can indeed enhance WGP. The BLUP|GA approach

improved the unbiasedness of prediction for nine out of the 11

traits compared to GBLUP (Table 4).

BayesB outperformed BLUP|GA only for ‘‘seed width’’ and

‘‘blast resistance’’ (Table 4). This suggests that the existing

knowledge from the QTL list [54] for these two traits is not more

promising than the one extracted from the rice diversity panel

itself. To validate this assumption, we ran BLUP|GA using an S
matrix build from the top SNPs selected by the size of estimated

marker effects from the equivalent model of GBLUP [55] obtained

within each fold of the 20 replicates of five-fold cross-validation.

The average accuracies of BLUP|GA from this scenario were

0.861 (60.001) and 0.704 (60.003) for ‘‘seed width’’ and ‘‘blast

resistance’’, respectively. The increased accuracy in this additional

scenario and the small number of known QTL (31, Table 3) for

‘‘seed width’’ suggest that the underlying genetic architecture for

this trait within the rice diversity panel might be different from that

obtained from the GWAS list and that the QTL list might be too

short to reflect the complete genetic architecture for this trait. The

TABLUP result (0.852, Table 4) also confirmed our assumption.

Table 2. Accuracy and unbiasedness of WGP for dairy cattle.

Fat percentage Milk yield Somatic cell score

N Method r(EBV, GEBV) b(EBV,GEBV) r(EBV, GEBV) b(EBV,GEBV) r(EBV, GEBV) b(EBV,GEBV)

2000 BLUP|GA 0.82460.001 0.97560.001 0.75160.001 1.02560.002 0.64660.001 1.02960.002

BayesB 0.84260.000 0.98560.001 0.74960.001 1.02760.002 0.64160.001 1.06960.003

GBLUP 0.72660.001 1.02860.002 0.72060.001 1.04260.002 0.64460.001 1.02660.002

TABLUP 0.80660.001 1.02160.001 0.73860.001 0.97360.002 0.646±0.001 0.93260.002

500 BLUP|GA 0.78560.001 1.01760.003 0.67360.003 1.13360.005 0.41260.004 0.95260.011

BayesB 0.78160.001 1.00760.002 0.67060.002 1.13760.006 0.39860.005 1.07560.014

GBLUP 0.50160.003 0.98660.007 0.59360.004 1.16960.007 0.40360.005 0.95460.012

TABLUP 0.68460.002 1.17460.004 0.62660.004 1.11560.007 0.40560.005 0.85660.010

125 BLUP|GA 0.77660.003 1.04260.008 0.50660.007 1.20360.020 0.24560.013 0.95460.057

BayesB 0.78260.004 1.10960.010 0.45060.009 1.77460.039 0.24860.012 1.12460.060

GBLUP 0.40160.011 1.21460.035 0.43260.010 1.37960.034 0.24360.013 0.96660.058

TABLUP 0.53260.009 1.44360.026 0.43460.009 1.23360.032 0.24660.012 0.83160.041

Mean (6 standard error of means) of accuracy (r) and unbiasedness (b) were calculated from 20 replicates of five-fold cross-validation for each of the three traits. The
best result in each block is printed in boldface.
doi:10.1371/journal.pone.0093017.t002
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Discussion

We proposed a new WGP approach called BLUP|GA. One

plausible feature of BLUP|GA is the fact that any existing

knowledge of the genetic architecture of the complex trait under

consideration can be fitted into this prediction model by choosing

the corresponding marker weights in equation (3), which can

potentially improve the predictive ability of WGP. In this study,

we used publicly available QTL lists as the prior knowledge of the

underlying genetic architecture (‘‘GA’’) in an application of a dairy

cattle and a rice data set. Results indicated that the publicly

available QTLs identified from hundreds of association studies can

help to improve the accuracies of WGP via the BLUP|GA model

and that the BLUP|GA approach dominates two influential WGP

methods, GBLUP and BayesB, for the data sets considered in this

study. The BLUP|GA approach therefore provides a flexible

connection between WGP and the existing knowledge of the

genetic architecture of complex traits as given by association

studies.

BLUP|GA incorporates prior knowledge of the underlying
genetic architecture

The most important difference between BLUP|GA and any

other WGP approach is that BLUP|GA can enhance the accuracy

of WGP by modeling any ‘‘existing knowledge’’ of the GA,

including publicly available GWAS results. This can be achieved

in three steps: (i) building the S matrix based on a list of important

markers and their corresponding weights which are obtained from

‘‘existing knowledge’’, (ii) forming the T matrix as the weighted

sum of S and G using equation (3), and (iii) predicting the genetic

Figure 1. Accuracies of WGP in dairy cattle data set. The solid lines show the change of BLUP|GA accuracy with the overall weight (v) for fat
percentage (red), milk yield (blue), and somatic cell score (green). SNP weights in the BLUP|GA approach were based on the number of QTL reports as
described in the ‘Material and Methods’ section. GBLUP corresponds to the scenarios with overall weight v= 0, and the accuracies of BayesB are
presented by horizontal colored dash lines. Accuracies were calculated as the mean of 20 replicates of five-fold cross-validation with variable
population size (N = 125, 500 and 2000).
doi:10.1371/journal.pone.0093017.g001

GWAS Results Improves Whole Genome Prediction
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merit of all individuals by solving the mixed model equations, in

which the covariance structure is given by the T matrix. SNPs

used to build S should lie in trait associated chromosomal regions

and their corresponding marker weights should represent their

relative contributions. In this study, we obtained the list of

important SNPs and their corresponding marker weights for

different traits within a dairy cattle and a rice data set from QTL

databases which are publicly available (Table 3, Figure 3).

We showed that GWAS results are not only useful for follow-up

studies in the context of association studies, but also for WGP. For

two out of the three dairy cattle model traits, the accuracies of the

BLUP|GA approach showed an ‘‘n’’ type curve (Figure 1), which

suggests that neither the G matrix (v= 0) nor the S matrix (v= 1)

alone, but rather the T matrix as a mixture of both, is the most

appropriate variance-covariance matrix with respect to the

predictive ability in the standard GBLUP approach.

Our study also gives an answer to the question raised by human

genetics ‘‘to what extent GWAS have identified genetic variants

likely to be of clinical or public health importance’’ [23]. Our

results show that GWAS results are useful for the prediction of

genetic merits in animal and plant breeding, and this might also be

valid for the prediction of disease risk in humans and therefore

deserves more exploration in the future.

Computational efficiency
With the fast increase of the data volume available, the

computational efficiency of a whole genome approach becomes a

critical issue in the post-genomic era. The BLUP|GA approach

Figure 2. Accuracy of WGP for simulated traits with different heritabilities and sample sizes. The curves show the change of the accuracy
obtained with BLUP|GA for varying overall weight v for milk yield. Different curves represent the accuracies obtained from traits with original
phenotype (solid line), or simulated phenotypes with heritability of 0.5 (short-dashed line), 0.3 (point line) and 0.1 (long-dashed line), respectively. The
numbers of QTL counts were used to infer the marker weights for the BLUP|GA approach. The GBLUP approach corresponds to scenarios in which
v= 0 (starting points for each curve), and the accuracies of BayesB are presented by horizontal lines. Accuracies were calculated as the mean of 20
replicates of five-fold cross-validation with different population sizes (N = 125, 500, and 2000).
doi:10.1371/journal.pone.0093017.g002
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shares similar computational characteristics with the GBLUP

approach, which is time and memory efficient, especially when the

G matrix has been built and stored before running a job (Figure

S1). On the contrary, Bayesian modeling is computationally

intensive, and it usually takes hours to run analyses of data sets

based on high density SNP chips (Figure S1, [33]), and days to run

analyses of data sets based on whole genome sequences [56]. With

the decrease of sequencing costs, the p.n problem will become

even more serious for WGP approaches. The relationship matrix

based approach gains attractiveness in this situation, since it can

manage the same prediction problem in the dimension of number

of individuals rather than the number of markers.

QTL lists from GWAS results
Our results demonstrated that the comprehensive QTL list

collected from GWAS and QTL mapping studies can be used to

improve the performance of WGP via the BLUP|GA model. In

the past decade, the genetics community conducted thousands of

phenotype-genotype association studies to dissect the genetic

architecture of complex traits in animals [17,18,19,20,57], plants

[12,13,14,15] and humans [22,23,58]. Finally, hundreds of QTLs

were detected to be associated with each of the traits of interest,

such as MY in dairy cattle (Table 3) [17], plant height in rice

(Table 3) [54] or adult human height [52,59]. One usual strategy

to utilize these results is to sift out most promising SNPs for follow-

Table 3. SNP list summary.

Data set Trait Total QTLa Number of SNPs with QTL countb. =

1 2 3 5 10

Cattle Fat percentage 279 1325 257 135 57 1

Milk yield 247 1622 250 107 85 0

Somatic cell score 169 993 184 66 1 0

Rice Days to flower (Arkansas) 38 6488 2196 292 204 0

Flag leaf length 110 13652 3467 1551 1019 0

Flag leaf width 106 13689 7658 3237 560 58

Panicle number per plant 197 19968 11031 6605 3765 672

Plant height 979 34240 31030 26430 14029 6791

Panicle length 240 23942 16521 10865 4164 477

Primary panicle branch number 52 7207 2769 465 0 0

Seed number per panicle 58 17487 9722 1424 48 0

Seed Width 31 4998 840 88 0 0

Blast resistance 169 18628 13194 6631 2076 190

Amylose content 50 6059 1916 1037 165 0

aTotal QTL: Total number of QTL regions for each trait obtained from animalQTLdb (Release 18) [17] and Gramene (Release 36) [16].
bQTL Counts were obtained as described in the ‘Material and Methods’ section. The exact number of top SNPs used in final analysis were showed in bold face.
doi:10.1371/journal.pone.0093017.t003

Table 4. Accuracy and unbiasedness of WGP for rice.

Trait r(PHE, GEBV) b(PHE,GEBV)

BLUP|GA BayesB GBLUP TABLUP BLUP|GA BayesB GBLUP TABLUP

Days to flower (Arkansas) 0.70060.003 0.67560.011 0.66460.003 0.66360.003 1.00160.004 1.01360.010 1.05160.005 0.95260.006

Flag leaf length 0.51660.003 0.51360.003 0.50560.003 0.51460.003 0.94260.008 0.97060.009 0.99960.008 0.86060.007

Flag leaf width 0.76660.002 0.76560.002 0.75760.002 0.75960.002 1.04160.003 1.02960.003 1.05760.003 0.98460.003

Panicle number per plant 0.82260.001 0.82060.001 0.82160.001 0.81460.002 1.01660.002 1.01460.002 1.02160.002 0.97660.003

Plant height 0.76060.002 0.75160.002 0.75360.002 0.75360.002 1.06160.003 1.04360.003 1.05660.003 1.01160.003

Panicle length 0.66160.004 0.65760.004 0.65960.004 0.65160.004 0.99460.006 0.98460.007 0.99160.006 0.90560.006

Primary panicle branch number 0.62660.003 0.62560.003 0.62560.003 0.62560.003 1.02460.006 1.03060.006 1.04460.006 0.91360.006

Seed number per panicle 0.57960.004 0.57260.004 0.57560.004 0.56860.004 1.12160.007 1.05360.006 1.11860.007 0.91460.005

Seed Width 0.83760.001 0.84260.005 0.83760.001 0.85260.001 1.02760.003 0.96760.008 1.02660.003 1.01560.003

Blast resistance 0.70360.003 0.70460.003 0.68960.003 0.69060.003 1.04360.004 1.03160.005 0.99860.005 0.96460.005

Amylose content 0.82560.004 0.80160.005 0.80560.005 0.80560.005 1.01360.004 0.93460.010 1.03160.006 0.98060.005

AVERAGE 0.709 0.702 0.699 0.699 1.026 1.006 1.036 0.952

Mean (6 standard error of means) of accuracy (r) and unbiasedness (b) were calculated from 20 replicates of five-fold cross-validation for each trait. The best result in
each block is printed in boldface. Average accuracy (r) and unbiasedness (b) were calculated for each method across all 11 traits.
doi:10.1371/journal.pone.0093017.t004
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up replication studies to determine true association findings in

previous GWAS [60,61], although it usually takes years or longer

from a QTL to a validated gene [62]. Alternatively, our results

have shown that utilizing the QTL list via the BLUP|GA

approach, one can benefit from more accurate GEBVs in animal

and plant breeding programs or from more accurate predictions of

individual genetic risk of complex disease in humans, although the

exact functions and relationships of all genes underlying the

complex trait under consideration are not known yet.

The QTL list used for BLUP|GA may come from hundreds of

studies and hence is the most comprehensive profile of the

underlying genetic architecture that is available. This is evidenced

by the similar shape of profiles obtained by our analyses of the

cattle QTL list (Figure 3) and the estimated marker effects for MY

in the cattle data set (Figure S2). By counting the significant QTLs

and inferring the corresponding weights for each marker for a

trait, we can account for relatively more important regions across

the whole genome, which is the kind of model selection we are

interested in.

Genetic architecture and accuracy of WGP
The genetic architecture of a complex trait is one of the most

influential factors for WGP [34,35]. Generally, if a trait is

controlled by only a few major genes, methods with an explicit

model selection are known to work best in WGP and these major

genes should easily be detected in a GWAS. In case no major

genes exist, it is hard to detect moderate or small effect QTLs in

GWAS [25,63], and the GBLUP method usually performs better.

From a WGP perspective, our results for the three model traits

in the dairy cattle data set (Figure 1, Table 2), as well as several

studies using simulations [34,41] or real data [35,40], have clearly

Figure 3. Distribution of reported QTLs positions and marker weights obtained from QTL list. Reported QTLs associated with fat
percentage (red), milk yield (blue) and somatic cell score (green) retrieved from animalQTLdb (http://www.animalgenome.org/animlQTLdb) [17].
Marker weights were calculated as the number of times that each marker was reported to be within a significant QTL region (QTL counts). The
colored bar under each plot shows the distribution of QTL positions across the whole genome for the three traits with color keys defined in the first
plot (top-right).
doi:10.1371/journal.pone.0093017.g003
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confirmed this hypothesis. Considering the dairy cattle data set,

using the BLUP|GA method improved the accuracy of WGP for

traits with a characteristic genetic architecture, such as FP and

MY, but not for a trait without evidence of a characteristic trait

genetic architecture, such as SCS. For the rice traits, more

significant QTL regions were identified for the plant height than

panicle length (Table 3, Figure S3), and we obtained more gain in

accuracy for plant height (Table 4). It would be interesting to

explore the performance of the BLUP|GA approach with other

species as well. This is left for future work.

As the effect size of detectable QTL decreases with the increase

of population size, a training population with sufficient size (Ns),

suitable population structure and accurate phenotypes is usually

needed to detect the genetic architecture of a complex trait [39].

The required sample size Ns to achieve a certain accuracy will be

different for different species and populations according to their

effective population size (Ne) and genome length [34,47]. In this

study, the Germany Holstein dairy cattle population was taken as

an example (Ne = ,100 [64]), and the training population sizes

used in the study were approximately 1 Ne (100), 4 Ne (400) and 16

Ne (1,600), respectively. These training population sizes are large

relative to the small value of Ne (compared to other common

species such as humans (,10,000) [65,66], mice (.20,000)[67]

and swine (,100 for one breed) [68,69]. The decreased accuracies

(Figure 1, Figure 2) and the shrunk estimated marker effects

(Figure S2) indicate that the power of detecting genetic architec-

ture and the predictive ability of WGP is seriously affected by the

training population size as well as the accuracy of phenotype

(heritability). Incorporating existing knowledge of the underlying

genetic architecture into the WGP model (such as QTL lists from

previous publications) therefore appears to be even more

reasonable when the population size is small and the heritability

is low. The new approach is more potent in case the combining of

raw data sets are less possible, which was confirmed by our

simulation results from the cattle data set (Figure 2, Table S1).

The new approach presented in this study still offers room for

further improvements, such as refining the SNP list and marker

weights obtained from QTL lists or modifying the T matrix while

combining the information from G and S. We have tried to base

weights in h on accumulated P-values rather than the number of

citations, which basically led to very similar findings (results not

shown). Other concepts like including e.g. pathway information

might be promising as well and are left for further studies.

Conclusions

The BLUP|GA method provides a new tool to incorporate

existing knowledge of the genetic architecture of complex traits

explicitly into a genomic prediction model. Using the BLUP|GA

model, we illustrated that the publicly available QTL lists detected

by hundreds of GWAS and QTL mapping studies improved the

performance of WGP compared to standard WGP methods within

a dairy cattle and a rice data set, respectively. The accuracy of

WGP could be improved for two out of the three model traits in

dairy cattle and for nine out of 11 traits in the rice diversity panel.

The publicly available GWAS results were shown to be potentially

more useful for WGP utilizing smaller data sets and/or traits of

low heritability, depending on the genetic architecture of the trait

under consideration. BLUP|GA also improved the prediction

accuracies compared to the traditional methods GBLUP and

BayesB. To our knowledge, this is the first study incorporating

public GWAS results into the standard BLUP model and we think

that the BLUP|GA approach deserves further investigations in

animal breeding, plant breeding as well as human genetics.

Materials and Methods

A dairy cattle and a rice data set were analyzed in this study.

Summary statistics for these sets and the considered traits are given

in Table 1.

The German Holstein Population
Genotypic data from the Illumina Bovine SNP50 Beadchip [70]

was available for 5,024 German Holstein bulls. SNPs with a minor

allele frequency lower than 1%, with missing position or a call rate

lower than 95% were excluded. After filtering, there were 42,551

SNPs remaining for further analyses. Imputation of missing

genotypes at these SNP positions was done using Beagle 3.2

[71]. For all bulls, conventional estimated breeding values for milk

fat percentage (FP), milk yield (MY) and somatic cell score (SCS)

with reliabilities greater than 70% were available.

The three traits, FP, MY and SCS, were considered due to their

well-established distinct genetic architectures. For FP, a single

mutation in the diacylglycerol acyltransferase 1 (DGAT1) gene

explains approximately 30% of the genetic variance in Holstein

Friesian cattle [60,72]. For MY, several moderate effect loci have

been detected, whereas for SCS, which is a health index counting

the number of somatic cells in milk, only loci with small effects

have been reported so far, so that it can be considered as a trait

exhibiting a quasi-infinitesimal mode of inheritance. These three

traits therefore represent three different possible genetic architec-

tures of complex traits.

For our further studies, we chose to use the 2,000 bulls with the

highest reliabilities in the trait MY to decrease the time

demanding. In order to consider two additional scenarios with

even smaller population size, we randomly selected a subset of 500

and 125 individuals out of these 2,000 individuals. To investigate

the effect of different heritabilities, we also created new phenotypes

for the bulls by adding random error terms to the conventional

estimated breeding values such that the heritability of the new

phenotypes was 0.5, 0.3 and 0.1, respectively.

The Rice Diversity Panel
The rice diversity panel consists of 413 inbred accessions of

Oryza sativa collected from 82 countries [53]. They were

systematically phenotyped for 34 traits and genotyped with a

custom-designed 44,100 oligonucleotide genotyping array. In

total, we used 36,901 SNPs in the present study. We considered

a subset of 11 (listed in Table 1) out of the 34 traits, which have

more than 30 QTL reports respectively. Phenotypes and

genotypes are publicly available from http://www.nature.com/

ncomms/journal/v2/n9/full/ncomms1467.html [53] and http://

www.ricediversity.org/data/sets/44 kgwas/. For more details

about the rice diversity panel we refer to Zhao et al.[53].

Approach to infer marker weights from GWAS results
For a given trait of interest, we first extracted a full list including

the ‘‘most important SNPs’’ with respect to this trait, for which the

according weights have to be chosen in a second step. These are

the SNPs which are finally used to build the S matrix in the

BLUP|GA approach.

We first retrieved regions of QTLs associated with the trait

under consideration from the literature. For each reported QTL,

we picked the SNPs from the genotype data set located in the

corresponding QTL region. If a reported QTL region did not

contain any SNP, we extended the QTL region by 300 kb at both

sides to track the SNPs nearby. If a reported QTL region

contained more than 1,000 SNPs, the corresponding QTL report

was excluded from our analysis, since this QTL would not be
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informative with respect to the marker weights obtained in the

next step. We thereby obtain a list of the most important SNPs as

well as a list of corresponding QTL regions. For each SNP in this

list, we then calculated its marker weight for the trait specific

matrix S used in the BLUP|GA approach by counting the number

of publications which report a significant QTL region which is

included in the QTL list and which contains the considered SNP.

Finally, we removed a marker from the SNP list, if its

corresponding QTL count did not exceed 1 in order to minimize

the effect of potential false positive QTL(s) to the marker weights.

Marker weights for the dairy cattle data set
A list of significant QTLs for the dairy cattle data set was

obtained from animalQTLdb [17] (http://www.animalgenome.

org/QTLdb, Release 18, October 2, 2012), which is a compre-

hensive QTL database for domestic animals. This list included

5,920 QTLs on 407 traits from 331 publications. For each QTL,

the estimated QTL intervals in base-pairs (bp), the associated trait,

the significant P-value and other related information were given.

For more details, we refer to Hu [17] and http://www.

animalgenome.org/QTLdb. There were 279, 247 and 169 QTLs

reported for FP, MY and SCS, respectively (cf. Table 3). Applying

the approach described above to obtain a list of QTL regions, 194,

210 and 124 QTLs were finally included in our further analyses.

The number of SNPs from the genotype data which were located

in these QTL regions and the number of QTL reports for these

SNPs are summarized in Table 3. The reported QTLs for FP are

clustered on chromosomes 6, 14 and 20, while the positional

distributions for QTLs associated with SCS trend to be evenly

spaced across the whole genome (Figure 3). The final marker

weights (QTL counts, obtained by the procedure described in the

previous section) are also plotted in Figure 3. The annotation

information for the SNPs and the corresponding marker weights

are provided in Table S2.

Marker weights for rice data set
The QTL list for Oryza sativa (rice) was obtained from the

Gramene database (ftp://ftp.gramene.org/pub/gramene/

release36/data/qtl/Release 36, January 26, 2013) [54]. It

included 8,216 QTLs on 236 traits. For the 34 traits available in

the panel, we excluded traits with less than 30 QTL reports, and

only kept the first (Days to flower at Arkansas) from the 5 flowering

time traits in our further analyses, so that 11 out of the 34 traits

were finally used to validate the new approach. The numbers of

SNPs from the rice diversity panel which were located in

corresponding QTL regions for each trait are summarized in

Table 3. Marker weights were again inferred by counting the

number of publications reporting a significant QTL region as

described above, and the marker weights for plant height and

panicle length were plotted in Figure S3. The annotation

information for these SNPs and their marker weights are provided

in Table S3.

Genomic Prediction with BLUP (Best Linear Unbiased
Prediction)

The statistical model for the genomic BLUP approach is

y~XmzZgze, ðModel1Þ

in which y is a vector of phenotypic values; m is the overall mean; g
is a multivariate normally distributed vector of genetic values for

all individuals in the model; e*N(0,s2
eI) is the residual term; X

and Z are incidence matrices relating the overall mean and the

genetic values to the phenotypic record. We assume g*N(0,s2
gG)

in the GBLUP approach and g*N(0,s2
gT) in BLUP|GA,

respectively, where T is the matrix from equation (3) and the

‘‘GA’’ stands for ‘‘genetic architecture’’. For TABLUP, the TA
matrix were built according to equation (2) that proposed by

Zhang et al. [51]. Estimated genetic values were obtained by

solving the mixed model equations [73,74] corresponding to

Model 1, which are given by
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A combined AI-EM restricted maximum likelihood algorithm

(AI-average information, EM-expectation maximization) was used

to estimate the variance components of the model via the DMU

software package [75] from the complete data and these variance

components were used in the cross-validations later on.

Genomic Prediction with BayesB
The model for BayesB [4] is given by

y~XmzMsze, ðModel2Þ

where y, X, m, M and e are as defined in Model 1 and s is a vector

of normally distributed and independent SNP effects. The

variance of the ith marker effect,s2
si

was assumed a priori to be

0 with probability of p or to follow a scaled inverse chi-squared

distribution with probability of (1 – p) [4]. In our research, we

chose p~0:95 for all scenarios such that on average 5% markers

were contributing to the additive genetic variance in each cycle.

The MCMC chain was run for 10,000 cycles with 100 cycles of

Metropolis-Hastings sampling in each Gibbs sampling, and the

first 2,000 cycles were discarded as burn-in. All the samples of

marker effects from later cycles were averaged to obtain the

estimates of marker effects. For more details on the BayesB

approach we refer to the original article [4].

Cross-validation
A five-fold cross-validation (CV) procedure [76] was used to

assess the predictive ability of the different prediction methods. In

each replicate of a five-fold CV, individuals were randomly

divided into five groups (folds) with equal size (in case the

population size was not divisible by five, some groups included

slightly more individuals than the other groups). The genetic

values of all individuals in each of the five folds were predicted

using records of the other four folds. Hence, in each replicate, we

performed genomic prediction five times. Each individual

therefore belonged once to the validation set and four times to

the training set. For all scenarios, the five-fold CV was replicated

20 times, resulting in 20 average accuracies.

Accuracy and unbiasedness
Both accuracy and predictive ability in this study were defined

as the Pearson correlation coefficient between observed pheno-

typic values (PHE) and predicted genetic values (PGV):

r~cor(PHE,PGV ). For the dairy cattle data set, the mean

reliabilities for the EBVs, which were treated as phenotypes in our

genomic prediction model, are 0.97, 0.97 and 0.94 for FP, MY,

and SCS, respectively (Table 1). The reported results for dairy
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cattle can therefore be a good indicator of ‘‘accuracy’’ defined as

the correlation between true breeding values (TBV) and genomic

estimated breeding valuescor(TBV ,PGV ). The unbiasedness was

calculated as the regression coefficient of PHE on PGV,

b~reg(PHE,PGV ). For the scenarios with low heritability traits

in the dairy cattle data set, we used the original phenotypes (EBVs)

rather than the simulated new phenotypes to validate different

methods.

Supporting Information

Figure S1 Computing times for GBLUP, BLUP|GA and
BayesB. Computing times for GBLUP, BLUP|GA and BayesB

(10,000 iterations) for population size N = 2,000 and m = 42,551

markers on an Intel Core i5-3470 CPU 3.2 GHz64 with 16 GB

RAM. For GBLUP and BLUP|GA, the computing time includes

building the G matrix and solving the mixed model equations. For

BayesB, the average time demanding for 10,000 iterations is

shown.

(TIF)

Figure S2 Estimated marker effects for milk yield in
dairy cattle. Estimated marker effects obtained with different

population sizes (N). Dark blue dots represent the top 1% SNPs

with the largest estimated marker effects.

(TIF)

Figure S3 Distribution of reported QTLs positions and
marker weights obtained from rice QTL list. Reported

QTLs associated with plant height (red), and panicle lenght (blue)

retrieved from Gramene database (ftp://ftp.gramene.org/pub/

gramene/release36/data/qtl/Release 36, January 26, 2013) [54].

Marker weights were calculated as the number of times that each

marker was reported to be within a significant QTL region (QTL

counts). The colored bar under each plot shows the distribution of

QTL positions across the whole genome for the three traits with

color keys defined in the first plot (top-right).

(TIF)

Table S1 Accuracy and unbiasedness for traits with low
heritability and small population sizes (based on the
dairy cattle data set). The best result in each block is printed in

boldface.

(DOC)

Table S2 SNP lists for the dairy cattle data set. This table

(excel format) includes the name, chromosome, physical position,

trait associated, number of QTL reports, and other important

information for each SNP used in this study.

(XLS)

Table S3 SNP lists for rice diversity panel. This table

(excel format) includes the name, chromosome, physical position,

trait associated, QTL report, and other information for each SNP

used in this study.

(RAR)

Author Contributions

Conceived and designed the experiments: HS JQL ZZ. Performed the

experiments: ZZ UO ME NG JLH HZ. Analyzed the data: ZZ UO ME

NG JLH HZ. Contributed reagents/materials/analysis tools: UO ME.

Wrote the paper: ZZ UO ME HZ JQL HS.

References

1. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic

animals and their use in breeding programmes. Nat Rev Genet 10: 381–391.

2. de los Campos G, Gianola D, Allison DB (2010) Predicting genetic

predisposition in humans: the promise of whole-genome markers. Nat Rev

Genet 11: 880–886.

3. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, et al.

(2012) Genomic and metabolic prediction of complex heterotic traits in hybrid

maize. Nat Genet 44: 217–220.

4. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic

value using genome-wide dense marker maps. Genetics 157: 1819–1829.

5. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, et al. (2005) Complement

factor H polymorphism in age-related macular degeneration. Science 308: 385–

389.

6. Flint J, Eskin E (2012) Genome-wide association studies in mice. Nat Rev Genet

13: 807–817.

7. Geldermann H (1975) Investigations on Inheritance of Quantitative in Animals

by Gene Markers. Theor Appl Genet 46: 319–330.

8. Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, et al. (1995)

Mapping quantitative trait loci controlling milk production in dairy cattle by

exploiting progeny testing. Genetics 139: 907–920.

9. Knott S, Elsen JM, Haley C (1996) Methods for multiple-marker mapping of

quantitative trait loci in half-sib populations. Theor Appl Genet 93: 71–80.

10. Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, et al. (2006)

Genome-wide genetic association of complex traits in heterogeneous stock mice.

Nat Genet 38: 879–887.

11. Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, et al. (2012) The

Drosophila melanogaster Genetic Reference Panel. Nature 482: 173–178.

12. Huang XH, Wei XH, Sang T, Zhao QA, Feng Q, et al. (2010) Genome-wide

association studies of 14 agronomic traits in rice landraces. Nat Genet 42: 961–

967.

13. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, et al. (2009) The

Genetic Architecture of Maize Flowering Time. Science 325: 714–718.

14. Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V (2004)

MaizeGDB, the community database for maize genetics and genomics. Nucleic

Acids Res 32: D393–397.

15. Zhao W, Canaran P, Jurkuta R, Fulton T, Glaubitz J, et al. (2006) Panzea: a

database and resource for molecular and functional diversity in the maize

genome. Nucleic Acids Res 34: D752–757.

16. Jaiswal P, Ni J, Yap I, Ware D, Spooner W, et al. (2006) Gramene: A genomics

and genetics resource for rice. Rice Genetics Newsletter 22: 9–16.

17. Hu ZL, Fritz ER, Reecy JM (2007) AnimalQTLdb: a livestock QTL database

tool set for positional QTL information mining and beyond. Nucleic Acids Res

35: D604–609.

18. Hu ZL, Park CA, Wu XL, Reecy JM (2013) Animal QTLdb: an improved

database tool for livestock animal QTL/association data dissemination in the

post-genome era. Nucleic Acids Res 41: D871–879.

19. Jiang L, Liu J, Sun D, Ma P, Ding X, et al. (2010) Genome wide association

studies for milk production traits in Chinese Holstein population. PLoS ONE 5:

e13661.

20. Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, et al. (2011) Genome-wide
association study identifies Loci for body composition and structural soundness

traits in pigs. PLoS ONE 6: e14726.

21. Liu WB, Li DF, Liu JF, Chen SR, Qu LJ, et al. (2011) A Genome-Wide SNP
Scan Reveals Novel Loci for Egg Production and Quality Traits in White

Leghorn and Brown-Egg Dwarf Layers. PLoS ONE 6: e28600.

22. Hindorff L, MacArthur J, Morales J, Junkins H, Hall P, et al. A catalog of
published genome-wide association studies.

23. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009)

Potential etiologic and functional implications of genome-wide association loci
for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367.

24. Li MJ, Wang P, Liu X, Lim EL, Wang Z, et al. (2012) GWASdb: a database for

human genetic variants identified by genome-wide association studies. Nucleic
Acids Res 40: D1047–1054.

25. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, et al. (2008)

Genome-wide association analysis identifies 20 loci that influence adult height.
Nat Genet 40: 575–583.

26. Maher B (2008) Personal genomes: The case of the missing heritability. Nature

456: 18–21.

27. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009)
Finding the missing heritability of complex diseases. Nature 461: 747–753.

28. Muir WM (2007) Comparison of genomic and traditional BLUP-estimated

breeding value accuracy and selection response under alternative trait and
genomic parameters. J Anim Breed Genet 124: 342–355.

29. Gonzalez-Recio O, Gianola D, Long N, Weigel KA, Rosa GJ, et al. (2008)

Nonparametric methods for incorporating genomic information into genetic
evaluations: an application to mortality in broilers. Genetics 178: 2305–2313.

30. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review:

genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92: 433–
443.

31. VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, et

al. (2009) Invited review: reliability of genomic predictions for North American

Holstein bulls. J Dairy Sci 92: 16–24.

GWAS Results Improves Whole Genome Prediction

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e93017

ftp://ftp.gramene.org/pub/gramene/release36/data/qtl/Release
ftp://ftp.gramene.org/pub/gramene/release36/data/qtl/Release


32. Wray NR, Goddard ME, Visscher PM (2008) Prediction of individual genetic

risk of complex disease. Curr Opin Genet Dev 18: 257–263.
33. Zhou X, Carbonetto P, Stephens M (2013) Polygenic modeling with bayesian

sparse linear mixed models. PLoS Genet 9: e1003264.

34. Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact
of genetic architecture on genome-wide evaluation methods. Genetics 185:

1021–1031.
35. Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME (2010) Genetic

architecture of complex traits and accuracy of genomic prediction: coat colour,

milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS
Genet 6: e1001139.

36. Kapell DN, Sorensen D, Su G, Janss LL, Ashworth CJ, et al. (2012) Efficiency of
genomic selection using Bayesian multi-marker models for traits selected to

reflect a wide range of heritabilities and frequencies of detected quantitative
traits loci in mice. BMC Genet 13: 42.

37. de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, et al. (2009)

Predicting quantitative traits with regression models for dense molecular markers
and pedigree. Genetics 182: 375–385.

38. de Los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP (2012)
Whole Genome Regression and Prediction Methods Applied to Plant and

Animal Breeding. Genetics 193: 327–345.

39. Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits:
challenges and prospects. Nat Rev Genet 10: 565–577.

40. Riedelsheimer C, Technow F, Melchinger AE (2012) Comparison of whole-
genome prediction models for traits with contrasting genetic architecture in a

diversity panel of maize inbred lines. BMC Genomics 13: 452.
41. Daetwyler HD, Calus MP, Pong-Wong R, de Los Campos G, Hickey JM (2013)

Genomic prediction in animals and plants: simulation of data, validation,

reporting, and benchmarking. Genetics 193: 347–365.
42. Wang H, Misztal I, Aguilar I, Legarra A, Muir WM (2012) Genome-wide

association mapping including phenotypes from relatives without genotypes.
Genet Res 94: 73–83.

43. Lund MS, Roos APWd, Vries AGd, Druet T, Ducrocq V, et al. (2010)

Improving genomic prediction by EuroGenomics collaboration. 9th World
Conference of Genetics Applied on Livestock Production. Leipzig, Germany. pp.

880.
44. Ibánz-Escriche N, Fernando RL, Toosi A, Dekkers JC (2009) Genomic selection

of purebreds for crossbred performance. Genet Sel Evol 41: 12.
45. VanRaden PM (2008) Efficient methods to compute genomic predictions.

J Dairy Sci 91: 4414–4423.

46. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, et al. (2010)
Common SNPs explain a large proportion of the heritability for human height.

Nat Genet 42: 565–569.
47. Hayes BJ, Visscher PM, Goddard ME (2009) Increased accuracy of artificial

selection by using the realized relationship matrix. Genet Res 91: 47–60.

48. Forni S, Aguilar I, Misztal I (2011) Different genomic relationship matrices for
single-step analysis using phenotypic, pedigree and genomic information. Genet

Sel Evol 43: 1.
49. Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, et al. (2010) Hot topic: a

unified approach to utilize phenotypic, full pedigree, and genomic information
for genetic evaluation of Holstein final score. J Dairy Sci 93: 743–752.

50. Stranden I, Christensen OF (2011) Allele coding in genomic evaluation. Genet

Sel Evol 43: 25.
51. Zhang Z, Liu JF, Ding XD, Bijma P, de Koning DJ, et al. (2010) Best linear

unbiased prediction of genomic breeding values using trait-specific marker-
derived relationship matrix. PLoS ONE 5: e12648.

52. Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV,

et al. (2008) Many sequence variants affecting diversity of adult human height.
Nat Genet 40: 609–615.

53. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, et al. (2011) Genome-
wide association mapping reveals a rich genetic architecture of complex traits in

Oryza sativa. Nat Commun 2: 467.

54. Jaiswal P, Ni J, Yap I, Ware D, Spooner W, et al. (2006) Gramene: a bird’s eye
view of cereal genomes. Nucleic Acids Res 34: D717–723.

55. Strandén I, Garrick DJ (2009) Technical note: derivation of equivalent

computing algorithms for genomic predictions and reliabilities of animal merit.
J Dairy Sci 92: 2971–2975.

56. Ober U, Ayroles JF, Stone EA, Richards S, Zhu DH, et al. (2012) Using Whole-

Genome Sequence Data to Predict Quantitative Trait Phenotypes in Drosophila
melanogaster. PLoS Genet 8: e1002685.

57. Abasht B, Lamont SJ (2007) Genome-wide association analysis reveals cryptic
alleles as an important factor in heterosis for fatness in chicken F2 population.

Anim Genet 38: 491–498.

58. Wellcome-Trust-Case-Control-Consortium (2007) Genome-wide association
study of 14,000 cases of seven common diseases and 3,000 shared controls.

Nature 447: 661–678.
59. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, et al. (2010)

Hundreds of variants clustered in genomic loci and biological pathways affect
human height. Nature 467: 832–838.

60. Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, et al. (2004) Genetic and

functional confirmation of the causality of the DGAT1 K232A quantitative trait
nucleotide in affecting milk yield and composition. Proc Natl Acad Sci U S A

101: 2398–2403.
61. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, et al. (2007)

Replicating genotype-phenotype associations. Nature 447: 655–660.

62. Drinkwater NR, Gould MN (2012) The long path from QTL to gene. PLoS
Genet 8: e1002975.

63. Meredith BK, Kearney FJ, Finlay EK, Bradley DG, Fahey AG, et al. (2012)
Genome-wide associations for milk production and somatic cell score in

Holstein-Friesian cattle in Ireland. BMC Genet 13: 21.
64. Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, et al. (2010) The

pattern of linkage disequilibrium in German Holstein cattle. Anim Genet 41:

346–356.
65. Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, et al. (2006) A worldwide

survey of haplotype variation and linkage disequilibrium in the human genome.
Nat Genet 38: 1251–1260.

66. Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, et al. (2007) Recent

human effective population size estimated from linkage disequilibrium. Genome
Res 17: 520–526.

67. Phifer-Rixey M, Bonhomme F, Boursot P, Churchill GA, Pialek J, et al. (2012)
Adaptive Evolution and Effective Population Size in Wild House Mice. Mol Biol

Evol 29: 2949–2955.
68. Welsh CS, Stewart TS, Schwab C, Blackburn HD (2010) Pedigree analysis of 5

swine breeds in the United States and the implications for genetic conservation.

J Anim Sci 88: 1610–1618.
69. Uimari P, Tapio M (2011) Extent of linkage disequilibrium and effective

population size in Finnish Landrace and Finnish Yorkshire pig breeds. J Anim
Sci 89: 609–614.

70. Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, et al. (2009)

Development and characterization of a high density SNP genotyping assay for
cattle. PLoS ONE 4: e5350.

71. Browning BL, Browning SR (2007) Rapid and accurate haplotype phasing and
missing data inference for whole genome association studies using localized

haplotype clustering. Genet Epidemiol 31: 606–606.
72. Grisart B, Coppieters W, Farnir F, Karim L, Ford C, et al. (2002) Positional

candidate cloning of a QTL in dairy cattle: Identification of a missense mutation

in the bovine DGAT1 gene with major effect on milk yield and composition.
Genome Res 12: 222–231.

73. Henderson CR (1984) Applications of Linear Models in Animal Breeding.
Guelph, Canada: University of Guelph Press. 462 p.

74. Henderson CR, Kempthorne O, Searle SR, von Krosigk CM (1959) The

estimation of environmental and genetic trends from records subject to culling.
Biometrics 15: 192–218.

75. Madsen P, Sørensen P, Su G, Damgaard LH, Thomsen H, et al. (2006) DMU -
a package for analyzing multivariate mixed models. 8th World Congress on

Genetics Applied to Livestock Production. Brasil.

76. Stone M (1974) Cross-Validatory Choice and Assessment of Statistical
Predictions. J Roy Statis Soc B 36: 111–147.

GWAS Results Improves Whole Genome Prediction

PLOS ONE | www.plosone.org 12 March 2014 | Volume 9 | Issue 3 | e93017


